On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field
In this note, we consider the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field. P. Bruin [1] defined this pairing over finite field k: ker ˆφ(k) × coker(φ(k)) ⟶ k∗, and proved its perfectness over finite field. We prove perfectness of the Tate pairing associate...
Gespeichert in:
Datum: | 2013 |
---|---|
1. Verfasser: | Nesteruk, V. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2013
|
Schriftenreihe: | Algebra and Discrete Mathematics |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/152312 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field / V. Nesteruk // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 103–106. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field
von: V. Nesteruk
Veröffentlicht: (2013) -
On the Tate pairing associated to an isogeny between abelian varieties over pseudofinite field
von: Nesteruk, Volodymyr
Veröffentlicht: (2018) -
Pettancyclus australicus (Tate) (Bulinidae, Miratestinae) впервые обнаружен на Украине
von: Стадниченко, А.П.
Veröffentlicht: (1988) -
Higher Genus Abelian Functions Associated with Cyclic Trigonal Curves
von: England, M.
Veröffentlicht: (2010) -
On induced modules over locally Abelian-by-polycyclic groups of finite rank
von: Tushev, A.V.
Veröffentlicht: (2019)