Associative words in the symmetric group of degree three
Let G be a group. An element w(x, y) of the absolutely free group on free generators x, y is called an associative word in G if the equality w(w(g₁, g₂), g₃)=w(g₁, w(g₂, g₃)) holds for all g₁, g₂ ∈ G. In this paper we determine all associative words in the symmetric group on three letters....
Gespeichert in:
Datum: | 2013 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2013
|
Schriftenreihe: | Algebra and Discrete Mathematics |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/152265 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Associative words in the symmetric group of degree three / E. Plonka // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 1. — С. 83–95. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152265 |
---|---|
record_format |
dspace |
fulltext |
|
spelling |
irk-123456789-1522652019-06-10T01:25:19Z Associative words in the symmetric group of degree three Plonka, E. Let G be a group. An element w(x, y) of the absolutely free group on free generators x, y is called an associative word in G if the equality w(w(g₁, g₂), g₃)=w(g₁, w(g₂, g₃)) holds for all g₁, g₂ ∈ G. In this paper we determine all associative words in the symmetric group on three letters. 2013 Article Associative words in the symmetric group of degree three / E. Plonka // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 1. — С. 83–95. — Бібліогр.: 9 назв. — англ. 1726-3255 2010 MSC:20B30, 08A40,20F12. http://dspace.nbuv.gov.ua/handle/123456789/152265 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let G be a group. An element w(x, y) of the absolutely free group on free generators x, y is called an associative word in G if the equality w(w(g₁, g₂), g₃)=w(g₁, w(g₂, g₃)) holds for all g₁, g₂ ∈ G. In this paper we determine all associative words in the symmetric group on three letters. |
format |
Article |
author |
Plonka, E. |
spellingShingle |
Plonka, E. Associative words in the symmetric group of degree three Algebra and Discrete Mathematics |
author_facet |
Plonka, E. |
author_sort |
Plonka, E. |
title |
Associative words in the symmetric group of degree three |
title_short |
Associative words in the symmetric group of degree three |
title_full |
Associative words in the symmetric group of degree three |
title_fullStr |
Associative words in the symmetric group of degree three |
title_full_unstemmed |
Associative words in the symmetric group of degree three |
title_sort |
associative words in the symmetric group of degree three |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152265 |
citation_txt |
Associative words in the symmetric group of degree three / E. Plonka // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 1. — С. 83–95. — Бібліогр.: 9 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT plonkae associativewordsinthesymmetricgroupofdegreethree |
first_indexed |
2025-07-13T02:42:28Z |
last_indexed |
2025-07-13T02:42:28Z |
_version_ |
1837497895111098368 |