Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers
We describe the geometry of representation of numbers belonging to (0, 1] by the positive Lüroth series, i.e., special series whose terms are reciprocal of positive integers. We establish the geometrical meaning of digits, give properties of cylinders, semicylinders and tail sets, metric relations;...
Gespeichert in:
Datum: | 2012 |
---|---|
Hauptverfasser: | Zhykharyeva, Yu., Pratsiovytyi, M. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2012
|
Schriftenreihe: | Algebra and Discrete Mathematics |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/152235 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers / Yu. Zhykharyeva, M. Pratsiovytyi // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 1. — С. 145–160. — Бібліогр.: 18 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers
von: Zhykharyeva, Yulia, et al.
Veröffentlicht: (2018) -
Expansions of numbers in positive L.uroth series and their applications to metric, probabilistic and fractal theories of numbers
von: Yu. Zhykharyeva, et al.
Veröffentlicht: (2012) -
Topological, metric and fractal properties of probability distributions on the set of incomplete sums of positive series
von: Pratsiovytyi, M.V., et al.
Veröffentlicht: (2007) -
A Rearrangement of the Comparison Tests in the Theory of Number Series
von: L. P. Mironenko
Veröffentlicht: (2013) -
Singular Probability Distributions and Fractal Properties of Sets of Real Numbers Defined by the Asymptotic Frequencies of Their s-Adic Digits
von: Pratsiovytyi, M.V., et al.
Veröffentlicht: (2005)