Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers

We describe the geometry of representation of numbers belonging to (0, 1] by the positive Lüroth series, i.e., special series whose terms are reciprocal of positive integers. We establish the geometrical meaning of digits, give properties of cylinders, semicylinders and tail sets, metric relations;...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Zhykharyeva, Yu., Pratsiovytyi, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2012
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152235
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers / Yu. Zhykharyeva, M. Pratsiovytyi // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 1. — С. 145–160. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We describe the geometry of representation of numbers belonging to (0, 1] by the positive Lüroth series, i.e., special series whose terms are reciprocal of positive integers. We establish the geometrical meaning of digits, give properties of cylinders, semicylinders and tail sets, metric relations; prove topological, metric and fractal properties of sets of numbers with restrictions on use of “digits”; show that for determination of Hausdorff-Besicovitch dimension of Borel set it is enough to use connected unions of cylindrical sets of the same rank. Some applications of L-representation to probabilistic theory of numbers are also considered.