Associative words in the symmetric group of degree three

Let G be a group. An element w(x, y) of the absolutely free group on free generators x, y is called an associative word in G if the equality w(w(g₁, g₂), g₃)=w(g₁, w(g₂, g₃)) holds for all g₁, g₂ ∈ G. In this paper we determine all associative words in the symmetric group on three letters....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2013
1. Verfasser: Plonka, E.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2013
Schriftenreihe:Algebra and Discrete Mathematics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/152265
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Associative words in the symmetric group of degree three / E. Plonka // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 1. — С. 83–95. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152265
record_format dspace
fulltext
spelling irk-123456789-1522652019-06-10T01:25:19Z Associative words in the symmetric group of degree three Plonka, E. Let G be a group. An element w(x, y) of the absolutely free group on free generators x, y is called an associative word in G if the equality w(w(g₁, g₂), g₃)=w(g₁, w(g₂, g₃)) holds for all g₁, g₂ ∈ G. In this paper we determine all associative words in the symmetric group on three letters. 2013 Article Associative words in the symmetric group of degree three / E. Plonka // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 1. — С. 83–95. — Бібліогр.: 9 назв. — англ. 1726-3255 2010 MSC:20B30, 08A40,20F12. http://dspace.nbuv.gov.ua/handle/123456789/152265 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let G be a group. An element w(x, y) of the absolutely free group on free generators x, y is called an associative word in G if the equality w(w(g₁, g₂), g₃)=w(g₁, w(g₂, g₃)) holds for all g₁, g₂ ∈ G. In this paper we determine all associative words in the symmetric group on three letters.
format Article
author Plonka, E.
spellingShingle Plonka, E.
Associative words in the symmetric group of degree three
Algebra and Discrete Mathematics
author_facet Plonka, E.
author_sort Plonka, E.
title Associative words in the symmetric group of degree three
title_short Associative words in the symmetric group of degree three
title_full Associative words in the symmetric group of degree three
title_fullStr Associative words in the symmetric group of degree three
title_full_unstemmed Associative words in the symmetric group of degree three
title_sort associative words in the symmetric group of degree three
publisher Інститут прикладної математики і механіки НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/152265
citation_txt Associative words in the symmetric group of degree three / E. Plonka // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 1. — С. 83–95. — Бібліогр.: 9 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT plonkae associativewordsinthesymmetricgroupofdegreethree
first_indexed 2025-07-13T02:42:28Z
last_indexed 2025-07-13T02:42:28Z
_version_ 1837497895111098368