Projective resolution of irreducible modules over tiled order

We indicate the method for computing the kernels of projective resolution of irreducible module over tiled order. On the base of this method we construct projective resolution of irreducible module and calculate the global dimension of tiled order. The evident view of kernels of projective resolutio...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Zhuravlev, V., Zhuravlyov, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2012
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152247
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Projective resolution of irreducible modules over tiled order / V. Zhuravlev, D. Zhuravlyov // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 323–336. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152247
record_format dspace
spelling irk-123456789-1522472019-06-10T01:25:38Z Projective resolution of irreducible modules over tiled order Zhuravlev, V. Zhuravlyov, D. We indicate the method for computing the kernels of projective resolution of irreducible module over tiled order. On the base of this method we construct projective resolution of irreducible module and calculate the global dimension of tiled order. The evident view of kernels of projective resolution allows to check easily the regularity of tiled order. 2012 Article Projective resolution of irreducible modules over tiled order / V. Zhuravlev, D. Zhuravlyov // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 323–336. — Бібліогр.: 10 назв. — англ. 1726-3255 2010 MSC:16E05, 16G20, 16G10, 16D40. http://dspace.nbuv.gov.ua/handle/123456789/152247 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We indicate the method for computing the kernels of projective resolution of irreducible module over tiled order. On the base of this method we construct projective resolution of irreducible module and calculate the global dimension of tiled order. The evident view of kernels of projective resolution allows to check easily the regularity of tiled order.
format Article
author Zhuravlev, V.
Zhuravlyov, D.
spellingShingle Zhuravlev, V.
Zhuravlyov, D.
Projective resolution of irreducible modules over tiled order
Algebra and Discrete Mathematics
author_facet Zhuravlev, V.
Zhuravlyov, D.
author_sort Zhuravlev, V.
title Projective resolution of irreducible modules over tiled order
title_short Projective resolution of irreducible modules over tiled order
title_full Projective resolution of irreducible modules over tiled order
title_fullStr Projective resolution of irreducible modules over tiled order
title_full_unstemmed Projective resolution of irreducible modules over tiled order
title_sort projective resolution of irreducible modules over tiled order
publisher Інститут прикладної математики і механіки НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/152247
citation_txt Projective resolution of irreducible modules over tiled order / V. Zhuravlev, D. Zhuravlyov // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 323–336. — Бібліогр.: 10 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT zhuravlevv projectiveresolutionofirreduciblemodulesovertiledorder
AT zhuravlyovd projectiveresolutionofirreduciblemodulesovertiledorder
first_indexed 2025-07-13T02:38:53Z
last_indexed 2025-07-13T02:38:53Z
_version_ 1837497678767849472
fulltext Jo ur na l A lg eb ra D is cr et e M at h.Algebra and Discrete Mathematics RESEARCH ARTICLE Volume 14 (2012). Number 2. pp. 323 – 336 c© Journal “Algebra and Discrete Mathematics” Projective resolution of irreducible modules over tiled order Viktor Zhuravlev, Dmytro Zhuravlyov Communicated by V. V. Kirichenko Abstract. We indicate the method for computing the kernels of projective resolution of irreducible module over tiled order. On the base of this method we construct projective resolution of irreducible module and calculate the global dimension of tiled order. The evident view of kernels of projective resolution allows to check easily the regularity of tiled order. 1. Tiled orders over discrete valuation rings Recall [2] that a semimaximal ring is a semiperfect semiprime right Noetherian ring A such that for each primitive idempotent e ∈ A the ring eAe is a discrete valuation ring (not necessarily commutative). Denote by Mn(B) the ring of all n× n matrices over a ring B. Theorem 1 (see [2]). Each semimaximal ring is isomorphic to a finite direct product of prime rings of the following form: Λ =      O πα12O . . . πα1nO πα21O O . . . πα2nO . . . . . . . . . . . . . . . . . . . . . . . . . . . παn1O παn2O . . . O      , (1) 2010 MSC: 16E05, 16G20, 16G10, 16D40. Key words and phrases: tiled order, projective resolution, distributive module, kernel of epimorphism. Jo ur na l A lg eb ra D is cr et e M at h. 324 Projective resolution of irreducible modules where n ≥ 1, O is a discrete valuation ring with a prime element π, and αij are integers such that αij + αjk ≥ αik, αii = 0 for all i, j, k. The ring O is embedded into its classical division ring of fractions D, and (1) is the set of all matrices (aij) ∈ Mn(D) such that aij ∈ παij O = eiiΛejj , where e11, . . . , enn are the matrix units of Mn(D). It is clear that Q = Mn(D) is the classical ring of fractions of Λ. Obviously, the ring A is right and left Noetherian. Definition 1. A module M is distributive if its lattice of submodules is distributive, i.e., K ∩ (L+N) = K ∩ L+K ∩N for all submodules K, L, and N . Clearly, any submodule and any factormodule of a distributive module are distributive modules. A semidistributive module is a direct sum of distributive modules. A ring A is right (left) semidistributive if it is semidistributive as the right (left) module over itself. A ring A is semidistributive if it is both left and right semidistributive (see [9]). Theorem 2 (see [8]). The following conditions for a semiperfect semi- prime right Noetherian ring A are equivalent: • A is semidistributive; • A is a direct product of a semisimple artinian ring and a semimaxi- mal ring. By a tiled order over a discrete valuation ring, we mean a Noetherian prime semiperfect semidistributive ring Λ with nonzero Jacobson radical. In this case, O = eΛe is a discrete valuation ring with a primitive idempotent e ∈ Λ. Jo ur na l A lg eb ra D is cr et e M at h. V. Zhuravlev, D. Zhuravlyov 325 Definition 2. An integer matrix E = (αij) ∈ Mn(Z) is called • an exponent matrix if αij + αjk ≥ αik and αii = 0 for all i, j, k; • a reduced exponent matrix if αij + αji > 0 for all i, j, i 6= j. We use the following notation: Λ = {O, E(Λ)}, where E(Λ) = (αij) is the exponent matrix of the ring Λ, i.e. Λ = n∑ i,j=1 eijπ αij O, in which eij are the matrix units. If a tiled order is reduced, i.e., Λ/R(Λ) is the direct product of division rings, then αij + αji > 0 if i 6= j, i.e., E(Λ) is reduced. We denote by M(Λ) the poset (ordered by inclusion) of all projective right Λ-modules that are contained in a fixed simple Q-module U . All simple Q-modules are isomorphic, so we can choose one of them. Note that the partially ordered sets Ml(Λ) and Mr(Λ) corresponding to the left and the right modules are anti-isomorphic. The set M(Λ) is completely determined by the exponent matrix E(Λ) = (αij). Namely, if Λ is reduced, then M(Λ) = {pz i | i = 1, . . . n, and z ∈ Z}, where pz i ≤ pz′ j ⇐⇒ { z − z′ ≥ αij if M(Λ) = Ml(Λ), z − z′ ≥ αji if M(Λ) = Mr(Λ). Obviously, M(Λ) is an infinite periodic set. Let P be an arbitrary poset. A subset of P is called a chain if any two of its elements are related. A subset of P is called a antichain if no two distinct elements of the subset are related. Definition 3. A right (resp. left) Λ-module M (resp. N) is called a right (resp. left) Λ-lattice if M (resp. N) is a finitely generated free O-module. Given a tiled order Λ we denote Latr(Λ) (resp. Latl(Λ)) the category of right (resp. left) Λ-lattices. We denote by Sr(Λ) (resp. Sl(Λ)) the partially ordered by inclusion set, formed by all Λ-lattices contained in a fixed simple Mn(D)-module W (resp. in a left simple Mn(D)-module V ). Such Λ-lattices are called irreducible. Jo ur na l A lg eb ra D is cr et e M at h. 326 Projective resolution of irreducible modules Let Λ = {O, E(Λ)} be a tiled order, W (resp. V ) is a simple right (resp. left) Mn(D)-module with D-basis e1, . . . , en such that eiejk = δijek (eijek = δjkei). Then any right (resp. left) irreducible Λ-lattice M (resp. N), lying in W (resp. in V ) is a Λ-module with O-basis (πα1e1, . . . , π αnen), while { αi + αij ≥ αj , for the right case; αij + αj ≥ αi, for the left case. (2) Thus, irreducible Λ-lattices M can be identified with integer-valued vector (α1, . . . , αn) satisfying (2). We shall write E(M) = (α1, . . . , αn) or M = (α1, . . . , αn). The order relation on the set of such vectors and the operations on them corresponding to sum and intersection of irreducible lattices are obvious. Remark 1. Obviously, irreducible Λ-lattices M1 = (α1, . . . , αn) and M2 = (β1, . . . , βn) are isomorphic if and only if αi = βi + z for i = 1, . . . , n and z ∈ Z. 2. Kernel of epimorphism from direct sum of modules to their sum Let Λ be the reduced tiled order with the exponent matrix E(Λ) = (αij), M is irreducible right Λ-module and P (M) is its projective cover. The following statement holds. Proposition 1 ([10]). Let X1, . . . , Xs be the set of all maximal sub- modules of irreducible and non-projective Λ-module M with E(M) = (α1, . . . , αn) and E(Xi) = E(M) + eji , where ek = (0, . . . , 0 ︸ ︷︷ ︸ k−1 , 1, 0, . . . , 0). Then P (M) = s ⊕ i=1 παjiPji and M = s∑ i=1 παjiPji . This statement allows to find easily the projective cover of irreducible module over tiled order. Theorem 3 ([10]). Let M1, . . . ,Mn be submodules of distributive module M = n∑ i=1 Mi and epimorphism ϕ : n ⊕ i=1 Mi 7→ M operates by the rule Jo ur na l A lg eb ra D is cr et e M at h. V. Zhuravlev, D. Zhuravlyov 327 ϕ(m1, . . . ,mn) = m1 + . . . + mn. Then ker ϕ = {(y1, . . . , yn) | yi = ∑ j 6=i mij , mij = −mji ∈ Mi ∩Mj}. Since the tiled order is a semidistributive ring we have the following corollary. Corollary 1 ([10]). Let M be irreducible Λ-module and P (M) = s ⊕ i=1 παjiPji , M = s∑ i=1 παjiPji . Then the kernel of epimorphism ϕ : P (M) 7→ M equals to ker ϕ = {(y1, . . . , yn) | yi = ∑ k 6=i mik, mik = −mki ∈ παjiPji ∩ παjkPjk }. The kernel K as the submodule in n ⊕ i=1 Mi can be formally written as K = ∑ i<j (Mi ∩Mj)(ei − ej),where ek = (0, . . . , 0 ︸ ︷︷ ︸ k−1 , 1, 0, . . . , 0). 3. Distributive equations and the system of distributive equations Let O be a discrete valuation ring with unique maximal ideal m = πO, where π is a prime element of a ring. O, F = O/πO — is a skew field, Λ = {O, E(Λ) = (αij)} — is a reduced tiled order over a discrete valuation ring O with exponent matrix E(Λ) = (αij) ∈ Mn(Z). The equation of the form s∑ i=1 aimi = 0, where ai ∈ F , mi ∈ Mi, M1, . . . ,Ms are the submodules of the distributive module M , we will call distributive. Let M1, . . . ,Ms be the submodules of distributive module M = s∑ i=1 Mi and epimorphism ϕ : s ⊕ i=1 Mi → M operates by the rule ϕ(m1, . . . ,ms) = m1 + · · · + ms. Then by the theorem 3 ker ϕ = {(y1, . . . , ys) ∈ s ⊕ i=1 Mi | yi = −m1i − · · · − mi−1i + mii+1 + · · · + mis, where mij ∈ Mi ∩Mj , i < j}. In other words, distributive equation m1 + · · · +ms = 0, (3) Jo ur na l A lg eb ra D is cr et e M at h. 328 Projective resolution of irreducible modules where mi ∈ Mi i = 1, . . . , s, M1, . . . ,Ms are the submodules of the distributive module M , has solution m1 = m12 + · · · +m1s, m2 = −m12 +m23 + · · · +m2s, · · · · · · · · · · · · · · · · · · · · · mi = −m1i − · · · −mi−1i +mii+1 + · · · +mis, · · · · · · · · · · · · · · · · · · · · · ms = −m1s − · · · −ms−1s. (4) Distributive equation a1m1 + · · · + asms = 0 (5) where ai ∈ F , mi ∈ Mi, ai 6= 0 for all i = 1, . . . s by replacement aimi = zi ∈ Mi reduces to the equation (3) and then a1m1 = m12 + · · · +m1s, a2m2 = −m12 +m23 + · · · +m2s, · · · · · · · · · · · · · · · · · · · · · aimi = −m1i − · · · −mi−1i +mii+1 + · · · +mis, · · · · · · · · · · · · · · · · · · · · · asms = −m1s − · · · −ms−1s. (6) where mij ∈ Mi ∩Mj for all i, j i 6= j. Hence m1 = a−1 1 (m12 + · · · +m1s), m2 = a−1 2 (−m12 +m23 + · · · +m2s), · · · · · · · · · · · · · · · · · · · · · mi = a−1 i (−m1i − · · · −mi−1i +mii+1 + · · · +mis), · · · · · · · · · · · · · · · · · · · · · ms = a−1 s (−m1s − · · · −ms−1s). (7) Let now consider the system of distributive equations. a11m1 + · · · + a1sms = 0, a21m1 + · · · + a2sms = 0, · · · · · · · · · · · · · · · · · · · · · at1m1 + · · · + atsms = 0, (8) where mi ∈ Mi for all i,M1, . . . ,Ms are the submodules of the distributive module M , aij ∈ F for all i, j. Jo ur na l A lg eb ra D is cr et e M at h. V. Zhuravlev, D. Zhuravlyov 329 Denote A = (aij) ∈ Mt×s(F ). We can consider that vectors which are the rows of the matrix A are linearly independent. Indeed, if (at1, . . . , ats) = a1(a11, . . . , a1s) + · · · + at−1(at−11, . . . , at−1s), then at1m1 + · · · + atsms = = a1(a11m1 + · · · a1sms) + · · · + at−1(at−11m1 + · · · + at−1sms). Thus the last equation is a corollary of previous equations. Therefore t ≤ s. When t = s are the vectors which are the rows of the matrix A and construct the basis of space F s. Then (1, 0, . . . , 0) = c11(a11, . . . , a1s) + · · · + c1s(as1, . . . , ass), (0, 1, . . . , 0) = c21(a11, . . . , a1s) + · · · + c2s(as1, . . . , ass), · · · · · · · · · · · · · · · · · · · · · (0, 0, . . . , 1) = cs1(a11, . . . , a1s) + · · · + css(as1, . . . , ass). (9) where cij ∈ F for all i, j. Hence m1 = c11(a11m1 + . . .+ a1sms) + · · · + c1s(as1m1 + . . .+ assms), m2 = c21(a11m1 + . . .+ a1sms) + · · · + c2s(as1m1 + . . .+ assms), · · · · · · · · · · · · · · · · · · · · · ms = cs1(a11m1 + . . .+ a1sms) + · · · + css(as1m1 + . . .+ assms). (10) Thus, for existence of nonzero solution of the system (8) it is needed rank A < s, that is t < s. Obviously, the solution of the system (8) depends on the set M1, . . . ,Ms. Denote M = (M1, . . . ,Ms). Thus the system (8) uniquely is determined by the matrix A and the set of the irreducible modules M1, . . . ,Ms and we will denote it by (A,M). Consider the method of solving the system of distributive equa- tions (A,M). Determine the sequence of systems (A1,M1), (A2,M2), . . ., (At,M t) inductively. Notably, let A1 = A, M1 = M . Let we have the system (Ak,Mk), where Ak = (a (k) ij ) — is rectangular matrix of size (t+ 1 − k) × vk, Mk = (M (k) 1 , . . . ,M (k) vk ). Let in the first row of the matrix Ak the elements a (k) 1j1 , a (k) 1j2 , . . . , a (k) 1jlk are not equal to 0, and all other elements are equal to 0. That is the first equality of the system is of the form a (k) 1j1 m (k) j1 + · · · + a (k) 1jlk m (k) jlk = 0. Jo ur na l A lg eb ra D is cr et e M at h. 330 Projective resolution of irreducible modules Then by (7) m (k) j1 = (a (k) 1j1 )−1(m (k) j1j2 + · · · +m (k) j1jlk ), m (k) j2 = (a (k) 1j2 )−1(−m (k) j1j2 + · · · +m (k) j2jlk ), · · · · · · · · · · · · · · · · · · · · · m (k) jlk = (a (k) 1jlk )−1(−m (k) j1j2 − · · · −m (k) jlk−1jlk ). (11) Substituting these expressions for m (k) jl when l = 1, . . . , lk in other equalities of the system (Ak,Mk), we will have the system of t−k equalities lk∑ r=1 a (k) ijr (a (k) 1jr )−1(−m (k) j1jr − · · · −m (k) jr−1jr +m (k) jrjr+1 + · · · +m (k) jrjlk )+ + ∑ j 6=j1,...,jl a (k) ij m (k) j = 0 i = 2, . . . , t+1−k. This is the system of C2 lk +(vk − lk) = vk+1 unknowns: m (k) jxjy (x 6= y, x, y = 1, . . . , lk) and m (k) j (j 6= jr, r = 1, . . . , lk), where m (k) jxjy ∈ M (k) jx ∩M (k) jy . Let Mk+1 = {M (k) jx ∩M (k) jy , x 6= y, x, y = 1, . . . , lk}∪ ∪ {M (k) j , 1 ≤ j ≤ Vk, j 6= j1, . . . , jlk}. Obtained rectangular matrix of the size (t− k) × vk+1 from unknowns m (k) jxjy , x 6= y, x, y = 1, . . . , lk, m (k) j and m (k) j , j 6= jr, r = 1, . . . , lk we denote by Ak+1. Thus, we have obtained the system of distributive equations (Ak+1,Mk+1). Solving only one equation from each system (A1,M1), (A2,M2), . . ., (At−1,M t−1), we will obtain the system (At,M t) of one distributive equation, which we will obtain also by the following formulas (7). We will have the (t − 1)-th union of relations (11) for k = 1, . . . , t − 1 between old unknowns of the system (Ak,Mk) and innovated unknowns of the system (Ak+1,Mk+1). Using these relations in inverse order, firstly when k = t− 1, then when k = t− 2 and so forth, we will obtain the solution of the system (A1,M1) = (A,M). Note that since module Mk+1 either coincides with the module Mk or is the intersection of two modules from Mk, and the solution of the Jo ur na l A lg eb ra D is cr et e M at h. V. Zhuravlev, D. Zhuravlyov 331 system of distributive equations (8) is of the form m1 = b11x1 + b12x2 + · · · + b1rxr, m2 = b21x1 + b22x2 + · · · + b2rxr, · · · · · · · · · · · · · · · · · · · · · ms = bs1x1 + bs2x2 + · · · + bsrxr. (12) where bij ∈ F , xi ∈ Xi, Xi — is the intersection of not more than the (t+ 1)’s module from the set M1,M2, . . . ,Ms. Proposition 2. The solution (12) of the system of distributive equations (8), which is obtained by mentioned method, is the general solution of this system. Proof. The proof will be made with the help of induction by the number of equations of the system(8). The base of the induction is t = 1. The solution of distributive equation (5) is of the form (7) and is the general solution of the equation by the theorem 3. Let we have the system (8) of t equations and let the solution of the system of (t − 1) distributive equations, which is obtained by the mentioned method, be the general solution of the system of distributive equations. Let a11, . . . , a1l in the system (8) be the elements of the first row, which are not equal to 0, a1l+1 = · · · = a1s = 0. The the system (8) subject to the solution of the first equation from the system is equivalent to the system m1 = a−1 11 (m12 + · · · +m1l), m2 = a−1 12 (−m12 +m23 + · · · +m2l), · · · · · · · · · · · · · · · · · · · · · mi = a−1 1i (−m1i − · · · −mi−1i +mii+1 + · · · +mil), · · · · · · · · · · · · · · · · · · · · · ml = a−1 1l (−m1l − · · · −ml−1l). (13) a21a −1 11 l∑ k=2 m1k + · · · + a2la −1 1l l−1∑ k=1 mkl + s∑ k=l+1 a2kmk = 0, · · · · · · · · · · · · · · · · · · · · · at1a −1 11 l∑ k=2 m1k + · · · + atla −1 1l l−1∑ k=1 mkl + s∑ k=l+1 atkmk = 0. (14) Jo ur na l A lg eb ra D is cr et e M at h. 332 Projective resolution of irreducible modules From (13) it follows that m1 + · · ·+ml = 0, and it is the first equation of the system (8). By assumption of induction the solution of the system (14) is a general m12 = b11x1 + b12x2 + · · · + b1rxr, · · · · · · · · · · · · · · · · · · · · · ml−1l = bu1x1 + bu2x2 + · · · + burxr, ml+1 = bu+11x1 + bu+12x2 + · · · + bu+1rxr, · · · · · · · · · · · · · · · · · · · · · ms = bu+s−l1x1 + bu+s−l2x2 + · · · + bu+s−lrxr. (15) where u = C2 l , bij ∈ F , xk ∈ Xk, k = 1, . . . , r, Xk — is the intersection of not more than t modules from the set M1, . . . ,Ms. Then the expression for m1, . . . ,ml we obtain from (13) and (15). Moreover, from the generality of the solution (15) and the unambiguity of expressions for m1, . . . ,ml in (13) we will obtain the generality of the system’s solution (13) – (14). From the equivalence of the systems (13) – (14) and (8) we obtain that the solution of the system (8), which is obtained by the mentioned method, is the general. The proposition is proved. The solution (12) of the system of distributive equations (8) we will write as X1    b11 ... bs1    +Xr    b1r ... bsr    . Remark 2. The form of the solution (12) depends on the set of equations which are solved from each system (Ak,Mk). If Y1    c11 ... cs1    +Yp    c1p ... csp    is the another solution of the system (12), then from the generality of the solutions we have X1    b11 ... bs1    +Xr    b1r ... bsr    = Y1    c11 ... cs1    + Yp    c1p ... csp    . The set of irreducible modules {M1, . . . ,Mv} constructs the partially ordered set by inclusion. Jo ur na l A lg eb ra D is cr et e M at h. V. Zhuravlev, D. Zhuravlyov 333 Let us consider the cases when the expression for the set of system’s solutions can be simplified. • Let the module M1 be the submodule of modules M i1 , . . . ,M iz and vector b̄1 is linearly expressed over F through vectors b̄i1 , . . . , b̄iz : b̄1 = α1b̄i1 + · · · + αz b̄iz , where αj ∈ F . Then b̄1M1 + b̄i1 M i1 + · · · + b̄izM iz = = (α1b̄i1 + · · · + αz b̄iz )M1 + b̄i1 M i1 + · · · + b̄izM iz = = b̄i1 (α1M1 +M i1 ) + b̄i2 (α2M1 +M i2 ) + · · · + b̄iz (αzM1 +M iz ) = = b̄i1 M i1 + b̄i2 M i2 + · · · + b̄izM iz . • Let the vectors b̄i and b̄j be collinear and not equal to zero. Then b̄iM i + b̄jM j = b̄iM i + λb̄iM j = b̄i(M i + λM j) = b̄i(M i +M j). 4. The construction of projective resolution of irreducible modules over tiled order Let X1, . . . , Xs be the set of all maximal submodules of irreducible and non-projective Λ-module M with E(M) = (α1, . . . , αn) and E(Xi) = E(M) + eji , where ek = (0, . . . , 0 ︸ ︷︷ ︸ k−1 , 1, 0, . . . , 0). Then by the proposition 1 P (M) = s ⊕ i=1 παjiPji and M = s∑ i=1 παjiPji . By the corollary 1 the kernel of epimorphism ϕ : P (M) 7→ M equals to ker ϕ = {(y1, . . . , yn) | yi = ∑ k 6=i mik, mik = −mki ∈ Pji ∩ Pjk }. The kernel K1 as submodule in n ⊕ i=1 Mi can be formally written as K1 = ∑ i<j (Mi ∩Mj)(ei − ej),where ek = (0, . . . , 0 ︸ ︷︷ ︸ k−1 , 1, 0, . . . , 0). Let the n-th kernel of projective resolution of irreducible module be of the form Kn = s∑ i=1 Mif i, where Mi — are irreducible modules and P (Mi) = li ⊕ k=1 P (i) jk . Jo ur na l A lg eb ra D is cr et e M at h. 334 Projective resolution of irreducible modules Obviously, there is the epimorphism ψ : li ⊕ k=1 P (Mi) → Kn, which operates by the formula ψ(m1 1, . . . ,m 1 l1 ,m2 1, . . . ,m 2 l2 , . . . ,ms 1, . . . ,m s ls ) = = (m1 1 + . . .+m1 l1 )f1 + . . .+ (ms 1 + . . .+ms ls )fs. Proposition 3. Let M1, . . . ,Ms be Λ-modules, P (Mi) = li ⊕ k=1 P (i) jk be the projective cover of module Mi and the epimorphism ψ : li ⊕ k=1 P (Mi) → Kn operates by the rule ψ(m1 1, . . . ,m 1 l1 ,m2 1, . . . ,m 2 l2 , . . . ,ms 1, . . . ,m s ls ) = = (m1 1 + . . .+m1 l1 )f1 + . . .+ (ms 1 + . . .+ms ls )fs. If projective module P (1) 1 is the submodule of projective modules P (2) 1 , P (3) 1 , . . . , P (t) 1 and f1 = α2f2 + α3f3 + · · · + αtf t, where αi ∈ F , then there exists the epimorphism ψ : ( l1 ⊕ k=2 P (1) k ) ⊕ ( s ⊕ i=2 P (Mi) ) → Kn, which operates by the rule ψ(m1 2, . . . ,m 1 l1 ,m2 1, . . . ,m 2 l2 , . . . ,ms 1, . . . ,m s ls ) = = (m1 2 + . . .+m1 l1 )f1 + . . .+ (ms 1 + . . .+ms ls )fs. Proof. Let write down the operation of the epimorphism ψ in the form ψ(m1 1, . . . ,m s ls ) = = m1 1f1+(m1 2+. . .+m1 l1 )f1+(m2 1+. . .+ms l2 )f2 . . .+(ms 1+. . .+ms ls )fs = = m1 1(α2f2 + . . .+αtf t)+(m1 2 + . . .+m1 l1 )f1 + . . .+(ms 1 + . . .+ms ls )fs = = (m1 2 + . . .+m1 l1 )f1 + ( (m2 1 + α2m 1 1) +m2 2 + . . .+m2 l2 ) f2 + . . . + ( (mt 1 + αtm 1 1) +mt 2 + . . .+mt lt ) f t + (mt+1 1 + . . .+mt+1 lt+1 )f t+1 + . . . + (ms 1 + . . .+ms ls )fs. Since P (1) 1 ⊆ P (k) 1 for all k = 2, . . . , t, then mk 1 + αkm 1 1 = mk 1 for all k = 2, . . . , t, where mk 1 ∈ P (k) 1 . Thus, Jo ur na l A lg eb ra D is cr et e M at h. V. Zhuravlev, D. Zhuravlyov 335 ψ(m1 1, . . . ,m s ls ) = (m1 2 + · · · +m1 l1 )f1+ + (m2 1 +m2 2 + · · · +m2 l2 )f2 + · · · + (mt 1 +mt 2 + · · · +mt lt )f t+ + (mt+1 1 + · · · +mt+1 lt+1 )f t+1 + · · · + (ms 1 + · · · +ms ls )fs = = ψ ( m1 2, . . . ,m 1 l1 ,m2 1,m 2 2, . . . ,m 2 l2 ,m3 1, . . . ,m 3 l3 , . . . , . . . ,mt 1,m t 2,m t lt ,mt+1 1 , . . . ,mt+1 lt+1 , . . . ,ms 1,m s ls ) . Corollary 2. In conditions of proposition 3 projective module P (1) 1 isn’t included in projective cover of module P (Kn). By the kernel Kn we construct the epimorphism ψ : li ⊕ k=1 P (Mi) → Kn, which operates by the rule ψ(m1 1, . . . ,m 1 l1 ,m2 1, . . . ,m 2 l2 , . . . ,ms 1, . . . ,m s ls ) = = (m1 1 + . . .+m1 l1 )f1 + . . .+ (ms 1 + . . .+ms ls )fs. Using proposition 3 by the epimorphism ψ we construct the epimorphism ψ with the minimal number of direct summand. For the kernel Kn+1 we obtain the system of distributive equations. This system is solved by the method given in the section 3. Hereby, we construct the projective resolution of irreducible module, indicating not only projective modules but also all intermediate kernels. Conclusion The results obtained in sections 3 and 4 allow to construct projec- tive resolutions of irreducible modules over tiled order and calculate the global dimension of order. There is the program, which is written in Java programming language, on the basis of performed researches. It allows to calculate projective resolutions of irreducible modules over tiled order of any finite length. Specifying the kernels of resolution in explicit form allows to determine easily whether the global dimension of tiled order depends on characteristic of skew field, i.e. whether the order is regular. References [1] Yu.A. Drozd, V.V. Kirichenko, Finite Dimensional Algebras. Springer-Verlag, Berlin-Heidelberg-New York 1994. Jo ur na l A lg eb ra D is cr et e M at h. 336 Projective resolution of irreducible modules [2] A.G. Zavadskij and V.V. Kirichenko, Torsion-free Modules over Prime Rings, Zap. Nauch. Seminar. Leningrad. Otdel. Mat. Steklov. Inst. (LOMI) - 1976. - v. 57. - p. 100-116 (in Russian). English translation in J. of Soviet Math., v. 11, N 4, April 1979, p. 598-612. [3] Zh. T. Chernousova, M. A. Dokuchaev, M. A. Khibina, V. V. Kirichenko, S. G. Miroshnichenko, and V. N. Zhuravlev, Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I., Algebra and Discrete Math. 1 (2002) 32–63. [4] Zh. T. Chernousova, M. A. Dokuchaev, M. A. Khibina, V. V. Kirichenko, S. G. Miroshnichenko, and V. N. Zhuravlev, Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II. Algebra and Discrete Math. 2 (no. 2) (2003) 47–86. [5] M. Hazewinkel, N. Gubareni and V. V. Kirichenko, Algebras, Rings and Modules. Vol. 1, Series: Mathematics and Its Applications, 575, Kluwer Acad. Publish., 2004. xii+380pp. [6] M. Hazewinkel, N. Gubareni and V. V. Kirichenko, Algebras, Rings and Modules. Vol. 2, Series: Mathematics and Its Applications, 586. Springer, Dordrecht, 2007. xii+400pp. [7] V. V. Kirichenko, A. V. Zelensky, V. N. Zhuravlev, Exponent matrices and tiled orders over discrete valuation rings, Algebra and Computation Vol. 15 No 5 & 6 (2005) 997–1012. [8] V. V. Kirichenko and M. A. Khibina, Semi-perfect semi-distributive rings, In: Infinite Groups and Related Algebraic Topics, Institute of Mathematics NAS Ukraine, 1993, pp. 457–480 (in Russian). [9] A. A. Tuganbaev, Semidistributive modules and rings, Kluwer Acad. Publ., Dor- drecht, 1998. [10] V. Zhuravlev, D. Zhuravlyov, Tiled orders of width 3, Algebra and Discrete Math. 1 (2009) 111–123. Contact information V. Zhuravlev Department of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Volodymyrska, 64, Kyiv 01033, Ukraine E-Mail: vshur@univ.kiev.ua D. Zhuravlyov JSCB “Industrialbank”, Processing Center, Kutuzova street, 18/7, 01133 Kyiv, Ukraine E-Mail: dzhuravlev@ukr.net Received by the editors: 12.08.2012 and in final form 12.08.2012.