Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators)
This work is a continuation of the paper [1] (Part I), in which the weakly hereditary and idempotent closure operators of the category R-Mod are described. Using the results of [1], in this part the other classes of closure operators C are characterized by the associated functions F₁с and F₂с which...
Gespeichert in:
Datum: | 2013 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2013
|
Schriftenreihe: | Algebra and Discrete Mathematics |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/152310 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators) / A.I. Kashu // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 81–95. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | This work is a continuation of the paper [1] (Part I), in which the weakly hereditary and idempotent closure operators of the category R-Mod are described. Using the results of [1], in this part the other classes of closure operators C are characterized by the associated functions F₁с and F₂с which separate in every module M ∈ R-Mod the sets of C-dense submodules and C-closed submodules. This method is applied to the classes of hereditary, maximal, minimal and cohereditary closure operators. |
---|