The total torsion element graph of semimodules over commutative semirings

We introduce and investigate the total torsion element graph of semimodules over a commutative semiring with non-zero identity. The main purpose of this paper is to extend the definition and results given in [2] to more general semimodule case.

Gespeichert in:
Bibliographische Detailangaben
Datum:2013
Hauptverfasser: Ebrahimi Atani, S., Esmaeili Khalil Saraei, F.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2013
Schriftenreihe:Algebra and Discrete Mathematics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/152303
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The total torsion element graph of semimodules over commutative semirings / S. Ebrahimi Atani, F. Esmaeili Khalil Saraei // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 1–15. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152303
record_format dspace
fulltext
spelling irk-123456789-1523032019-06-10T01:26:13Z The total torsion element graph of semimodules over commutative semirings Ebrahimi Atani, S. Esmaeili Khalil Saraei, F. We introduce and investigate the total torsion element graph of semimodules over a commutative semiring with non-zero identity. The main purpose of this paper is to extend the definition and results given in [2] to more general semimodule case. 2013 Article The total torsion element graph of semimodules over commutative semirings / S. Ebrahimi Atani, F. Esmaeili Khalil Saraei // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 1–15. — Бібліогр.: 15 назв. — англ. 1726-3255 2010 MSC:16Y60, 05C75. http://dspace.nbuv.gov.ua/handle/123456789/152303 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We introduce and investigate the total torsion element graph of semimodules over a commutative semiring with non-zero identity. The main purpose of this paper is to extend the definition and results given in [2] to more general semimodule case.
format Article
author Ebrahimi Atani, S.
Esmaeili Khalil Saraei, F.
spellingShingle Ebrahimi Atani, S.
Esmaeili Khalil Saraei, F.
The total torsion element graph of semimodules over commutative semirings
Algebra and Discrete Mathematics
author_facet Ebrahimi Atani, S.
Esmaeili Khalil Saraei, F.
author_sort Ebrahimi Atani, S.
title The total torsion element graph of semimodules over commutative semirings
title_short The total torsion element graph of semimodules over commutative semirings
title_full The total torsion element graph of semimodules over commutative semirings
title_fullStr The total torsion element graph of semimodules over commutative semirings
title_full_unstemmed The total torsion element graph of semimodules over commutative semirings
title_sort total torsion element graph of semimodules over commutative semirings
publisher Інститут прикладної математики і механіки НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/152303
citation_txt The total torsion element graph of semimodules over commutative semirings / S. Ebrahimi Atani, F. Esmaeili Khalil Saraei // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 1–15. — Бібліогр.: 15 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT ebrahimiatanis thetotaltorsionelementgraphofsemimodulesovercommutativesemirings
AT esmaeilikhalilsaraeif thetotaltorsionelementgraphofsemimodulesovercommutativesemirings
AT ebrahimiatanis totaltorsionelementgraphofsemimodulesovercommutativesemirings
AT esmaeilikhalilsaraeif totaltorsionelementgraphofsemimodulesovercommutativesemirings
first_indexed 2025-07-13T02:47:10Z
last_indexed 2025-07-13T02:47:10Z
_version_ 1837498194437603328