Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C#

We present combinatorial algorithms constructing loop-free P-critical edge-bipartite (signed) graphs Δ′, with n ≥ 3 vertices, from pairs (Δ, w), with Δ a positive edge-bipartite graph having n-1 vertices and w a sincere root of Δ, up to an action ∗ : UBigrn × O(n, Z) → UBigrn of the orthogonal group...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Polak, A., Simson, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2013
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152352
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C# / A. Polak, D. Simson // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 242–286. — Бібліогр.: 43 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152352
record_format dspace
spelling irk-123456789-1523522019-06-12T01:25:18Z Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C# Polak, A. Simson, D. We present combinatorial algorithms constructing loop-free P-critical edge-bipartite (signed) graphs Δ′, with n ≥ 3 vertices, from pairs (Δ, w), with Δ a positive edge-bipartite graph having n-1 vertices and w a sincere root of Δ, up to an action ∗ : UBigrn × O(n, Z) → UBigrn of the orthogonal group O(n, Z) on the set UBigrn of loop-free edge-bipartite graphs, with n ≥ 3 vertices. Here Z is the ring of integers. We also present a package of algorithms for a Coxeter spectral analysis of graphs in UBigrn and for computing the O(n, Z)-orbits of P-critical graphs Δ in UBigrn as well as the positive ones. By applying the package, symbolic computations in Maple and numerical computations in C#, we compute P-critical graphs in UBigrn and connected positive graphs in UBigrn, together with their Coxeter polynomials, reduced Coxeter numbers, and the O(n, Z)-orbits, for n ≤ 10. The computational results are presented in tables of Section 5. 2013 Article Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C# / A. Polak, D. Simson // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 242–286. — Бібліогр.: 43 назв. — англ. 1726-3255 2010 MSC:15A63, 11Y16, 68W30, 05E10 16G20, 20B40, 15A21. http://dspace.nbuv.gov.ua/handle/123456789/152352 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We present combinatorial algorithms constructing loop-free P-critical edge-bipartite (signed) graphs Δ′, with n ≥ 3 vertices, from pairs (Δ, w), with Δ a positive edge-bipartite graph having n-1 vertices and w a sincere root of Δ, up to an action ∗ : UBigrn × O(n, Z) → UBigrn of the orthogonal group O(n, Z) on the set UBigrn of loop-free edge-bipartite graphs, with n ≥ 3 vertices. Here Z is the ring of integers. We also present a package of algorithms for a Coxeter spectral analysis of graphs in UBigrn and for computing the O(n, Z)-orbits of P-critical graphs Δ in UBigrn as well as the positive ones. By applying the package, symbolic computations in Maple and numerical computations in C#, we compute P-critical graphs in UBigrn and connected positive graphs in UBigrn, together with their Coxeter polynomials, reduced Coxeter numbers, and the O(n, Z)-orbits, for n ≤ 10. The computational results are presented in tables of Section 5.
format Article
author Polak, A.
Simson, D.
spellingShingle Polak, A.
Simson, D.
Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C#
Algebra and Discrete Mathematics
author_facet Polak, A.
Simson, D.
author_sort Polak, A.
title Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C#
title_short Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C#
title_full Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C#
title_fullStr Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C#
title_full_unstemmed Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C#
title_sort algorithms computing o(n, z)-orbits of p-critical edge-bipartite graphs and p-critical unit forms using maple and c#
publisher Інститут прикладної математики і механіки НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/152352
citation_txt Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C# / A. Polak, D. Simson // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 2. — С. 242–286. — Бібліогр.: 43 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT polaka algorithmscomputingonzorbitsofpcriticaledgebipartitegraphsandpcriticalunitformsusingmapleandc
AT simsond algorithmscomputingonzorbitsofpcriticaledgebipartitegraphsandpcriticalunitformsusingmapleandc
first_indexed 2025-07-13T02:53:28Z
last_indexed 2025-07-13T02:53:28Z
_version_ 1837498591922356224
fulltext Algebra and Discrete Mathematics RESEARCH ARTICLE Volume 16 (2013). Number 2. pp. 242 – 286 c© Journal “Algebra and Discrete Mathematics” Algorithms computing O(n,Z)-orbits of P -critical edge-bipartite graphs and P -critical unit forms using Maple and C# Agnieszka Polak and Daniel Simson Abstract. We present combinatorial algorithms constructing loop-free P -critical edge-bipartite (signed) graphs ∆′, with n ≥ 3 vertices, from pairs (∆, w), with ∆ a positive edge-bipartite graph having n-1 vertices and w a sincere root of ∆, up to an action ∗ : UBigrn × O(n,Z) → UBigrn of the orthogonal group O(n,Z) on the set UBigrn of loop-free edge-bipartite graphs, with n ≥ 3 vertices. Here Z is the ring of integers. We also present a package of algorithms for a Coxeter spectral analysis of graphs in UBigrn and for computing the O(n,Z)-orbits of P -critical graphs ∆ in UBigrn as well as the positive ones. By applying the package, symbolic computations in Maple and numerical computations in C#, we compute P -critical graphs in UBigrn and connected positive graphs in UBigrn, together with their Coxeter polynomials, reduced Coxeter numbers, and the O(n,Z)-orbits, for n ≤ 10. The computational results are presented in tables of Section 5. 1. Introduction Throughout, we denote by N the set of non-negative integers, by Z the ring of integers, and by Q ⊂ R ⊂ C the field of the rational, real, and the complex numbers, respectively. We view Zn, with n ≥ 1, as a free The research is supported by Polish Research Grant NCN 2011/03/B/ST1/00824 2010 MSC: 15A63, 11Y16, 68W30, 05E10 16G20, 20B40, 15A21. Key words and phrases: edge-bipartite graph, unit quadratic form, P -critical edge-bipartite graph, Gram matrix, sincere root, orthogonal group, algorithm, Coxeter polynomial, Euclidean diagram. A. Polak, D. Simson 243 abelian group. We denote by e1, . . . , en the standard Z-basis of Zn. Given n ≥ 1, we denote by Mn(Z) the Z-algebra of all square n by n matrices, and by E ∈ Mn(Z) the identity matrix. Following some ideas of the spectral graph theory [7], the graph coloring techniques [2] and [14], and of the unit quadratic forms investigation given in [3], [5]-[6], [9], [12], [21]-[22], [28], [29], [36], [40], we study in [38] the category of loop-free edge-bipartite (signed [42]) graphs ∆ by means of the Coxeter spectrum of ∆, that is, the finite set specc∆ ⊂ C of all complex roots of the Coxeter polynomial cox∆(t) ∈ Z[t] of ∆, see Section 2. In particular, we are interested in an orthogonal and Coxeter spectral classification of positive and non-negative loop-free edge-bipartite graphs ∆ (in the sense of Definition 1.1). In the present paper we study in details P -critical loop-free edge-bipartite graphs ∆, by applying a technique developed in [5]-[6], [21], [22], [35]–[38]. In this case, the Coxeter spectrum specc∆ of ∆ is a subset of the unit circle and consists of roots of unity. Our main inspiration for the study comes from the representation theory of posets (see [5], [8], [28], [31]-[32], [40]), groups and algebras (see [1], [16]-[19], [29], [39]), Lie theory, and Diophantine geometry problems, see [35]-[37]. Our motivation comes also from the fact that positive (and non- negative) edge-bipartite graphs, P -critical graphs, positive unit forms, and P -critical forms (and their positive roots) have important applications in the study of indecomposable representations of posets, tame algebras, tame vector space categories and tame bimodule matrix problems, see [1], [4], [8], [10], [20], [22], [28], [30]–[34], [39]. [43]. Here we use the terminology and notation introduced in [38]. In particular, by an edge-bipartite graph (bigraph, in short) we mean a pair ∆ = (∆0, ∆1), where ∆0 is a finite non-empty set of vertices and ∆1 is a finite set of edges equipped with a disjoint union bipartition ∆1 = ∆− 1 ∪ ∆+ 1 such that the set ∆1(i, j) = ∆− 1 (i, j) ∪ ∆+ 1 (i, j) of edges connecting the vertices i and j does not contain edges lying in ∆− 1 (i, j) ∩ ∆+ 1 (i, j), for each pair of vertices i, j ∈ ∆0, and either ∆1(i, j) = ∆− 1 (i, j) or ∆1(i, j) = ∆+ 1 (i, j). Note that the edge-bipartite graph ∆ can be viewed as signed multi-graph satisfying a separation property, see [38] and [42]. We define an edge-bipartite graph ∆ = (∆0, ∆1) to be simply-laced if (b1) the set ∆1(i, j) contains at most one edge, for each pair of vertices i, j ∈ ∆0, and 244 P -critical edge-bipartite graphs (b2) ∆1(j, j) is empty, for any j ∈ ∆0, that is, ∆ is loop-free. We say that ∆ has no isolated loop if |∆− 1 (j, j)| 6= 1, for j = 1, . . . , n. If ∆ has no loop, we call it loop-free. We visualize ∆ as a (multi-)graph in a Euclidean space Rm, m ≥ 2, with the vertices numbered by the integers 1, . . . , n; usually, we simply write ∆0 = {1, . . . , n}. Any edge in ∆− 1 (i, j) is visualised as a continuous one •i−−− •j , and any edge in ∆+ 1 (i, j) is visualised as a dotted one •i- - -•j . We view any finite graph ∆ = (∆0, ∆1) as an edge-bipartite one by setting ∆− 1 (i, j) = ∆1(i, j) and ∆+ 1 (i, j) = ∅, for each pair of vertices i, j ∈ ∆0. We denote by Bigrn the category of finite edge-bipartite graphs, with n ≥ 2 vertices, and usual edge-bipartite graph maps as morphisms, see [38] for details. We denote by UBigrn the full subcategory of Bigrn whose objects are the loop-free edge-bipartite graphs. Following the representation theory of finite-dimensional K-algebras over an algebraically closed field K (see [1], [8],[31], [39]) and the mesh- geometry study of roots of integral unit quadratic forms described in [35]–[37], the edge-bipartite graphs ∆ ∈ UBigrn are studied in [38] by means of the Coxeter(-Gram) transformation Φ∆ : Zn → Zn (and its spectral properties, compare with [7]) associated with the non-symmetric adjacency matrix Ď∆ and the non-symmetric Gram matrix Ǧ∆ of ∆ defined as follows. Definition 1.1 (see [38]). Let ∆ = (∆0, ∆1) be an edge-bipartite graph in Bigrn, with ∆0 = {a1, . . . , an}, n ≥ 1, and the bipartition ∆1 = ∆− 1 ∪ ∆+ 1 . (a) The non-symmetric adjacency matrix Ď∆ and the non-symmetric Gram matrix Ǧ∆ of ∆ are defined to be the square matrices Ď∆ =   d∆ 11 d∆ 12 . . . d∆ 1n 0 d∆ 22 . . . d∆ 2n . . . . . . . . . . . . 0 0 . . . d∆ nn  , Ǧ∆ =E+Ď∆ =   1 + d∆ 11 d∆ 12 . . . d∆ 1n 0 1 + d∆ 22 . . . d∆ 2n . . . . . . . . . . . . 0 0 . . . 1 + d∆ nn   where d∆ ij = −|∆− 1 (ai, aj)|, if there is an edge ai−−− aj and i ≤ j, d∆ ij = |∆+ 1 (ai, aj)|, if there is an edge ai- - -aj and i ≤ j. We set d∆ ij = 0, if ∆1(ai, aj) is empty or j < i. (b) The matrix G∆ := 1 2(Ǧ∆ + Ǧtr ∆) is called the symmetric Gram matrix of ∆. By the symmetric adjacency matrix (or, signed adja- cency matrix, see [42]) of ∆ ∈ UBigrn we mean the symmetric matrix Ad∆ := Ď∆ + Ďtr ∆ ∈ Mn(Z). A. Polak, D. Simson 245 The spectrum of ∆ ∈ UBigrn is defined to be the set spec∆ ⊂ R of n real eigenvalues of the symmetric matrix Ad∆ ∈ Mn(Z) (see [42]), i.e., the set of all n roots of the polynomial P∆(t) = det(t · E − Ad∆) ∈ Z[t], called the characteristic polynomial of the edge-bipartite graph ∆. (c) ∆ = (∆0, ∆1) is defined to be positive (resp. non-negative), if the symmetric Gram matrix G∆ := 1 2(Ǧ∆ + Ǧtr ∆) of ∆ is positive definite (resp. positive semi-definite). (d) We define ∆ to be P -critical, if ∆ has no loop, is not positive, and any proper full (induced) edge-bipartite subgraph of ∆ is positive. Any edge-bipartite graph ∆ = (∆0, ∆1) ∈ UBigrn, with ∆1 = ∆− 1 ∪ ∆+ 1 , is uniquely determined by its non-symmetric adjacency matrix Ď∆ and its non-symmetric Gram matrix Ǧ∆. If ∆ is simply-laced, we have d∆ 11 = . . . = d∆ nn = 0, d∆ ij = −1, if i < j and there is an edge ai−−− aj , and d∆ ij = 1, if i < j and there is an edge ai- - -aj . Throughout this paper, for simplicity of the presentation, we assume that ∆0 = {1, . . . , n}, that is, a1 = 1, . . . , an = n. In Sections 2 and 3, we study in details P -critical edge-bipartite graphs ∆, by applying unit quadratic form results obtained in [21] and [22]. In particular, in Theorem 2.8 we give a useful characterization of P -critical edge-bipartite graphs, and we present an algorithm in the form (∆, w) 7→ ∆[[w]] that associates to any pair (∆, w), with ∆ ∈ UBigrn positive, w = (w1, . . . , wn) ∈ Zn its sincere root (i.e., w · G∆ · wtr = 1 and w1 6= 0, . . . , wn 6= 0), a P -critical edge-bipartite graph ∆[[w]] in UBigrn+1. We show that the map (∆, w) 7→ ∆[[w]] is invariant under the orthogonal group action O(n,Z) × UBigrn → UBigrn (2.1), and any P -critical edge-bipartite graph ∆′ in UBigrn+1 has the form ∆′ = ∆[[w]]. We also present a package of algorithms for a Coxeter spectral analysis of graphs in UBigrn and for computing the O(n,Z)-orbits of P -critical graphs ∆ in UBigrn, as well as the positive ones. By applying the package, symbolic computations in Maple and numerical computations in C#, we compute P -critical graphs in UBigrn, the connected positive ones, their unit quadratic forms, their Coxeter polynomials, and the O(n,Z)-orbits, for n ≤ 10. The computing results are presented in tables of Section 5. Main results of the paper are announced in [24]-[25] and were presented at the Sixth European Conference on Combinatorics, Graphs Theory and Applications, EuroComb′11, Budapest, August 2011, and at International 246 P -critical edge-bipartite graphs Conference Combinatorics 2012, Perugia, September 2012, see also [26]. Some applications of the results presented here are given in [27]. 2. Preliminaries Given n ≥ 1, we denote by Gl(n,Z) = {A ∈ Mn(Z); det A ∈ {−1, 1}} ⊂ Mn(Z) the group of Z-invertible matrices with integer coefficients, and by O(n,Z) = {B ∈ Mn(Z); B · Btr = E} its subgroup formed by the orthogonal matrices. Recall from [36] that O(n,Z) is generated by: • the diagonal matrices ε̂(j) = diag(1, . . . , 1, −1j , 1, . . . , 1) ∈ Mn(Z), where 1 ≤ j ≤ n, −1j = −1 is the jth coordinate of the vector ε(j) = diag(1, . . . , 1, −1j , 1, . . . , 1), and • the permutation matrices σ̂ = Mσ, where σ ∈ Sn is a permutation of the set {1, . . . , n}. We define the right action ∗ : Bigrn × O(n,Z) −−−−→ Bigrn (2.1) of the orthogonal group O(n,Z) on Bigrn as follows. Let ∆ = (∆0, ∆1) be an edge-bipartite graph in Bigrn, with n ≥ 2. (i) If ε̂(j) = diag(1, . . . , 1, −1j , 1, . . . , 1), where 1 ≤ j ≤ n, we define ∆∗ε̂(j) to be the graph in Bigrn obtained from ∆ by replacing every dotted edge •i- - -•j , with i 6= j, by a continuous one, and every continuous edge •s−−− •j , with s 6= j, by a dotted one. The remaining edges (in particular the loops at j) remain unchanged. (ii) If σ̂ = Mσ is a permutation matrix defined by σ ∈ Sn, we define ∆ ∗ σ̂ to be the the graph in Bigrn obtained from ∆ by the permutation σ−1 of the vertices of ∆ as well as the corresponding edges between them. It is shown in [38] that (i) and (ii) uniquely define the action (2.1), be- cause every matrix B ∈ O(n,Z) has a unique decomposition B = σ̂ · ε̂, where σ̂ ∈ Ŝn := {σ̂ ∈ O(n,Z); σ ∈ Sn} and ε̂ is a finite product of matrices of the type ε̂(j), see [36, Lemma 2.3]. It is easy to see that the full subcategories SLBigrn and UBigrn of Bigrn, whose objects are the simply-laced edge-bipartite graphs and the loop-free edge-bipartite graphs, are O(n,Z)-invariant. A. Polak, D. Simson 247 Assume that ∆ has no isolated loop. The Coxeter polynomial of ∆ is the characteristic polynomial cox∆(t) = det(t · E − Cox∆) (2.2) of the Coxeter matrix Cox∆ := −Ǧ∆ · Ǧ−tr ∆ ∈ Gl(n,Z) of ∆. The group automorphism Φ∆ : Zn → Zn defined by the formula Φ∆(v) = v · Cox∆ is called the Coxeter transformation of ∆, compare with Drozd [8]. The set specc∆ ⊆ C of n complex eigenvalues of Φ∆ is called the Coxeter spectrum of ∆. The order c∆ of Cox∆ in Gl(n,Z) is called the Coxeter number of ∆. In other words, c∆ is a minimal integer c ≥ 1 such that Coxc ∆ = E. If there is no such integer, we set c∆ = ∞. It is shown in [38] that the matrices Ǧ∆, Cox∆, the Coxeter polynomial cox∆(t), and the Coxeter number c∆ depend on the numbering of the vertices of the bigraph ∆. Moreover, the Coxeter spectrum specc∆ of ∆ is a subset of the unit circle, if ∆ is non-negative and loop-free. We associate with ∆ ∈ UBigrn the Gram forms q∆ : Zn → Z and b∆ : Zn × Zn → Z defined by the formula q∆(x) = x · Ǧ∆ · xtr = x2 1 + · · · + x2 n + ∑ i<j d∆ ijxixj , b∆(x, y) = x · Ǧ∆ · ytr. (2.3) The set of roots of ∆ (and of q∆) is defined to be the set R∆ = {v ∈ Zn; q∆(v) = 1}. The set Ker q∆ = {v ∈ Zn; q∆(v) = 0} is called the kernel of q∆. In the study of the subcategory UBigrn of Bigrn consisting of the loop- free edge-bipartite graphs ∆, we essentially use the results on unit integral quadratic forms obtained in [3], [9], [12], [21]-[22], [28]-[29], [33]-[36], [39]. For this purpose we recall some definitions. A unit integral quadratic form is a map q : Zn −−−→ Z, n ≥ 1, defined by the formula q(x) = q(x1, . . . , xn) = x2 1 + . . . + x2 n + ∑ i<jqijxixj , (2.4) where qij ∈ Z, for i < j. Obviously, q is uniquely determined by its non-symmetric Gram matrix Ǧq =   1 q12 . . . q1n 0 1 . . . q2n ... ... . . . ... 0 0 . . . 1   ∈ Mn(Z) (2.5) 248 P -critical edge-bipartite graphs and by the symmetric Gram matrix Gq = 1 2 [Ǧq + Ǧtr q ] of q, because q(x) = x · Ǧq · xtr = x · Gq · xtr, where Ǧtr q means the transpose of Ǧq and x = (x1, . . . , xn) ∈ Zn. The polar form of q is the symmetric Z-bilinear form bq : Zn × Zn −−−→ 1 2 · Z defined by the formula bq(x, y) = x · Gq · ytr = 1 2 [q(x + y) − q(x) − q(y)], where the vectors x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Zn are viewed as one-row matrices, and we set ytr = [ y1 . . . yn ] . We call q positive (resp. non-negative) if q(v) > 0 (resp. q(v) ≥ 0), for all non-zero vectors v ∈ Zn. A vector v ∈ Zn is said to be a q-root (of unity), if q(v) = v · Gq · vtr = 1. A vector v = (v1, . . . , vn) ∈ Zn is said to be sincere, if v1 6= 0, . . . , vn 6= 0. We say that v is positive, if v 6= 0 and v1 ≥ 0, . . . , vn ≥ 0. Given v = (v1, . . . , vn) ∈ Zn and s ∈ {1, . . . , n}, we set v(s) := (v1, . . . , vs−1, vs+1, . . . , vn) ∈ Zn−1. Given n ≥ 1, we denote by U(Zn,Z) the set of all unit forms q : Zn → Z. We recall from [36, Section 2], that the Coxeter(-Gram) polyno- mial of q : Zn → Z is the characteristic polynomial coxq(t) := det(t · E − Coxq) ∈ Z[t] of the Coxeter(-Gram) matrix Coxq := −Ǧq · Ǧ−tr q . The Coxeter number of q is the order cq of the matrix Coxq in the group Gl(n,Z), i.e., a minimal integer c ≥ 1 such that Coxc q = E. If there is no such integer, we set cq = ∞. To any unit form q : Zn → Z, we associate in [36, Section 2] an edge-bipartite graph bigr(q) of q with the vertices 1, . . . , n as follows. Two vertices s 6= j are joined by |qsj | continuous edges •s−−− •j if qsj < 0, and by qsj dotted edges •s- - -•j if qsj > 0. There is no edge between s and j, if qsj = 0, or s = j. We say that q is connected if the graph bigr(q) is connected. We recall from [36] that a unit form q : Zn → Z, with n ≥ 2, is defined to be P -critical (critical with respect to the positivity) if q is not positive, and each of the restrictions q(1), . . . , q(n) : Zn−1 → Z A. Polak, D. Simson 249 of q is positive, where q(j) = q|xj=0. The form q : Zn −−→Z is defined to be principal if q is non-negative and Ker q = {v ∈ Zn; q(v) = 0} is an infinite cyclic subgroup of Zn. Positive unit forms, P -critical unit forms and their roots are essentially applied in the representation theory of finite-dimensional algebras R, coalgebras C, and their derived categories Db(mod R), see [1], [11], [17], [31]–[35], [39], [43]. They are mainly used as a computational tool for determining the representation type (finite, tame, wild) of an algebra R and in a combinatorial description of the Auslander-Reiten quiver Γ(mod R) of its module category mod R, see [1], [10], [31], [34]-[35], [39]-[40], and [43]. Given a ∈ ∆0, we denote by ∆(a) the edge-bipartite graph obtained from ∆ by removing the vertex a together with all edges •i- - - -•a and •a−−− •j connected with a. In the study of the category UBigrn, the following result is of impor- tance, see also [38]. Proposition 2.6. The correspondence ∆ 7→ q∆ defines a bijection q• : UBigrn 1−1 −−−−→ U(Zn,Z) (2.7) with the following properties: (a) Ǧq∆ = Ǧ∆, Gq∆ = G∆, Rq∆ = R∆, Coxq∆ = Cox∆, cq∆ = c∆, and coxq∆ (t) = cox∆(t), (b) an edge bipartite graph ∆ ∈ UBigrn is positive (resp. non-negative, principal, P -critical) if and only if the unit form q∆ : Zn → Z is positive (resp. non-negative, principal, P -critical). Proof. It is easy to see that q (a) ∆ = q∆(a) , for a = 1, . . . , n. In view of [38, Lemma 2.1], the unit form q∆ is P -critical if and only if ∆ is not positive and the edge bipartite graphs ∆(1), . . . , ∆(n) are positive, or equivalently, every full edge-bipartite subgraph ∆′ of ∆ is positive, apply [38, Lemma 2.1(c)] and its proof. The remaining properties of q• follow by applying the foregoing definitions. Throughout the paper, we often use the bijection (2.7) as an identifica- tion ∆ ≡ q∆. In particular, we often describe the bigraph ∆ by presenting its unit form q∆, or the matrix Ǧ∆. Now we are able to present a useful characterization of P -critical edge-bipartite graphs. 250 P -critical edge-bipartite graphs Theorem 2.8. Assume that ∆ is a loop-free edge-bipartite graph in UBigrn, with n ≥ 3. The following four conditions are equivalent. (a) ∆ is P -critical. (b) The bigraph ∆ is non-negative and the free abelian group Ker q∆ = {v ∈ Zn, q(v) = 0} is infinite cyclic generated by a sincere vector h∆ = (h1, . . . , hn), such that −6 ≤ hj ≤ 6, for all j ∈ {1, . . . , n}, and hs ∈ {−1, 1}, for some s ∈ {1, . . . , n}. (c) The set R∆ := {v ∈ Zn; q∆(v) = 1} of roots of ∆ is infinite, and each of the subbigraphs ∆(1), . . . , ∆(n) of ∆ has only finitely many roots. (d) There exist a Euclidean diagram D∆ ∈ {Ãn−1, D̃n−1, Ẽ6, Ẽ7, Ẽ8}, see (5.1), and a group isomorphism T : Zn → Zn such that q∆ ◦ T is the quadratic form qD∆ : Zn → Z, n = |D∆0|, of the diagram D∆ and T carries a sincere vector h′ ∈ Ker qD∆ to a sincere vector in Ker q∆. Proof. Since we have q (a) ∆ = q∆(a) , for a = 1, . . . , n, then R q (a) ∆ = R∆(a) . On the other hand, by Proposition 2.6, ∆ is P -critical if and only if the unit form q∆ is P -critical. Then the equivalence of (a)–(d) follows by applying [21, Theorem 2.3] and [38]. In the classification of P -critical unit forms q ∈ U(Zn,Z), we use the right action ∗ : U(Zn,Z) × O(n,Z) −−−−−→ U(Zn,Z) (2.9) (defined in [36, Section 2]), that associates to q ∈ U(Zn,Z) and B ∈ O(n,Z) the unit form q ∗ B : Zn → Z by setting (q ∗ B)(x) = q(x · Btr), for x ∈ Zn (see also [21]). It is easy to see that the action (2.9) coincides with the action (2.1) under the identification q• : UBigrn 1−1 −→ U(Zn,Z) (2.7). By [36, Lemma 2.3], the group O(n,Z) is generated by the following two subgroups: • the group Ĉn 2 of all matrices ε̂ = ε · E, where E ∈ Mn(Z) is the identity matrix and ε = (ε1, . . . , εn) ∈ Cn 2 runs through all vectors with coefficients ε1, . . . , εn ∈ C2 = {−1, 1}, the cyclic group of order two, and • the group Ŝn of all matrices σ̂ = Mσ of the group homomorphisms σ : Zn → Zn given by the permutation σ ∈ Sn and defined by σ(x) = x · M tr σ = (xσ(1), . . . , xσ(n)), where Sn is the symmetric group of order n!. A. Polak, D. Simson 251 Moreover, every matrix B ∈ O(n,Z) has a unique form B = σ̂ · ε̂, with σ̂ ∈ Ŝn and ε̂ ∈ Ĉn 2 , the group O(n,Z) is finite of order |O(n,Z)| = n! · 2n, and O(n,Z) admits the semi-direct product decomposition O(n,Z) = Ŝn ⋊ Ĉn 2 , with respect to the right group action • : Ĉn 2 × Ŝn → Ĉn 2 of Ŝn on the group Ĉn 2 defined by the formula ε̂•σ̂ = diag(εσ−1(1), . . . , εσ−1(n)). Note that ε̂ · σ̂ = σ̂ · (ε̂•σ̂), for all ε̂ ∈ Ĉn 2 and σ̂ ∈ Ŝn. It follows from the description of O(n,Z) given above that q ∗ B ∈ U(Zn,Z), if q ∈ U(Zn,Z) and B ∈ O(n,Z). It is easy to see that the set P -crit(Zn,Z) of all P -critical unit forms q : Zn → Z, and the set posit(Zn,Z) of all positive unit forms q : Zn → Z are O(n,Z)-invariant subsets of U(Zn,Z). Following [21] and [38], we investigate recursive algorithmic procedures that construct all O(n,Z)-orbits of the P -critical bigraphs and O(n,Z)- orbits in P -crit(Zn,Z), for n ≥ 3. We do it by applying the following correspondence inds,εs : Zn−1 −−−−→ P -crit(Zn,Z), (p, w) 7→ q := qp,s,w,εs (2.10) defined by the formula (3.2), from the set Zn−1 ={(p, w); p ∈ posit(Zn−1,Z), w∈Zn−1 a sincere root of p},(2.11) to the set P -crit(Zn,Z) of all P -critical unit forms q : Zn → Z. We show that inds,εs (2.10) defines a surjective map ind : O(n-1,Z)-Orb(Zn−1) −−−−−→ O(n,Z)-Orb(P -crit(Zn,Z)), with n ≥ 3, between the set of O(n-1,Z)-orbits in Zn−1 and the set of O(n,Z)-orbits in P -crit(Zn,Z). By applying a package of algorithms presented in Section 4, symbolic computations in Maple, and numerical computations in C#, we compute in Section 5 all P -critical unit forms q : Zn → Z, together with their Coxeter-Gram polynomials and the O(n,Z)-orbits, for n ≤ 10. Under the identification q• : UBigrn−1 1−1 −→ U(Zn−1,Z) (2.7), we can identify the set Zn−1 with the set Z ′ n−1 ={(∆, w); ∆ ∈ UBigrn−1 positive, w∈Zn−1 a sincere root of ∆}, (2.12) n ≥ 3, and the correspondence inds,εs (2.10) can be viewed as a map inds,εs : Z ′ n−1 −−−−→ UBigrn, (∆, w) 7→ ∆[[w, s, εs]], (2.13) see (3.6). It follows from our next result that ∆[[w, s, εs]] is a P -critical bigraph. 252 P -critical edge-bipartite graphs A connection between P -critical bigraphs and positive ones, and between P -critical unit forms and positive ones is given by the following result proved in [21, Section 3], see also [12]. Proposition 2.14. Assume that q : Zn → Z is a P -critical unit form (2.4), with n ≥ 3, Ker q = Z · h and s ∈ {1, . . . , n} is such that hs ∈ {−1, 1}. (a) The vector h(s) := (h1, . . . , hs−1, hs+1, . . . hn) ∈ Zn−1 is a sincere root of the positive unit form q(s) : Zn−1 → Z. (b) The form q can be reconstructed from the triple (q(s), s, h(s)) by the formula q(x) = q(s)(x(s)) + x2 s − 2 · bq(s)(x(s), h(s)) · hs · xs, where x(s) = (x1, . . . , xs−1, xs+1, . . . , xn) ∈ Zn−1 and bq(s) is the symmetric bilinear polar form of q(s)(x(s)) = q(s)(x1, . . . , xs−1, xs+1, . . . xn). 3. Main theorem and main algorithm For n ≥ 3, the correspondence inds,εs : Zn−1 −−−−−→ P -crit(Zn,Z) (2.10) between positive unit forms p : Zn−1 → Z, with a sincere root, and P -critical forms q : Zn → Z, and the correspondence (2.13) between positive loop-free bigraphs ∆, with a sincere root, and P -critical bigraphs are described in the following theorem (its proof is outlined in [21]). Theorem 3.1. (a) Given n ≥ 3, s ∈ {0, 1, . . . , n − 1}, εs ∈ {−1, 1}, a positive connected loop-free bigraph ∆ ∈ UBigrn−1, with the unit form p := q∆ : Zn−1 → Z and a sincere root w = (w1, . . . , wn−1) ∈ Zn−1 of ∆ and of p := q∆, the bigraph ∆′ corresponding via (2.7) to the unit form q∆′ := qp,s,w,εs : Zn → Z defined by the formula q(x) := q∆′(x1, . . . , xn) = p(x(s)) + x2 s − 2 · bp(x(s), w) · εs · xs, (3.2) is P -critical and Ker q∆′ = Z · ŵεs, where bp : Zn−1 × Zn−1 → Z is the symmetric polar form of p and ŵεs =(w1, . . . , ws−1, εs, ws, . . . wn−1)∈Zn. (b)The set Zn−1 (2.11) is an O(n,Z)-invariant subset of posit(Zn−1,Z) × Zn−1 under the action (p, w) ∗ B := (p ∗ B, w · B), with B ∈ O(n,Z). The map (p, w) 7→ inds,εs(p, w) := qp,s,w,εs described in (3.2) defines a surjection ind : O(n−1,Z)-Orb(Zn−1) −−−−−→ O(n,Z)-Orb(P -crit(Zn,Z)) (3.3) between the set of O(n−1,Z)-orbits of Zn−1 and the set of O(n,Z)-orbits in the set P -crit(Zn,Z) of P -critical unit forms. A. Polak, D. Simson 253 (c) A right inverse of ind is given by q 7→ ress(q) := (q(s), h(s)) defined in (a), that associates to any P -critical form q = q∆, with Ker q = Z · h and hs ∈ {−1, 1}, the pair (q(s), h(s)) ∈ Zn−1. Proof. Assume that n ≥ 3, ∆ is a connected positive loop-free bigraph in UBigrn−1, p := q∆ : Zn−1 → Z is its unit form and w = (w1, . . . , wn−1) ∈ Zn−1 a sincere root of p. Let ∆′ ∈ UBigrn be the bigraph corresponding via (2.7) to the unit form q := qp,s,w,εs : Zn → Z defined by the formula (3.2), that is, q∆′ = qp,s,w,εs . Throughout the proof, we set p := q∆ and q = q∆′ = qp,s,w,εs . (a) Assume that p ∈ posit(Zn−1,Z), w ∈Zn−1 is a sincere root of p, s ∈ {0, 1, . . . , n}, εs ∈ {−1, 1}, and q := qp,s,w,εs : Zn → Z is defined by the formula (3.2). We prove that q is P -critical by showing that q is non-negative and Ker q = Z · h, where h is sincere vector, see Theorem 2.8. For simplicity of the presentation, we assume that s = n, that is, q is defined by the formula q(x1, . . . , xn) = p(x(n)) + x2 n − 2 · bp(x(n), w) · εn · xn. It follows that q(n) = p, Ǧq(n) = Ǧp, Gq(n) = Gp, and Ǧq = [ Ǧp −2Ǧp · wtr · εn 0 1 ] and Gq = [ Gp −Gp · wtr · εn −w · Gp · εn 1 ] are the non-symmetric and the symmetric Gram matrix of q, respectively. We split the proof in three steps. Step 1.1◦ First, we show that det Gq = 0 and q is not positive. Since q(n) = p is positive and v ·Gp ·vtr = p(v), for all v ∈ Zn−1, then det Gp > 0, and, in view of the Cauchy theorem, the obvious equality [ Gp −Gp · wtr · εn −w · Gp · εn 1 ] = = [ Gp 0 −w · Gp · εn 1 ] · [ E −G−1 p Gp · wtr · εn 0 1 − (−wGpεn) · G−1 p · (−Gpwtrεn) ] yields det Gq = (det Gp) · (1 − w · Gp · wtr) = (det Gp) · (1 − p(w)) = 0, because p(w) = 1. Hence, by Sylvester′s criterion, the unit form q is not positive. Step 1.2◦ We prove that the unit form q is non-negative. Consider the rational subspace W = Qn−1 × {0} of Qn. Since q(n) = p then bq(n) = bp and the rational bilinear form bq|W = bp : Qn−1 × Qn−1 → Q 254 P -critical edge-bipartite graphs is positive. Hence, there is a direct sum decomposition Qn = W ⊕ W ⊥, where W ⊥ = {v ∈ Qn; bq(v, w) = 0, for all w ∈ W} is the orthogonal complement of W . It follows that W ⊥ = Q · η, for some non-zero vector η ∈ W ⊥. (i) First we show that bq(η, η) = 0. For, let e = {e1, . . . , en} be the standard basis of Qn. Note that the Gram matrix of q in the Q-basic e′ = {e1, . . . , en−1, η} of Qn has the diagonal form Ge ′ q =   bq(e1, η) Gp . . . bq(en−1, η) bq(η, e1) . . . bq(η, en−1) bq(η, η)   = [ Gp 0 0 bq(η, η) ] . If C ∈ Mn(Q) is the translation matrix from e to e′, then det C 6= 0, Ge ′ b = Ctr · Gb · C and Cauchy’s theorem yields (det Gp)·bq(η, η) = det Ge ′ b = det(Ctr ·Ge b ·C) = (det C)2 ·(det Gb) = 0, because det Gb = 0, by 1.1◦. It follows that bq(η, η) = 0, because p is positive and det Gp > 0. (ii) Next, by applying (i), we prove that q : Qn → Q is non-negative, i.e., q(v) ≥ 0, for each v ∈ Qn. Since Qn = W ⊕ Q · η, the vector v has the form v = w + λ · η, where w ∈ W , λ ∈ Z, and we get q(v) = q(w + λ · η) = bq(w + λ · η, w + λ · η) = bq(w, w) + λ2 · bq(η, η) + 2λ · bq(w, η) = p(w) ≥ 0, because bq(η, η) = 0, bq(w, η), bq(w, w) = q(w) = p(w) ≥ 0 and the positivity of p : Zn−1 → Z implies that the rational form p : Qn−1 → Q is positive. The proof of Step 1.2◦ is complete. Step 1.3◦ We show that Ker q = Z · ŵεs , where ŵεs = (w1, . . . , ws−1, εs, ws, . . . wn−1) ∈ Zn. Since q : Zn → Z is non-negative, then Ker q = rad q = ⋂n i=1 Ker bq(ei, −) (see [36, Proposition 2.8]) and therefore Ker q coincides with the abelian subgroup UZ ⊆ Zn of all solutions v ∈ Zn of the system of Z-linear equations    bq(e1, x) = 0 ... bq(en, x) = 0 (3.4) Denote by UQ the rational subspace of Qn of all solutions v ∈ Qn of the system (3.4). Since det Gq = 0 and det Gq(n) = det Gp > 0 then rank(Gq)=n − 1 and the system (3.4) has a non-zero solution ξ ∈ Qn such that UQ = Q · ξ, A. Polak, D. Simson 255 because dimQ UQ = n − rank(Gq) = 1. Let ξ = (k1 r1 , . . . , kn rn ), where r1 . . . , rn ∈ N\{0} and k1, . . . , kn ∈ Z. If r = lcm(r1, . . . , rn), then ξ′ = r · ξ ∈ Zn is non-zero and 0 = q(ξ) = q(1 r · ξ′) = 1 r2 · q(ξ′), that is, ξ′ ∈ UZ. Then the group UZ ⊆ Zn is non-zero and, hence, it is free of rank ≤ n. It follows that UZ is of rank one, because UZ ⊆ UQ = Q · ξ. We show that Ker q = UZ = Z · ŵεs . Since the formula (3.2) yields q(ŵεs) = p(w) + ε2 s − 2bp(w, w) · εs · εs = 1 + 1 − 2 = 0 then ŵεs ∈ Ker q and Ker q ⊇ Z · ŵεs . To prove the inverse inclusion, assume that h is a Z-generator of the rank one group Ker q = UZ, i.e., Ker q = Z · h. Then there exists λ ∈ Z such that ŵεs = λ · h. Since h ∈ Zn and the sth coordinate of ŵεs equals εs ∈ {−1, 1} then the equality εs = λ · hs yields εs, λ, hs ∈ {−1, 1}. It follows that ŵεs generates the group Ker q = Z · v. Since the vector ŵεs is sincere, q is non-negative, and Ker q = Z · ŵεs then, by Theorem 2.8, q is P -critical and the proof of (a) is complete. (b) We recall from [36] that given q : Zn → Z, σ̂ ∈ Ŝn, and ε̂ ∈ Ĉn 2 , with ε1, . . . , εn ∈ C2 = {−1, 1}, we have (A) the form (q ∗ σ̂)(x) = q(x · σ̂tr) = q(xσ(1), . . . , xσ(n)) is obtained from q(x) by permuting the variables of x under σ ∈ Sn, and (B) (q ∗ ε̂)(x) = q(x · ε̂) = q(ε1 · x1, . . . , εn · xn). (C) two integral unit forms q1, q2 : Zn → Z lie in the same O(n,Z)- orbit if and only if Gq1 = Btr · Gq2 · B, for some matrix B ∈ O(n,Z). Assume that p : Zn−1 → Z is positive, w ∈ Zn−1 is a sincere root of p, and q1 := qp,s1,w,εs1 , q2 := qp,s2,w,εs2 are P -critical forms associated with (p, w) by applying the construction (3.2), with some s1, s2 ≤ n and εs1 , εs2 ∈ C2 = {−1, 1}. We split the proof of (b) in several steps. Step 2.1◦ We show that P -critical forms q1, q2 : Zn → Z lie in the same O(n,Z)-orbit. 2.1.1◦ First, we assume that s := s1 = s2 and εs1 6= εs2 . It follows that q1(x) is obtained from q2(x) by xs 7→ −xs, that is, q1 = q2 ∗ ε̂′, where ε′ s = −1, and ε′ j = 1, for all j 6= s, see (B). Consequently, the forms q1, q2 : Zn → Z lie in the same O(n,Z)-orbit. 2.1.2◦ Next, we assume that s1 6= s2 and εs1 = εs2 . We find a matrix B ∈ O(n,Z) such that Gq1 = Btr · Gq2 · B. In case s1 = 1 and s2 ∈ {2, . . . , n}, we set 256 P -critical edge-bipartite graphs B =   0 1 0 . . . 0 0 0 . . . 0 0 0 1 . . . 0 0 0 . . . 0 ... ... ... . . . ... ... ... . . . ... 0 0 0 · · · 1 0 0 . . . 0 1 0 0 . . . 0 0 0 . . . 0 0 0 0 · · · 0 1 0 . . . 0 ... ... ... . . . ... . . . ... . . . ... 0 0 0 · · · 0 0 0 . . . 1   =   e2 e3 . . . ei e1 ei+1 . . . en   , where i = s2. For simplicity of the presentation, we assume that s2 = n. Then Gq1 = [ 1 −w · Gp −Gp · wtr Gp ] , Gq2 = [ Gp −Gp · wtr −w · Gp 1 ] are the sym- metric Gram matrices of the forms q1, q2, respectively, and simple calcu- lation yields Btr · Gq2 · B = =   0 0 0 · · · 0 1 1 0 0 · · · 0 0 0 1 0 · · · 0 0 . . . . . . . . . . . . 0 0 0 . . . 1 0   · [ Gp −Gp · wtr −w · Gp 1 ] ·   0 1 0 0 · · · 0 0 0 1 0 · · · 0 . .. . .. . .. . . . . .. 0 0 0 . . . 1 1 0 0 . . . 0   = [ −w · Gp 1 Gp −Gp · wtr ] ·   0 1 0 0 · · · 0 0 0 1 0 · · · 0 . . . . . . . . . . . . . . . 0 0 0 . . . 1 1 0 0 . . . 0   = Gq1 . In case s1 6= s2 and s1, s2 ∈ {2, . . . , n}, we set B =   1 . . . 0 0 0 . . . 0 0 0 . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . 1 0 0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 . . . 0 1 0 . . . 0 0 . . . 0 0 1 . . . 0 0 0 . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . 0 0 0 . . . 1 0 0 . . . 0 0 . . . 0 1 0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 . . . 0 0 1 . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . . . 0 0 0 . . . 0 0 0 . . . 1   =   e1 e2 . . . ei−1 ej ei+1 . . . ej−1 ei ej+1 . . . en   = τ̂ , where i = s1, j = s2, and τ is the transpose permutation (i, j). For simplicity of the presentation, we assume that s1 = n − 1, s2 = n and, given a ≤ k ≤ n − 1 and b ≤ s ≤ n − 1, we denote by G [(a,k)(b,s)] p the (k − a + 1) × (s − b + 1) matrix obtained from Gp by removing the rows enumerated by 1, . . . , a − 1, k + 1, . . . , n − 1 and the columns enumerated by 1, . . . , b − 1, s + 1, . . . , n − 1. A. Polak, D. Simson 257 Given w ∈ Zn and 1 ≤ k ≤ s ≤ n, we set w̃ = −Gp · wtr and w̃(k,s) = (wk, . . . , ws). Then Gq1 =   G [(1,n−2)(1,n−2)] p w̃(1,n−2) G [(1,n−2)(n−1,n−1)] p [w̃(1,n−2)]tr 1 w̃ (n−1,n−1) n−1 G [(n−1,n−1)(1,n−2)] p w̃ (n−1,n−1) n−1 G [(n−1,n−1)(n−1,n−1)] p   , and Gq2 = [ Gp w̃ w̃tr 1 ] . Note that Btr = B = τ̂ and, given a matrix A ∈ Mn(Z), the matrix A · B = A · τ̂ (resp. B · A = τ̂ · A) is obtained from A by the transpose of its ith column with the jth column (resp. of its ith row with the jth row). Then a straightforward computation yields Btr · Gq2 · B = =   1 0 0 0 . . . 0 0 0 1 0 0 . . . 0 0 . . . . . . . . . . . . . . . 0 0 0 1 . . . 0 0 0 0 0 0 . . . 0 1 0 0 0 0 . . . 1 0   · [ Gp w̃ w̃tr 1 ] ·   1 0 0 0 . . . 0 0 0 1 0 0 . . . 0 0 . . . . . . . . . . . . . . . 0 0 0 1 . . . 0 0 0 0 0 0 . . . 0 1 0 0 0 0 . . . 1 0   =   G [(1,n−2)(1,n−1)] p w̃(1,n−2) w̃tr 1 G [(n−1,n−1)(1,n−1)] p w̃(n−1,n−1)   ·   1 0 0 0 . . . 0 0 0 1 0 0 . . . 0 0 . .. . .. . . . . .. . .. 0 0 0 1 . . . 0 0 0 0 0 0 . . . 0 1 0 0 0 0 . . . 1 0   = Gq1 . Step 2.2◦ We show that the P -critical forms q1 := qp1,s1,w1,εs1 , q2 := qp2,s2,w2,εs2 lie in the same O(n,Z)-orbit, if (p1, w1), (p2, w2) ∈ Zn−1 lie in the same O(n−1,Z)-orbit. In view of Step 2.1◦, without loss of generality, we can assume that s1 = s2 = 1 and εs1 = εs2 = 1. Then Gq1 = [ 1 −w1 · Gp1 −(w1 · Gp1 )tr Gp1 ] , Gq2 = [ 1 −w2 · Gp2 −(w2 · Gp2 )tr Gp2 ] is the symmetric Gram matrix of the form q1 and q2, respectively. Assume that B′ ∈ O(n−1,Z) is a matrix such that (p1, w1) ∗ B′ = (p1 ∗ B′, w1 · B′) = (p2, w2), and we set B = [ 1 0 0 B′ ] ∈ O(n,Z). We show that q2(x) = q1(x · Btr), for all x ∈ Zn, by proving that the equality Btr · Gq1 · B = Gq2 holds, see (A3). 258 P -critical edge-bipartite graphs Since (B′)tr = (B′)−1, (B′)tr · Gp1 · B′ = Gp2 and w2 = w1 · B′, we obtain Gq2 = [ 1 −w2 · Gp2 −(w2 · Gp2 )tr Gp2 ] = [ 1 −w2 · (B′)tr · Gp1 · B′ −(w2 · (B′)tr · Gp1 · B′)tr (B′)tr · Gp1 · B′ ] = [ 1 −w1 · B′ · (B′)−1 · Gp1 · B′ −(w1B′ · (B′)−1 · Gp1 · B′)tr (B′)tr · Gp1 · B′ ] = [ 1 −w1 · Gp1 · B′ −(w1 · Gp1 · B′)tr (B′)tr · Gp1 · B′ ] = Btr · Gq1 · B and the proof of Step 2.2◦ is complete. Consequently, we have a well defined map (3.3) ind : O(n−1,Z)-Orb(Zn−1) −−−−−→ O(n,Z)-Orb(P -crit(Zn,Z)) induced by the map (p, w) 7→ ind(p, w) := qp,s,w,εs on the orbit represen- tatives, see (3.2). To finish the proof of (b), it remains to show that the map ind (3.3) is surjective. Hence (b) follows, because the surjectivity of ind is a conse- quence of Proposition 2.14. Since the statement (c) follows from Proposi- tion 2.14, the proof is complete. Construction 3.5. Assume that n ≥ 3. It follows from the proof of Theorem 3.1 that the correspondence inds,εs : Z ′ n−1 −−−→ UBigrn (2.13), with s = n, associates to any pair (∆, w) ∈ Z ′ n−1 the P -critical bigraph ∆′ := ∆[[w, n, εn]] ∈ UBigrn (3.6) defined as follows. The set ∆′ 0 of vertices of ∆′ is obtained from ∆0 = {1, 2, . . . , n−1} by adding a new vertex n, that is, ∆′ 0 = {1, 2, . . . , n−1, n}. We set w′ := −2Ǧ∆ · w. By Theorem 3.1, each of the coordinates w′ 1, . . . , w′ n−1 of the vector w′ = (w′ 1, . . . , w′ n−1) ∈ Zn−1 lies in {−1, 0, 1}, because the bigraph ∆′ corresponds to the unit form q defined by the formula (3.2). Hence, q1n = w′ 1, . . . , qn−1n = w′ n−1, ∆′ is P -critical, Ǧ∆′ = [ Ǧ∆ −2Ǧ∆ · wtr · εn 0 1 ] = [ Ǧ∆ w′tr 0 1 ] (3.7) A. Polak, D. Simson 259 and q1n, . . . , qn−1n ∈ {−1, 0, 1}, because the restriction q[j,n](xj , xn) := x2 j + x2 n + qjnxjxn of q(x) is positive, for j = 1, . . . , n − 1, see also [38, Theorem 4.1]. It follows that the set of edges of ∆′ := ∆[[w, n, εn]] is the enlargement of ∆1 by adding a new continuous edge •s−−− •n, for any s such that w′ s < 0, and a new dotted edge •r- - -•n, for any r such that w′ r > 0. It follows from [21, Corollary 4.10] and our calculation in Section 5 that the surjective map (3.3) is far from being injective, see also Remark 4.10. However, by applying Theorem 3.1, its proof, and the correspondence (p, w) 7→ qp,w,s,εs defined by (3.2), we get Algorithm 3.8 constructing the set P -crit(Zn+1,Z) of all P -critical unit forms q : Zn+1 → Z from the unit forms p ∈ posit(Zn,Z), with a sincere root w, for n ≥ 3, as well as the set of P -critical bigraphs ∆′ ∈ UBigrn from the positive ones ∆ ∈ UBigrn−1, with a sincere root w, for n ≥ 2. Its implementation is presented in the following section as Algorithms 4.8 and 4.9. By applying Algorithm 3.8 and the package of algorithms presented in the following section, we compute in Section 5 all P -critical unit forms q : Zn+1 → Z, for n ≤ 9, up to the action (2.9) of the orthogonal group O(n+1,Z) on U(Zn+1,Z), and the set of P -critical bigraphs ∆′ ∈ UBigrn, for n ≥ 2, up to the action (2.1) of the orthogonal group O(n,Z) on Bigrn. Algorithm 3.8. Input: An integer n ≥ 3 and the finite sets of matrices O(n,Z) ⊆ Mn(Z) and O(n+1,Z) ⊆ Mn+1(Z) (see [21, 3.1]). Output: A finite set P -crit• n+1 ⊆ P -crit(Zn+1,Z) of pairwise differ- ent representatives of all O(n + 1,Z)-orbits in P -crit(Zn+1,Z). Step 1◦ Construct a finite set posit• n ⊆ posit(Zn,Z) of pairwise different representatives p : Zn → Z of O(n,Z)-orbits in posit(Zn,Z). Step 2◦ Given p ∈ posit• n, construct the finite set Rp = {w ∈ Zn; p(w) = 1} of roots of p, and then construct the list SRp of all sincere vectors in Rp. Step 3◦ Construct a finite set Z− n of pairwise different representatives of all O(n,Z)-orbits in the finite set Z• n = {(p, w); p ∈ posit• n, w ∈ SRp}, see [21, Proposition 3.7(c)]. Step 4◦ Given (p, w) ∈ Z− n , construct the Gram matrices Ǧp and Gp of p, then construct the matrix Gp,w = [ 1 −w · 2 · Gp 0 Ǧp ] , 260 P -critical edge-bipartite graphs Step 5◦ Given (p, w) ∈ Z− n , construct the unit form qp,w : Zn+1 → Z, by applying the formula qp,w(x) = x · Gp,w · xtr. Step 6◦ Take for P -crit• n+1 the finite set {qp,w}(p,w)∈Z− n . Remark 3.9. (i) We implement the groups O(n,Z) ⊆ Mn(Z) and O(n+1,Z) ⊆ Mn+1(Z) in the C# programming language, by ap- plying Algorithm 4.5 of the following section. (ii) In Step 1◦ we can apply the correspondence (p, µ) 7→ p̂µ ∈ posit(Zn+1,Z) that associates to any p ∈ posit(Zn,Z) and any vector µ = (µ1, . . . , µn), such that µ1, . . . , µn ∈ {−1, 0, 1} and det [ 2Gp µtr µ 2 ] > 0, the one-point extension positive form p̂µ(x) = x · [ Ǧp µtr 0 1 ] · xtr, see [21, Theorem 4.1]. In fact, we should apply an implementation of [21, Algorithm 4.5]. The positivity of the unit form p̂µ is checked by applying Algorithm 4.1 based on Sylvester′s citerion. To get the subset posit• n of posit(Zn,Z), we apply Algorithm 4.7 of the following section. (iii) In Step 2◦ we can apply the restrictively counting algorithm [35, Algorithm 4.2] and [36, Algorithm 3.7, Remark 3.8]. (iv) In Step 3◦, note that two P -critical edge-bipartite graphs con- structed from pairs (p, w) and (p, −w) lie in the same O(n + 1,Z)-orbit. 4. A package of algorithms We present a package of algorithms that we apply in our construction of all O(n,Z)-orbits of a P -critical unit form for n ≥ 3. We use the standard convention: when a unit quadratic form q is operated upon in a computer program, it is implemented as a two-dimensional array in C# representing the corresponding symmetric Gram matrix Gq (or non-symmetric Gram matrix Ǧq) of q. The following algorithm verifies in a polynomial time O(n4) wheather or not a quadratic form p : Zn → Z is positive or a bigraph ∆ ∈ UBigrn is positive. Algorithm 4.1 (SylvesterCriterion). Input: An integer n ≥ 2 and the non-symmetric Gram matrix Ǧp ∈ Mn(Z) of a unit form p : Zn → Z. Output: True if p is positive definite, false otherwise. 1◦ Ĝp = Ǧp + Ǧtr p 2◦ k = 0; N = n; A. Polak, D. Simson 261 3◦ if (det Ĝp > 0) k + +; 4◦ i = n; 5◦ while(i > 1){ 6◦ W = the matrix (of size N ≥ 2) obtained from Ĝp by choosing the first N rows and the first N columns of Ĝp; 7◦ W = the matrix (of size N -1) obtained from W by removing the i-th row and the i-th column; 8◦ N − −; 10◦ if (det W > 0) k + +; 11◦ i − −;} 12◦ if (n == k) return true; 13◦ return false; By applying Algorithm 4.1, we check in a polynomial time O(n5) wheather or not q = q∆ : Zn → Z is P -critical or a bigraph ∆ ∈ UBigrn is P -critical. Algorithm 4.2 (IsPcritical). Input: An integer n ≥ 2 and the non-symmetric Gram matrix Ǧq ∈ Mn(Z) of a unit form q : Zn → Z. Output: True if q is P -critical, false otherwise. 1◦ Ĝq = Ǧq + Ǧtr q 2◦ if (SylvesterCriterion(Ĝq,n)==false){ 3◦ for(i = 1; i <= n; + + i){ 4◦ L = the matrix obtained from Ĝq by removing i-th row and i-th column; 5◦ if(SylvesterCriterion(L, n − 1)==false) 6◦ return false;} 7◦ return true; } 8◦ else return false; Now, we present three algorithms that we need in our implementation of the orthogonal group O(n,Z) = Ŝn ⋊ Ĉn 2 , for a given n ≥ 2, see (2.9) and [36, Lemma 2.3]. First (see Algorithm 4.3), we present an implementation of the symmetric group Sn by applying an algorithm of Johnson [13] and Trotter [41] based on the idea of adjacent transpositions; originally it generates the symmetric group Sn. A simple modification of the algorithm constructs the subgroup Ŝn ⊆ O(n,Z) of O(n,Z) as follows. Algorithm 4.3 (GeneretePermutation). Input: An integer n ≥ 2. Output: The group Ŝn ⊆ O(n,Z) ⊆ Mn(Z), see (2.9). 1◦ for(i = 1;i <= n;i + +){ 2◦ P [i] = i; //P is a vector of integers 262 P -critical edge-bipartite graphs 3◦ C[i] = 1; //C is a vector of integers 4◦ P R[i] = true;} //P R is a vector of booleans 5◦ C[n] = 0; 6◦ for(t = 1; t <= n; + + t) 7◦ M [t, P [t]] = 1; //M is a matrix of integers 8◦ PMatrix.Add(M); //PMatrix is a list of matrices 9◦ i = 1; 10◦ while(i < n){ 11◦ i = 1; x = 0; 12◦ while(C[i] == n − i + 1){ 13◦ P R[i]=(P R[i]==true)?false:true; 14◦ C[i] = 1; 15◦ if(P R[i]) x + +; 16◦ i + +; } 17◦ if (i < n){ 18◦ if (P R[i]) k = C[i] + x; 19◦ else k = n − i + 1 − C[i] + x; 20◦ P [k] ↔ P [k + 1] 21◦ for(t = 1; t <= n; + + t) 22◦ M [t, P [t]] = 1; 23◦ PMatrix.Add(M); 24◦ C[i] = C[i] + 1;} 25◦ } 26◦ return PMatrix; Now we present an implementation of the finite group Ĉn 2 ⊆ O(n,Z) defined in Section 2 (see (2.9)), which uses the Gray binary generation (see [15]). We modify the Gray algorithm by interchanging all zeros with −1. Obviously, the modified algorithm constructs the group Ĉn 2 ⊆ O(n,Z) ⊆ Mn(Z). Algorithm 4.4 (GenereteSignMatrices). Input: An integer n ≥ 2. Output: The group Ĉn 2 ⊆ O(n,Z) ⊆ Mn(Z), see (2.9). 1◦ for(t = 1; t <= n; + + t) 2◦ B[t] = −1; 3◦ i = 0; p = 1; 4◦ do{ 5◦ for(t = 1; t <= n; + + t){ 6◦ C[t − 1] = B[t]; //C is a vector of integers 7◦ M [t, t] = C[t − 1];} //M is a matrix of integers 8◦ SMatrix.Add(M); //SMatrix is a list of matrices 9◦ i + +; 10◦ j = i; 11◦ p = 1; 12◦ while(j%2 == 0){ 13◦ j = j/2; 14◦ p + +;} A. Polak, D. Simson 263 15◦ if (p ≤ n){ 16◦ if (B[p] == −1) B[p] = 1; 17◦ else B[p] = −1;} 18◦ }while(p ≤ n); 19◦ return SMatrix; Finally, by applying Algorithm 4.3 and Algorithm 4.4, we define an algorithm constructing the orthogonal group O(n,Z) = Ŝn ⋊ Ĉn 2 , for a given integer n ≥ 2. Algorithm 4.5 (OrthogonalGroup). Input: An integer n ≥ 2 and a list of permutation matrices PMatrix. Output: The matrices B ∈ O(n,Z). 1◦ SMatrix=GenereteSignMatrices(n); 2◦ foreach(int[,] P in PMatrix){ 3◦ foreach(int[,] S in SMatrix){ 4◦ W = P ∗ S ∈ Mn(Z); 5◦ All.Add(W );} } //All is a list of matrices 6◦ return All; Hint. We use the fact that every matrix B ∈ O(n,Z) = Ŝn ⋊ Ĉn 2 can be uniquely represented as the product B = P · S, where P = σ̂ ∈ Ŝn and S = ε̂ ∈ Ĉn 2 , see [36, Lemma 2.3] and Sections 2-3. A list of permutation matrices PMatrix is a subset of the set of all permutation matrices Ŝn. With bigraph ∆ ∈ UBigrn we associate the graph ∆ which is con- structed from ∆ by replacing all broken edges •- - -• with full edges •−−− •. We denote by Ǧ• ∆=NonSymmetricGramMatrixOfGraph(Ǧ∆) the non-symmetric Gram matrix of the graph ∆ constructed from the bigraph ∆ with non-symmetric Gram matrix Ǧ∆. We denote by Ĝ• ∆=SymmetricGramMatrixOfGraph(Ĝ∆) the duplicate symmetric Gram matrix 2G∆ of the graph ∆ constructed from the bigraph ∆ with the duplicate symmetric Gram matrix 2G∆. The following algorithm checks, if two unit forms q1, q2 : Zn → Z lie in the same O(n,Z)-orbit under the action (2.9), or two bigraphs ∆, ∆′ ∈ UBigrn lie in the same O(n,Z)-orbit under the action (2.1). Here (Algorithm 4.6 and Algorithm 4.7) we use the fact that if two bigraphs ∆, ∆′ ∈ UBigrn lie in the same O(n,Z)-orbit then the associated graphs ∆ and ∆ ′ are isomorphic. 264 P -critical edge-bipartite graphs Algorithm 4.6 (CompareOrbits). Input: An integer n ≥ 2, the non-symmetric Gram matrices Ǧq1 , Ǧq2 ∈ Mn(Z) of unit forms q1, q2 : Zn −−→ Z, and the orthogonal group O(n,Z) ⊆ Mn(Z) (4.5). Output: True if q1, q2 lie in the same O(n,Z)-orbit, false otherwise. 1◦ Ĝq1 = Ǧq1 + Ǧtr q1 ; Ĝq2 = Ǧq2 + Ǧtr q2 ; 2◦ if(the numbers of zero coefficients in the matrices Ĝq1 and Ĝq1 are not equal) 3◦ return false; 4◦ else{ 5◦ Ĝq1 = Ǧq1 + Ǧtr q1 , Ĝq2 = Ǧq2 + Ǧtr q2 ; let PMatrix be an empty list; 6◦ Ĝ• q1 =SymmetricGramMatrixOfGraph(Ĝq1 ); Ĝ• q2 =SymmetricGramMatrixOfGraph(Ĝq2 ); 7◦ Find all permutation matrices P ∈ Mn(Z) such that P tr · Ĝ• q1 · P = Ĝ• q2 and add P to PMatrix; 8◦ if (PMatrix is empty) return false; 9◦ Orthogonal=OrthogonalGroup(n, PMatrix); 6◦ foreach([,] B in Orthogonal) 7◦ if(Btr · Ĝq1 · B == Ĝq2 ) 8◦ return true;} 9◦ return false; Algorithm 4.7 (SetOfOrbitRepresentatives). Input: An integer n ≥ 2, a finite non-empty subset H ⊂ U(Zn,Z) of P -critical (or pos- itive) quadratic forms, and the orthogonal group O(n,Z) ⊆ Mn(Z) (4.5). Output: A list AMatrix of non-symmetric Gram matrices Ǧq of pairwise different representatives q : Zn → Z of all O(n,Z)-orbits O(n,Z)∗ q, with Ǧq ∈ H. 1◦ Let AMatrix, AMatrix•, SMatrix be the empty lists; 2◦ Add first a matrix H[0] from H to AMatrix; H•[0]=NonSymmetricGramMatrixOfGraph(H[0]); add H•[0] to AMatrix•; 3◦ SMatrix:=GeneretePermutation(n); 4◦ for(i = 1; i < |H|; i + +){ 5◦ Let WMatrix• be the list of matrices such that P tr ·Ĝ• ∆·P , where P ∈SMatrix, Ĝ• ∆=SymmetricGramMatrixOfGraph(Ĥ[i]) and Ĥ[i] = H[i] + H[i]tr; 6◦ For each matrix A• ∈AMatrix• do steps 7◦ − 11◦; 7◦ For each matrix W • ∈WMatrix• do { 8◦ Let PMatrix be an empty list of matrices; 9◦ if (W • = •, where • = A• + A•tr) add permutation matrix P (corresponding to W •) to PMatrix; } 10◦ if (PMatrix is not empty){ • Ort=OrthogonalGroup(n, PMatrix); • Generate a list W1 of matrices such that Btr · Ĥ[i] · B, where B ∈ Ort and Ĥ[i] = H[i] + H[i]tr; • Check if there exists a matrix in W1 which is equal to matrix  = A + Atr (we verify this equality for (duplicate) symmetric Gram matrices coding bigraphs) and if A. Polak, D. Simson 265 so, go to Step 4◦; if such matrix does not exist go to Step 6◦ (i.e., repeat Steps 7◦ − 11◦ for another matrix from AMatrix•); } 11◦ else (i.e, PMatrix is empty) go to Step 6◦; 12◦ If in Steps 7◦ − 11◦ no orthogonal matrix has been found to witness that H[i] is in the same orbit as one of the matrices in AMatrix, then add H[i] to AMatrix and add H•[i] to AMatrix•, where H•[i]=NonSymmetricGramMatrixOfGraph(H[i]); 13◦ } 13◦ return AMatrix; Algorithm 4.8 (PcriticalFormsFromPositiveForm). In- put: An integer n ≥ 2, the non-symmetric Gram matrix Ǧp of a positive form p : Zn −−→ Z, and the list Wp of all sincere roots of p. Output: A list of P -critical forms q : Zn+1 −−→ Z constructed from p by applying (3.3). 1◦ Ĝp = Ǧp + Ǧtr p ; 2◦ for(i = 1;i <= n + 1;+ + i) 3◦ for(j = 1;j <= n + 1;+ + j){ 4◦ if(i > 1 && j > 1) 5◦ Q[i, j] = Ǧp[i − 1, j − 1]; 6◦ else { 7◦ if((i > 1 && j == 1)||(i == 1 && j > 1)) 8◦ Q[i, j] = 0; 9◦ else Q[i, j] = 1;} 10◦ } 11◦ foreach(int[] w in Wp){ 12◦ ŵ = −w · Ĝp; 13◦ for(i = 1;i <= n + 1;+ + i) 14◦ if(i > 1) 15◦ Q[1, i] = ŵ[i − 1]; //Q is a matrix of integers 16◦ if(IsPcritical(Q, n + 1)==1) 17◦ All.Add(Q); } //All is a list of matrices 18◦ return All; Algorithm 4.9 (AllPcriticalForms). Input: An integer n ≥ 3 and a list GP of non-symmetric Gram matrices Ǧp of pairwise different representatives p : Zn −−→ Z of all O(n,Z)-orbits in posit(Zn,Z). Output: A list of non-symmetric Gram matrices Ǧq of pairwise different representatives q : Zn+1 −−→ Z of all O(n+1,Z)-orbits in the set P -crit(Zn+1,Z). 1◦ foreach(int[,] P in GP ){ 2◦ M=PcriticalFormsFromPositiveForm(P ,n) 3◦ All.Add(M); }//All is a list of matrices 4◦ Âll=list of pairwise different representatives of all O(n+1,Z)-orbits in P -crit(Zn+1,Z) selected from All by apllying Algorithm 4.6; 5◦ return Âll; 266 P -critical edge-bipartite graphs Remark 4.10. (a) It follows from Proposition 2.6, (2.13), and Construc- tion 3.7 that, in view of the identification q• : UBigrn−1 1−1 −→ U(Zn−1,Z), see (2.7), Algorithms 4.6-4.9 apply to edge-bipartite graphs in UBigrn and construct all P -critical bigraphs ∆ ∈ UBigrn. (b) The complexity of Algorithms 4.8 is dominated by the cardinality |Wp| of the set Wp of all sincere roots of a given p ∈ posit(Zn,Z); more precisely, it is bounded by O(|Wp| ∗ n5), where the consecutive values of |Wp| can be computed by the restrictively counting algorithm [36, Algorithm 4.2]. (c) The complexity of Algorithm 4.6 is O(|O(n,Z)|). (d) The complexity of Algorithms 4.7 and 4.9 is also dominated by |O(n,Z)|. 5. A classification and tables of computing results In this section we present a classification of P -critical unit forms in U(Zn,Z) (and hence P -critical bigraphs ∆ ∈ UBigrn), for n ≤ 10. We get it by applying the package of algortithms of the previous section. By symbolic computations in Maple and numerical computations in C#, we compute P -critical unit forms and connected positive unit forms, together with their Coxeter polynomials and the O(n,Z)-orbits, for n ≤ 10. The results are presented in tables 5.6-5.9. We recall from [36, Section 2], that the Coxeter polynomial of q : Zn → Z, is the characteristic polynomial coxq(t) = det(t · E − Coxq) ∈ Z[t] of the Coxeter(-Gram) matrix Coxq := −Ǧq · Ǧ−tr q , where Ǧq is the Gram matrix (2.5), see also [35]. In general, Coxq depends on the numbering of the indeterminates in the form q(x1, . . . , xn). In our classification of P -critical forms we use the Coxeter polynomials of the Euler quadratic form q∆ : Zn+1 → Z, with n + 1 = |∆0|, of the following A. Polak, D. Simson 267 simply-laced Euclidean graphs (extended Dynkin diagrams) n+1 ✏ ✏ ✏ ✏ ✏ ✏ ✏ P P P P P P P • Ãn : •−−−−•−−−−•−−−− . . . −−−−•−−−−• (n ≥ 1); 1 2 3 n D̃n : 2 n+1 • • | | •−−−−•−−−−•−−−−· · · −−−−• −−−−•−−−−• (n ≥ 4); 1 3 4 n−2 n−1 n Ẽ6 : •5 | •4 | •1−−−−•2−−−−•3−−−−•6−−−−•7; Ẽ7 : •5 | •1−−−−•2−−−−•3−−−−•4−−−−•6−−−−•7−−−−•8; Ẽ8 : •4 | •1−−−−•2−−−−•3−−−−•5−−−−•6−−−−•7−−−−•8−−−−•9. (5.1) Note that Ã1 is the Kronecker graph • •. We recall that the Euler quadratic form q∆ : Z∆0 → Z of a graph ∆ = (∆0, ∆1), with the set of vertices ∆0 and the set of edges ∆1, is defined by the formula q∆(x) = ∑ i∈∆0 x2 i + ∑ i<j d∆ ijxixj , where x = (xj)j∈∆0 ∈ Z∆0 ≡ Zn+1, n + 1 = |∆0|, and d∆ ij = −|∆1(•i, •j)|, and |∆1(•i, •j)| is the number of edges between the vertices •i, •j in ∆. If ∆ is any of the diagrams D̃n, n ≥ 4, Ẽ6, Ẽ7, and Ẽ8 then the Coxeter polynomial F∆(t) := coxq∆ (t) of ∆ has the form F∆(t)=    tn+1 + tn − tn−1 − tn−2 − t3 − t2 + t + 1, for ∆ = D̃n, t7 + t6 − 2t4 − 2t3 + t + 1, for ∆ = Ẽ6, t8+t7 − t5 − 2t4 − t3 + t + 1, for ∆ = Ẽ7, t9 + t8 − t6 − t5 − t4 − t3 + t + 1, for ∆ = Ẽ8. (5.2) Note that, if ∆ = D̃4 or ∆ = D̃5, we have F∆(t) := { t5 + t4 − 2t3 − 2t2 + t + 1, for n = 4, t6 + t5 − t4 − 2t3 − t2 + t + 1, for n = 5. (5.3) If n ≥ 1 and ∆ = Ãn, then the Coxeter polynomial coxq∆ (t) of ∆ is of one of the forms F (1) ∆ (t), F (2) ∆ (t), . . . , F (mn) ∆ (t), where mn = { n 2 , if n is even, n+1 2 , if n + 1 is even, 268 P -critical edge-bipartite graphs F (j) ∆ (t)= tn+1−tn−j+1−tj +1 = (t−1)2·vj(t)·vn−j+1(t), for j =1, . . . , mn, and vm(t) = tm−1 + tm−2 + tm−3 + · · · + t2 + t + 1, see [20], [34], and [38]. In particular, if n + 1 is even and j = mn = n+1 2 , then tn−j+1 = tj and F (j) ∆ (t) has the form F (mn) ∆ (t) = F ( n+1 2 ) ∆ (t) = tn+1 − 2t n+1 2 + 1. If Ã1 : • • is the Kronecker graph, we have n = 1, mn = 2 and F∆(t) = F (2) ∆ (t) = t2 − 2t + 1. Now we are able to present a complete classification of P -critical unit forms (and P -critical bigraphs ∆ ∈ UBigrn), their Coxeter polynomials, and the O(n,Z)-orbits in the set P -critn := P -crit(Zn,Z), for n ≤ 10. We get it as a result of computer computation. Theorem 5.4. (a) If n ≤ 9 then, up to the action of the groups O(n,Z) and O(n+1,Z), the number of elements in the set Zn (Algorithm 3.8, Step 3◦) and the number of O(n+1,Z)-orbits in P -crit(Zn+1,Z) are as shown in the following table n 2 3 4 5 6 7 8 9 |Z− n | 1 2 4 10 72 639 7980 95 |P -crit• n+1| 1 1 3 5 24 152 1730 17 where P -crit• n+1 is the finite set of pairwise different representatives of all O(n + 1,Z)-orbits in P -crit(Zn+1,Z). (b) If n = 3, 4, 5 then, up to the action of O(n,Z), the number of P -critical unit forms q : Zn −−→ Z and the number of P -critical bigraphs ∆ ∈ Bigrn equals 1, 1, 3, respectively, and the forms q = q∆ are listed in [21, Corollary 4.10], together with their Coxeter polynomials and a generator h of Ker q = Ker q∆. (c) If n = 6 or n = 7, the list of P -critical unit forms q : Zn −−→ Z and P -critical bigraphs ∆ ∈ UBigrn, up to the action of O(n,Z), is presented in Table 5.7 and Table 5.9, respectively, together with their Coxeter polynomials. (d) For n = 8, 9, 10, a list of P -critical unit forms q : Zn −−−−→ Z, up to the action of O(n,Z), is available on request from the authors (see [23]). Outline of proof. (a) The table is obtained by computer computation using implementations of Algorithm 4.8 and Algorithm 4.9 in Maple and C#. A. Polak, D. Simson 269 (b) The result for n = 3 and n = 4 can be obtained by simple hand calculation using Proposition 2.14 and Theorem 3.1. For this purpose we need to compute the sets Z2 and Z3. We do it directly by using Maple and Sylvester′s criterion (Algorithm 4.1), see also [21, Algorithm 4.5]. The statements (c) and (d) are obtained by computer calculations using our package of algorithms presented in Section 4. � The following tables illustrate the algorithmic construction ind : Zn −−→ P -critn+1 of Theorem 3.1, in cases n = 6 and n = 7. By applying our package of algorithms of Section 4, we also construct a complete set of representatives of the O(n+1,Z)-orbits in P -crit(Zn,Z) and of P -critical bigraphs in UBigrn, for n = 6 and n = 7. In view of the identification q• : UBigrn 1−1 −→ U(Zn,Z) (2.7), we present the classification results for the unit forms q : Zn → Z only. Throughout, we set P -critn := P -crit(Zn,Z) and we denote by SRp = {w = (w1, . . . , wn) ∈ Zn; p(w) = 1 and w1 6= 0, . . . , wn 6= 0} the set of sincere roots w of a positive form p : Zn → Z, by h ∈ Zn+1 a sincere vector such that Ker q = Z ·h, and by coxq(t) = det(t ·E −Coxq) ∈ Z[t] the Coxeter polynomial of q : Zn+1 → Z. We recall from Sections 3 and 4 the following notations: • posit• n ⊆ posit(Zn,Z) is a complete finite set of pairwise different representatives p : Zn → Z of all O(n,Z)-orbits in posit(Zn,Z), and • P -crit• n+1 ⊆ P -crit(Zn+1,Z) is a complete finite set of pairwise different representatives of all O(n+1,Z)-orbits in P -crit(Zn+1,Z). • In the last column of each of the tables, we use the notation introduced in (5.2) for the Coxeter polynomials F∆(t) (5.2), with ∆ ∈ {D̃n, Ẽ6, Ẽ7, Ẽ8}, and F (1) ∆ (t), . . . , F (mn)∆(t), with ∆ = Ãn, of the Euler form q∆, where the vertices of the extended Dynkin diagram ∆ are enumer- ated as in (5.1). The simply-laced Euclidean diagram D∆ associated with any P -critical bigraph ∆ (see Definition 5.5) and with its unit quadratic form q∆ can be determined by applying the inflation algorithm ∆ 7→ t− ab∆ described in [16, Algorithm 5.9] and [38, Theorem 3.7]. Following [38], we introduce the following definition. Definition 5.5. The Euclidean type (or the E-type, in short) of a P - critical bigraph ∆ ∈ UBigrn+1 is a unique simply-laced Euclidean diagram D∆ ∈ {Ãn, n ≥ 1, D̃m, m ≥ 4, Ẽ6, Ẽ7, Ẽ8} such that the symmetric Gram matrix G∆ of ∆ is Z-congruent with the symmetric Gram matrix GD∆ of the diagram D∆. 270 P -critical edge-bipartite graphs We recall from Theorem 2.8 that any loop-free P -critical bigraph ∆ in UBigrn+1 is principal and connected. Then, by [38, Section 3], the existence and the uniqueness of a Euclidean diagram D∆ is a consequence of [16, Section 5] and [38, Section 3]. A complete list of the Coxeter polynomials of P -critical bigraphs ∆ in UBigrn+1, with at most 10 vertices, is presented in Table 5.12 and 5.13 at the end of this section. Table 5.6. A list of P -critical unit forms constructed by ind: Z5 −−→ P -crit6, for n = 6 p ∈ posit• 5 w ∈ SRp ind(p, w) coxq(t) and E-type p1(x) = ∑5 i=1 x2 i − x1x2 − x1x3 − x1x4 + x1x5 + x2x3 + x2x4 + x3x4 − x4x5 w = (1, 1, 1, 1̂, 1̂) q1(x) = ∑6 i=1 x2 i − x1x3 − x1x4 − x2x3 − x2x4 − x2x5 + x2x6 + x3x4 + x3x5 + x4x5 − x5x6 t6 − t4 − t2 + 1 = F (2) Ã5 (t), E-type =D̃5 p2(x) = ∑5 i=1 x2 i − x1x2 − x1x3 − x1x4 + x1x5 + x2x4 + x3x4 w = (1, 1, 1, 1̂, 1̂) q2(x) = ∑6 i=1 x2 i + x1x5 + x1x6 − x2x3 − x2x4 − x2x5 + x2x6 + x3x5 + x4x5 t6 − t4 − t2 + 1 = F (2) Ã5 (t), E-type =D̃5 p3(x) = ∑5 i=1 x2 i − x1x2 − x1x3 − x1x4 + x2x4 + x2x5 + x3x4 w1 = (1, 1, 1, 1̂, 1̂) q3(x) = ∑6 i=1 x2 i − x1x2 + x1x3 + x1x5 + x1x6 − x2x3 − x2x4 − x2x5 + x3x5 + x3x6 + x4x5 t6 − t5 − t + 1 = F (1) Ã5 (t), E-type =D̃5 w2 = (1, 2, 1, 1̂, 1̂) q4(x) = ∑6 i=1 x2 i − x1x3 − x2x3 − x2x4 − x2x5 + x3x5 + x3x6 + x4x5 t6 + t5 − t4 − 2t3 − t2 + t + 1 = F D̃5 (t), E- type =D̃5 p4(x) = ∑5 i=1 x2 i − x1x2 − x1x3 − x1x4 + x2x5 + x3x4 − x4x5 w = (1, 1, 1, 1̂, 1̂) q5(x) = ∑6 i=1 x2 i − x1x2 + x1x5 − x2x3 − x2x4 − x2x5 + x3x6 + x4x5 − x5x6 t6 − t5 − t + 1 = F (1) Ã5 (t), E-type =D̃5 p5(x) = ∑5 i=1 x2 i − x1x2 − x1x3 − x2x4 + x3x5 w = (1, 1, 1, 1, 1̂) q6(x) = ∑6 i=1 x2 i − x1x5 + x1x6 − x2x3 − x2x4 − x3x5 + x4x6 t6 − 2t3 + 1 = F (3) Ã5 (t), E-type =Ã5 p6(x) = ∑5 i=1 x2 i − x1x2 − x1x3 − x1x4 + x1x5 + x3x4 w = (2, 1, 1, 1, 1̂) q7(x) = ∑6 i=1 x2 i − x1x4 − x1x5 − x2x3 − x2x4 − x2x5 + x2x6 + x4x5 t6 + t5 − t4 − 2t3 − t2 + t + 1 = F D̃5 (t), E- type =D̃5 p7(x) =∑5 i=1 x2 i − x1x2 − x1x3 − x1x4 + x2x5 w1 = (1, 1, 1, 1, 1̂) q8(x) = ∑6 i=1 x2 i + x1x2 − x1x4 − x1x5 + x1x6 − x2x3 − x2x4 − x2x5 + x3x6 t6 + t5 − t4 − 2t3 − t2 + t + 1 = F D̃5 (t), E-type =D̃5 w2 = (2, 1, 1, 1, 1̂) q9(x) = ∑6 i=1 x2 i − x1x2 + x1x3 + x1x6 − x2x3 − x2x4 − x2x5 + x3x6 t6 − t4 − t2 + 1 = F (2) Ã5 (t), E-type =D̃5 w3 = (2, 2, 1, 1, 1̂) q10(x) = ∑6 i=1 x2 i − x1x3 − x2x3 − x2x4 − x2x5 + x3x6 t6 + t5 − t4 − 2t3 − t2 + t + 1 = F D̃5 (t), E-type =D̃5 A. Polak, D. Simson 271 Table 5.7. A set of representatives of O(n,Z)-orbits in P -crit(Zn,Z), for n = 6 (p, w) ind(p, w) ∈ O(6,Z)-Orb(q) ⊆ P -crit• 6 coxq(t), E-type (p5, w) q6(x) = ∑6 i=1 x2 i − x1x5 + x1x6 − x2x3 − x2x4 − x3x5 + x4x6 t6 − 2t3 + 1 = F (3) Ã5 (t), E-type =Ã5 (p1, w) q1(x) = ∑6 i=1 x2 i − x1x3 − x1x4 − x2x3 − x2x4 −x2x5 + x2x6 + x3x4 + x3x5 + x4x5 − x5x6 t6 − t4 − t2 + 1 = F (2) Ã5 (t), E-type =D̃5(p3, w1) (p2, w) q2(x) = ∑6 i=1 x2 i + x1x5 + x1x6 − x2x3 − x2x4 −x2x5 + x2x6 + x3x5 + x4x5 t6 − t4 − t2 + 1 = F (2) Ã5 (t), E-type =D̃5 (p4, w) (p7, w1) (p7, w3) q10(x) = ∑6 i=1 x2 i − x1x3 − x2x3 − x2x4 − x2x5 + x3x6 t6 + t5 − t4 − 2t3 − t2 + t + 1 = F D̃5 (t), E-type =D̃5 (p3, w2) q4(x) = ∑6 i=1 x2 i − x1x3 − x2x3 − x2x4 − x2x5 +x3x5 + x3x6 + x4x5 t6 + t5 − t4 − 2t3 − t2 + t +1 = F D̃5 (t),E-type =D̃5 (p6, w) (p7, w2) Hint. The unit forms pj and the vectors w and wj used in 5.7 are the same as presented in 5.6. It follows that the surjective correspondence inds,εs : O(5,Z)-Orb(Z5) −−−−−→ O(6,Z)-Orb(P -crit(Z6,Z)) (3.3) induced by the map (p, w) 7→ inds,εs(p, w) := qp,s,w,εs , is not injective, see also Remark 5.10 at the end of this section. Table 5.8. P -critical unit forms constructed by ind: Z6 −−→ P -crit7, for n = 7 p ∈ posit• 6 w ∈ SRp q = ind(p, w) ∈ P -crit7 p1(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 − x1x5 + x1x6 + x2x3 + x2x4 + x2x5 + x3x4 + x3x5 +x4x5 −x4x6 −x5x6 w1 = (1, 1, 1, 1̂, 1̂, 2̂) q1(x) = ∑7 i=1 x2 i + x1x7 − x2x3 − x2x4 − x2x5 − x2x6 + x2x7 + x3x4 + x3x5 + x3x6 + x4x5 + x4x6 + x5x6 − x5x7 − x6x7 w2 = (1, 1, 1, 1̂, 1̂, 1̂) q2(x) = ∑7 i=1 x2 i − x1x2 + x1x5 + x1x6 − x1x7 − x2x3 − x2x4 − x2x5 − x2x6 + x2x7 + x3x4 + x3x5 + x3x6 + x4x5 + x4x6 + x5x6 − x5x7 − x6x7 272 P -critical edge-bipartite graphs Table 5.8. P -critical unit forms constructed by ind: Z6 −−→ P -crit7, for n = 7 p ∈ posit• 6 w ∈ SRp q = ind(p, w) ∈ P -crit7 p3(x) =∑6 i=1 x2 i −x1x2 −x1x3 − x1x4 − x1x5 + x1x6 + x2x5 − x2x6 + x3x4 + x3x5 + x4x5 − x5x6 w1 = (1, 1, 1, 1, 2̂, 1̂) q4(x) = ∑7 i=1 x2 i + x1x6 − x2x3 − x2x4 − x2x5 − x2x6 + x2x7 + x3x6 − x3x7 + x4x5 + x4x6 + x5x6 − x6x7 w2 = (1, 1, 1, 1, 1̂, 1̂) q5(x) = ∑7 i=1 x2 i + x1x2 − x1x3 − x1x4 − x1x5 − x1x6 + x1x7 − x2x3 − x2x4 − x2x5 − x2x6 + x2x7 + x3x6 − x3x7 + x4x5 + x4x6 + x5x6 − x6x7 w3 = (2, 1, 1, 1, 1̂, 1̂) q6(x) = ∑7 i=1 x2 i − x1x2 − x2x3 − x2x4 − x2x5 − x2x6 + x2x7 + x3x6 − x3x7 + x4x5 + x4x6 + x5x6 − x6x7 p4(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 − x1x5 + x2x5 + x2x6 + x3x4 + x3x5 − x3x6 + x4x5 − x4x6 w = (1, 1, 1, 1, 1̂, 1) q7(x) = ∑7 i=1 x2 i − x1x3 − x1x7 − x2x3 − x2x4 − x2x5 − x2x6 + x3x6 + x3x7 + x4x5 + x4x6 − x4x7 + x5x6 − x5x7 p5(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 − x1x5 + x2x4 + x2x5 + x2x6 +x3x4 +x3x5 +x4x5 w1 = (1, 2, 1, 1̂, 1̂, 1̂) q8(x) = ∑7 i=1 x2 i − x1x2 + x1x4 + x1x5 + x1x6 − x2x3 − x2x4 − x2x5 − x2x6 + x3x5 + x3x6 + x3x7 + x4x5 + x4x6 + x5x6 w2 = (1, 2, 2, 1̂, 1̂, 1̂) q9(x) = ∑7 i=1 x2 i − x1x4 − x2x3 − x2x4 − x2x5 − x2x6 + x3x5 + x3x6 + x3x7 + x4x5 + x4x6 + x5x6 p6(x) =∑6 i=1 x2 i −x1x2 −x1x3 − x1x4 − x1x5 + x1x6 + x2x5 +x3x4 +x3x5 +x4x5 w1 = (1, 1, 1, 1, 1̂, 1̂) q10(x) = ∑7 i=1 x2 i + x1x2 − x1x4 − x1x5 + x1x7 − x2x3 − x2x4 − x2x5 − x2x6 + x2x7 + x3x6 + x4x5 + x4x6 + x5x6 w2 = (2, 1, 1, 1, 1̂, 1̂) q11(x) = ∑7 i=1 x2 i − x1x2 + x1x3 + x1x6 − x2x3 − x2x4 − x2x5 − x2x6 + x2x7 + x3x6 + x4x5 + x4x6 + x5x6 w3 = (2, 2, 1, 1, 1̂, 1̂) q12(x) = ∑7 i=1 x2 i − x1x3 − x2x3 − x2x4 − x2x5 − x2x6 + x2x7 + x3x6 + x4x5 + x4x6 + x5x6 p7(x) =∑6 i=1 x2 i −x1x2 −x1x3 − x1x4 − x1x5 + x2x5 + x2x6 +x3x4 +x3x5 +x4x5 w1 = (1, 1, 1, 1, 1̂, 1̂) q13(x) = ∑7 i=1 x2 i + x1x3 − x1x4 − x1x5 + x1x7 − x2x3 − x2x4 − x2x5 − x2x6 + x3x6 + x3x7 + x4x5 + x4x6 + x5x6 w2 = (1, 2, 1, 1, 2̂, 1̂) q14(x) = ∑7 i=1 x2 i + x1x6 − x2x3 − x2x4 − x2x5 − x2x6 + x3x6 + x3x7 + x4x5 + x4x6 + x5x6 w3 = (1, 2, 1, 1, 1̂, 1̂) q15(x) = ∑7 i=1 x2 i + x1x2 − x1x3 − x1x4 − x1x5 − x1x6 − x2x3 − x2x4 − x2x5 − x2x6 + x3x6 + x3x7 + x4x5 + x4x6 + x5x6 w4 = (2, 2, 1, 1, 1̂, 1̂) q16(x) = ∑7 i=1 x2 i − x1x2 − x2x3 − x2x4 − x2x5 − x2x6 + x3x6 + x3x7 + x4x5 + x4x6 + x5x6 p8(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 − x1x5 + x2x5 + x3x4 + x3x5 + x3x6 + x4x5 w = (1, 1, 1, 1, 1̂, 1̂) q17(x) = ∑7 i=1 x2 i − x1x5 + x1x7 − x2x3 − x2x4 − x2x5 − x2x6 + x3x6 + x4x5 + x4x6 + x4x7 + x5x6 A. Polak, D. Simson 273 Table 5.8. P -critical unit forms constructed by ind: Z6 −−→ P -crit7, for n = 7 p ∈ posit• 6 w ∈ SRp q = ind(p, w) ∈ P -crit7 p9(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 − x1x5 + x2x6 + x3x4 + x3x5 + x4x5 − x5x6 w = (1, 1, 1, 1, 1̂, 1̂) q18(x) = ∑7 i=1 x2 i − x1x4 − x1x5 − x2x3 − x2x4 − x2x5 − x2x6 + x3x7 + x4x5 + x4x6 + x5x6 − x6x7 p10(x) =∑6 i=1 x2 i −x1x2 −x1x3 − x1x4 − x1x5 + x1x6 + x2x5 +x3x4 −x3x6 +x4x5 w1 = (1, 1, 1̂, 1, 1̂, 1̂) q19(x) = ∑7 i=1 x2 i − x1x2 + x1x4 + x1x5 + x1x6 − x2x3 − x2x4 − x2x5 − x2x6 + x2x7 + x3x6 + x4x5 − x4x7 + x5x6 w2 = (1, 1, 1̂, 2, 1̂, 1̂) q20(x) = ∑7 i=1 x2 i − x1x5 − x2x3 − x2x4 − x2x5 − x2x6 + x2x7 + x3x6 + x4x5 − x4x7 + x5x6 p11(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 − x1x5 + x2x5 + x2x6 + x3x4 + x4x5 + x5x6 w = (1, 1, 1, 1̂, 1, 1̂) q21(x) = ∑7 i=1 x2 i − x1x3 + x1x5 − x2x3 − x2x4 − x2x5 − x2x6 + x3x6 + x3x7 + x4x5 + x5x6 + x6x7 p12(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 − x1x5 + x2x5 + x2x6 + x3x4 + x4x5 − x4x6 w = (1, 1, 1, 1̂, 1, 1̂) q22(x) = ∑7 i=1 x2 i − x1x3 − x1x6 − x2x3 − x2x4 − x2x5 − x2x6 + x3x6 + x3x7 + x4x5 + x5x6 − x5x7 p13(x) =∑6 i=1 x2 i −x1x2 −x1x3 − x1x4 + x1x6 − x2x5 − x2x6 +x3x4 +x3x5 +x4x5 w1 = (1, 1̂, 1, 1, 2̂, 1̂) q23(x) = ∑7 i=1 x2 i + x1x6 − x2x3 − x2x4 − x2x5 + x2x7 − x3x6 − x3x7 + x4x5 + x4x6 + x5x6 w2 = (1, 1̂, 1, 1, 1̂, 1̂) q24(x) = ∑7 i=1 x2 i + x1x3 − x1x4 − x1x5 − x1x6 − x2x3 − x2x4 − x2x5 + x2x7 − x3x6 − x3x7 + x4x5 + x4x6 + x5x6 p14(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 − x1x5 + x2x5 + x3x4 + x4x5 + x4x6 w = (1, 1, 1̂, 2, 1̂, 1̂) q25(x) = ∑7 i=1 x2 i − x1x2 + x1x4 − x2x3 − x2x4 − x2x5 − x2x6 + x3x6 + x4x5 + x5x6 + x5x7 p15(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 + x1x6 − x2x5 + x3x4 + x3x5 + x4x5 w = (2, 1, 1, 1, 1̂, 1̂) q26(x) = ∑7 i=1 x2 i − x1x3 + x1x6 − x2x3 − x2x4 − x2x5 + x2x7 − x3x6 + x4x5 + x4x6 + x5x6 p17(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 − x1x5 +x3x5 +x3x6 +x4x5 w1 = (1, 1, 1, 1, 1̂, 1̂) q28(x) = ∑7 i=1 x2 i − x1x3 + x1x4 + x1x6 + x1x7 − x2x3 − x2x4 − x2x5 − x2x6 + x4x6 + x4x7 + x5x6 w2 = (1, 1, 2, 1, 1̂, 1̂) q29(x) = ∑7 i=1 x2 i + x1x2 − x1x3 − x1x4 − x2x3 − x2x4 − x2x5 − x2x6 + x4x6 + x4x7 + x5x6 w3 = (2, 1, 2, 1, 1̂, 1̂) q30(x) = ∑7 i=1 x2 i − x1x2 + x1x5 + x1x6 − x2x3 − x2x4 − x2x5 − x2x6 + x4x6 + x4x7 + x5x6 w4 = (2, 1, 2, 2, 1̂, 1̂) q31(x) = ∑7 i=1 x2 i − x1x5 − x2x3 − x2x4 − x2x5 − x2x6 + x4x6 + x4x7 + x5x6 p20(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 + x1x6 −x2x5 +x3x4 +x4x5 w = (1, 1, 1, 1̂, 1, 1̂) q36(x) = ∑7 i=1 x2 i + x1x5 + x1x7 − x2x3 − x2x4 − x2x5 + x2x7 − x3x6 + x4x5 + x5x6 274 P -critical edge-bipartite graphs Table 5.8. P -critical unit forms constructed by ind: Z6 −−→ P -crit7, for n = 7 p ∈ posit• 6 w ∈ SRp q = ind(p, w) ∈ P -crit7 p21(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 − x2x5 +x2x6 +x3x4 +x4x5 w1 = (1, 1, 1, 1̂, 1, 1̂) q37(x) = ∑7 i=1 x2 i − x1x2 + x1x3 + x1x5 + x1x7 − x2x3 − x2x4 − x2x5 − x3x6 + x3x7 + x4x5 + x5x6 w2 = (1, 2, 1, 1̂, 1, 1̂) q38(x) = ∑7 i=1 x2 i − x1x3 + x1x5 + x1x6 − x2x3 − x2x4 − x2x5 − x3x6 + x3x7 + x4x5 + x5x6 w3 = (1, 2, 1, 1̂, 2, 1̂) q39(x) = ∑7 i=1 x2 i − x1x6 − x2x3 − x2x4 − x2x5 − x3x6 + x3x7 + x4x5 + x5x6 p22(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 − x2x5 +x3x4 +x3x6 +x4x5 w1 = (1, 1, 1, 1̂, 1, 1̂) q40(x) = ∑7 i=1 x2 i − x1x2 + x1x4 + x1x5 + x1x7 − x2x3 − x2x4 − x2x5 − x3x6 + x4x5 + x4x7 + x5x6 w2 = (1, 1, 2, 1̂, 1, 1̂) q41(x) = ∑7 i=1 x2 i − x1x4 − x2x3 − x2x4 − x2x5 − x3x6 + x4x5 + x4x7 + x5x6 p23(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 + x2x6 +x3x4 −x3x5 −x4x5 w1 = (1, 1, 1, 1, 1, 1̂) q42(x) = ∑7 i=1 x2 i + x1x2 − x1x4 − x1x5 + x1x7 − x2x3 − x2x4 − x2x5 + x3x7 + x4x5 − x4x6 − x5x6 w2 = (2, 1, 1, 1, 1, 1̂) q43(x) = ∑7 i=1 x2 i − x1x2 + x1x3 + x1x7 − x2x3 − x2x4 − x2x5 + x3x7 + x4x5 − x4x6 − x5x6 w3 = (2, 2, 1, 1, 1, 1̂) q44(x) = ∑7 i=1 x2 i − x1x3 − x2x3 − x2x4 − x2x5 + x3x7 + x4x5 − x4x6 − x5x6 p24(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 + x3x4 −x3x5 −x4x5 +x5x6 w1 = (1, 1, 1, 1, 1, 1̂) q45(x) = ∑7 i=1 x2 i + x1x2 − x1x3 − x1x4 − x1x5 + x1x6 + x1x7 − x2x3 − x2x4 − x2x5 + x4x5 − x4x6 − x5x6 + x6x7 w2 = (1, 1, 1, 1, 2, 1̂) q46(x) = ∑7 i=1 x2 i + x1x2 − x1x3 − x1x6 − x2x3 − x2x4 − x2x5 + x4x5 − x4x6 − x5x6 + x6x7 w3 = (2, 1, 1, 1, 1, 1̂) q47(x) = ∑7 i=1 x2 i − x1x2 + x1x6 + x1x7 − x2x3 − x2x4 − x2x5 + x4x5 − x4x6 − x5x6 + x6x7 w4 = (2, 1, 1, 1, 2, 1̂) q48(x) = ∑7 i=1 x2 i − x1x2 + x1x4 + x1x5 − x1x6 − x2x3 − x2x4 − x2x5 + x4x5 − x4x6 − x5x6 + x6x7 w5 = (2, 1, 1, 2, 2, 1̂) q49(x) = ∑7 i=1 x2 i − x1x5 − x2x3 − x2x4 − x2x5 + x4x5 − x4x6 − x5x6 + x6x7 w6 = (2, 1, 2, 1, 2, 1̂) q50(x) = ∑7 i=1 x2 i − x1x4 − x2x3 − x2x4 − x2x5 + x4x5 − x4x6 − x5x6 + x6x7 p25(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 − x2x5 +x2x6 −x3x6 +x4x5 w = (1, 1̂, 1, 1, 1̂, 1) q51(x) = ∑7 i=1 x2 i − x1x2 + x1x3 − x2x3 − x2x4 − x2x5 − x3x6 + x3x7 − x4x7 + x5x6 A. Polak, D. Simson 275 Table 5.8. P -critical unit forms constructed by ind: Z6 −−→ P -crit7, for n = 7 p ∈ posit• 6 w ∈ SRp q = ind(p, w) ∈ P -crit7 p27(x) =∑6 i=1 x2 i −x1x2 −x1x3 − x1x4 −x1x5 +x2x6 +x4x5 w1 = (2, 1, 1, 1, 1, 1̂) q53(x) = ∑7 i=1 x2 i + x1x3 − x1x5 − x1x6 + x1x7 − x2x3 − x2x4 − x2x5 − x2x6 + x3x7 + x5x6 w2 = (2, 2, 1, 1, 1, 1̂) q54(x) = ∑7 i=1 x2 i + x1x2 − x1x3 − x1x5 − x1x6 − x2x3 − x2x4 − x2x5 − x2x6 + x3x7 + x5x6 w3 = (3, 2, 1, 1, 1, 1̂) q55(x) = ∑7 i=1 x2 i − x1x2 + x1x4 − x2x3 − x2x4 − x2x5 − x2x6 + x3x7 + x5x6 w4 = (3, 2, 2, 1, 1, 1̂) q56(x) = ∑7 i=1 x2 i − x1x4 − x2x3 − x2x4 − x2x5 − x2x6 + x3x7 + x5x6 p28(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 − x1x5 + x4x5 + x4x6 w = (2, 1, 1, 1, 1, 1̂) q57(x) = ∑7 i=1 x2 i − x1x6 + x1x7 − x2x3 − x2x4 − x2x5 − x2x6 + x5x6 + x5x7 p29(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 − x2x5 + x2x6 + x4x5 w = (2, 2, 1, 1, 1, 1̂) q58(x) = ∑7 i=1 x2 i − x1x5 − x1x6 − x2x3 − x2x4 − x2x5 − x3x6 + x3x7 + x5x6 p31(x) =∑6 i=1 x2 i −x1x2 −x1x3 − x1x4 − x2x5 + x3x6 w1 = (1, 1, 1, 1, 1, 1̂) q60(x) = ∑7 i=1 x2 i + x1x2 − x1x5 − x1x6 + x1x7 − x2x3 − x2x4 − x2x5 − x3x6 + x4x7 w2 = (2, 1, 1, 1, 1, 1̂) q61(x) = ∑7 i=1 x2 i − x1x2 + x1x3 + x1x4 − x1x6 + x1x7 − x2x3 − x2x4 − x2x5 − x3x6 + x4x7 w3 = (2, 1, 2, 1, 1, 1̂) q62(x) = ∑7 i=1 x2 i + x1x3 − x1x4 − x1x6 − x2x3 − x2x4 − x2x5 − x3x6 + x4x7 w4 = (2, 2, 1, 1, 1, 1̂) q63(x) = ∑7 i=1 x2 i − x1x3 + x1x4 + x1x7 − x2x3 − x2x4 − x2x5 − x3x6 + x4x7 w5 = (2, 2, 2, 1, 1, 1̂) q64(x) = ∑7 i=1 x2 i + x1x2 − x1x3 − x1x4 − x2x3 − x2x4 − x2x5 − x3x6 + x4x7 w6 = (3, 2, 2, 1, 1, 1̂) q65(x) = ∑7 i=1 x2 i − x1x2 + x1x5 − x2x3 − x2x4 − x2x5 − x3x6 + x4x7 w7 = (3, 2, 2, 2, 1, 1̂) q66(x) = ∑7 i=1 x2 i − x1x5 − x2x3 − x2x4 − x2x5 − x3x6 + x4x7 p32(x) =∑6 i=1 x2 i −x1x2 −x1x3 − x1x4 − x2x5 + x5x6 w1 = (1, 1, 1, 1, 1, 1̂) q67(x) = ∑7 i=1 x2 i + x1x2 − x1x4 − x1x5 + x1x7 − x2x3 − x2x4 − x2x5 − x3x6 + x6x7 w2 = (2, 1, 1, 1, 1, 1̂) q68(x) = ∑7 i=1 x2 i − x1x2 + x1x3 + x1x7 − x2x3 − x2x4 − x2x5 − x3x6 + x6x7 w3 = (2, 2, 1, 1, 1, 1̂) q69(x) = ∑7 i=1 x2 i − x1x3 + x1x6 + x1x7 − x2x3 − x2x4 − x2x5 − x3x6 + x6x7 w4 = (2, 2, 1, 1, 2, 1̂) q70(x) = ∑7 i=1 x2 i − x1x6 − x2x3 − x2x4 − x2x5 − x3x6 + x6x7 p33(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x2x4 − x3x5 + x4x6 w = (1, 1, 1, 1, 1, 1̂) q71(x) = ∑7 i=1 x2 i − x1x6 + x1x7 − x2x3 − x2x4 − x3x5 − x4x6 + x5x7 276 P -critical edge-bipartite graphs Table 5.8. P -critical unit forms constructed by ind: Z6 −−→ P -crit7, for n = 7 p ∈ posit• 6 w ∈ SRp q = ind(p, w) ∈ P -crit7 p34(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 − x1x5 +x2x6 +x3x5 +x4x5 w = (1, 1, 1, 1, 1̂, 1̂) q72(x) = ∑7 i=1 x2 i + x1x6 + x1x7 − x2x3 − x2x4 − x2x5 − x2x6 + x3x7 + x4x6 + x5x6 p16(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 − x1x5 + x2x5 + x2x6 + x3x4 + x5x6 w = (2, 1, 1, 1, 1, 1̂) q27(x) = ∑7 i=1 x2 i − x1x4 − x1x5 − x2x3 − x2x4 − x2x5 − x2x6 + x3x6 + x3x7 + x4x5 + x6x7 p18(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 − x1x5 +x3x5 +x4x5 +x5x6 w = (1, 1, 1, 1, 1̂, 1) q32(x) = ∑7 i=1 x2 i − x1x3 − x1x7 − x2x3 − x2x4 − x2x5 − x2x6 + x4x6 + x5x6 + x6x7 p30(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 − x2x5 + x2x6 + x3x4 w = (2, 2, 1, 1, 1, 1̂) q59(x) = ∑7 i=1 x2 i − x1x4 − x1x5 − x2x3 − x2x4 − x2x5 − x3x6 + x3x7 + x4x5 p2(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 − x1x5 + x1x6 + x2x4 + x2x5 + x3x4 + x3x5 − x3x6 + x4x5 w = (1, 1̂, 1̂, 1, 1, 1̂) q3(x) = ∑7 i=1 x2 i − x1x2 + x1x3 − x2x3 − x2x4 − x2x5 − x2x6 + x2x7 + x3x5 + x3x6 + x4x5 + x4x6 − x4x7 + x5x6 p19(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 − x1x5 +x1x6 +x2x5 +x3x4 w1 = (2, 1, 1, 1, 1, 1̂) q33(x) = ∑7 i=1 x2 i + x1x2 − x1x3 − x1x4 − x1x5 − x1x6 − x2x3 − x2x4 − x2x5 − x2x6 + x2x7 + x3x6 + x4x5 w2 = (3, 1, 1, 1, 1, 2̂) q34(x) = ∑7 i=1 x2 i + x1x7 − x2x3 − x2x4 − x2x5 − x2x6 + x2x7 + x3x6 + x4x5 w3 = (3, 1, 1, 1, 1, 1̂) q35(x) = ∑7 i=1 x2 i − x1x2 − x1x7 − x2x3 − x2x4 − x2x5 − x2x6 + x2x7 + x3x6 + x4x5 p26(x) = ∑6 i=1 x2 i − x1x2 − x1x3 − x1x4 − x2x5 +x3x4 +x3x6 −x5x6 w = (1, 1, 1̂, 1, 1, 1) q52(x) = ∑7 i=1 x2 i − x1x2 + x1x4 − x2x3 − x2x4 − x2x5 − x3x6 + x4x5 + x4x7 − x6x7 In the following Table 5.9, the unit forms pj , pij , and the vectors w and wj are the same as presented in Table 5.8. Table 5.9. A set of representatives of O(n,Z)-orbits in P -crit(Zn,Z), for n = 7 (p, w) ind(p, w) ∈ O(7,Z)-Orb(q) ⊆ P -crit• 7 coxq(t) and E-type (p33, w) q71(x) = ∑7 i=1 x2 i −x1x6 +x1x7 −x2x3 −x2x4 −x3x5 − x4x6 + x5x7 t7 −t4 −t3+1 = F (3) Ã6 (t), E-type =Ã6 (p1, w2) q2(x) = ∑7 i=1 x2 i − x1x2 + x1x5 + x1x6 − x1x7 − x2x3 − x2x4 − x2x5 − x2x6 + x2x7 + x3x4 + x3x5 + x3x6 + x4x5 + x4x6 + x5x6 − x5x7 − x6x7 t7 −t5 −t2+1 = F (2) Ã6 (t), E-type =Ẽ6 (p3, w2) A. Polak, D. Simson 277 Table 5.9. A set of representatives of O(n,Z)-orbits in P -crit(Zn,Z), for n = 7 (p, w) ind(p, w) ∈ O(7,Z)-Orb(q) ⊆ P -crit• 7 coxq(t) and E-type (p1, w1) q1(x) = ∑7 i=1 x2 i + x1x7 − x2x3 − x2x4 − x2x5 − x2x6 + x2x7 + x3x4 + x3x5 + x3x6 + x4x5 + x4x6 + x5x6 − x5x7 − x6x7 t7 −t5 −t2+1 = F (2) Ã6 (t), E-type =Ẽ6 (p5, w1) (p7, w3) (p4, w) q7(x) = ∑7 i=1 x2 i − x1x3 − x1x7 − x2x3 − x2x4 − x2x5 − x2x6 + x3x6 + x3x7 + x4x5 + x4x6 − x4x7 + x5x6 − x5x7 t7 −t5 −t2+1 = F (2) Ã6 (t), E-type =Ẽ6(p7, w1) (p13, w2) (p20, w) q36(x) = ∑7 i=1 x2 i + x1x5 + x1x7 − x2x3 − x2x4 − x2x5 + x2x7 − x3x6 + x4x5 + x5x6 t7 − t6 − t + 1 = F (1) Ã6 (t), E-type =Ẽ6(p25, w) (p31, w1) (p22, w2) q41(x) = ∑7 i=1 x2 i − x1x4 − x2x3 − x2x4 − x2x5 − x3x6 + x4x5 + x4x7 + x5x6 t7 −t4 −t3+1 = F (3) Ã6 (t), E-type =D̃6 (p28, w) (p32, w2) (p3, w1) q4(x) = ∑7 i=1 x2 i + x1x6 − x2x3 − x2x4 − x2x5 − x2x6 + x2x7 + x3x6 − x3x7 + x4x5 + x4x6 + x5x6 − x6x7 t7 −t5 −t2+1 = F (2) Ã6 (t), E-type =Ẽ6(p3, w3) (p6, w2) (p19, w1) (p8, w) q17(x) = ∑7 i=1 x2 i − x1x5 + x1x7 − x2x3 − x2x4 − x2x5 − x2x6 + x3x6 + x4x5 + x4x6 + x4x7 + x5x6 t7 −t4 −t3+1 = F (3) Ã6 (t), E-type =D̃6(p9, w) (p22, w1) (p23, w1) (p10, w2) q20(x) =∑7 i=1 x2 i − x1x5 − x2x3 − x2x4 − x2x5 − x2x6 + x2x7 + x3x6 + x4x5 − x4x7 + x5x6 t7 −t5 −t2+1 = F (2) Ã6 (t), E-type =Ẽ6(p14, w) (p17, w2) (p31, w2) (p11, w) q21(x) = ∑7 i=1 x2 i − x1x3 + x1x5 − x2x3 − x2x4 − x2x5 − x2x6 + x3x6 + x3x7 + x4x5 + x5x6 + x6x7 t7 − t6 − t + 1 = F (1) Ã6 (t), E-type =Ẽ6(p12, w) (p17, w1) (p21, w1) (p21, w3) q39(x) = ∑7 i=1 x2 i − x1x6 − x2x3 − x2x4 − x2x5 − x3x6 + x3x7 + x4x5 + x5x6 t7 −t5 −t2+1 = F (2) Ã6 (t), E-type =Ẽ6(p29, w) (p31, w3) (p31, w4) 278 P -critical edge-bipartite graphs Table 5.9. A set of representatives of O(n,Z)-orbits in P -crit(Zn,Z), for n = 7 (p, w) ind(p, w) ∈ O(7,Z)-Orb(q) ⊆ P -crit• 7 coxq(t) and E-type (p13, w1) q23(x) =∑7 i=1 x2 i +x1x6−x2x3−x2x4−x2x5+x2x7 − x3x6 − x3x7 + x4x5 + x4x6 + x5x6 t7 −t5 −t2+1 = F (2) Ã6 (t), E-type =Ẽ6(p15, w) (p21, w2) (p24, w2) (p24, w3) (p27, w1) (p32, w4) q70(x) = ∑7 i=1 x2 i −x1x6 −x2x3 −x2x4 −x2x5 −x3x6 + x6x7 t7 + t6 − t5 − t4 − t3 − t2 + t + 1 = F D̃6 (t), E-type =D̃6 (p16, w) q27(x) = ∑7 i=1 x2 i − x1x4 − x1x5 − x2x3 − x2x4 − x2x5 − x2x6 + x3x6 + x3x7 + x4x5 + x6x7 t7 + t6 − t5 − t4 − t3 − t2 + t + 1 = F D̃6 (t), E-type =D̃6 (p23, w2) (p23, w3) q44(x) =∑7 i=1 x2 i −x1x3−x2x3−x2x4−x2x5+x3x7 + x4x5 − x4x6 − x5x6 t7 + t6 − t5 − t4 − t3 − t2 + t + 1 = F D̃6 (t), E-type =D̃6 (p30, w) (p32, w3) (p18, w) q32(x) =∑7 i=1 x2 i −x1x3−x1x7−x2x3−x2x4−x2x5 − x2x6 + x4x6 + x5x6 + x6x7 t7 −2t5+t4+t3 −2t2+1, E-type =D̃6(p26, w) (p32, w1) (p34, w) (p19, w3) q35(x) = ∑7 i=1 x2 i − x1x2 − x1x7 − x2x3 − x2x4 − x2x5 − x2x6 + x2x7 + x3x6 + x4x5 t7 + t6 − 2t4 − 2t3 + t + 1 = F Ẽ6 (t), E-type =Ẽ6 (p5, w2) q9(x) = ∑7 i=1 x2 i − x1x4 − x2x3 − x2x4 −x2x5 − x2x6 + x3x5 + x3x6 + x3x7 +x4x5 + x4x6 + x5x6 t7 + t6 − 2t4 − 2t3 + t + 1 = F Ẽ6 (t), E-type =Ẽ6 (p24, w4) (p19, w2) q34(x) =∑7 i=1 x2 i + x1x7 − x2x3 − x2x4 − x2x5 − x2x6 + x2x7 + x3x6 + x4x5 t7 + t6 − 2t4 − 2t3 + t + 1 = F Ẽ6 (t), E-type =Ẽ6 (p27, w3) (p27, w4) q56(x) =∑7 i=1 x2 i − x1x4 − x2x3 − x2x4 − x2x5 − x2x6 + x3x7 + x5x6 t7 + t6 − 2t4 − 2t3 + t + 1 = F Ẽ6 (t), E-type =Ẽ6 (p31, w6) (p2, w) q3(x) =∑7 i=1 x2 i −x1x2+x1x3−x2x3−x2x4−x2x5 − x2x6 + x2x7 + x3x5 + x3x6 + x4x5 + x4x6 − x4x7 + x5x6 t7 + t6 − 2t4 − 2t3 + t + 1 = F Ẽ6 (t), E-type =Ẽ6 (p6, w1) (p10, w1) (p24, w1) A. Polak, D. Simson 279 Table 5.9. A set of representatives of O(n,Z)-orbits in P -crit(Zn,Z), for n = 7 (p, w) ind(p, w) ∈ O(7,Z)-Orb(q) ⊆ P -crit• 7 coxq(t) and E-type (p17, w4) q31(x) =∑7 i=1 x2 i −x1x5−x2x3−x2x4−x2x5−x2x6 + x4x6 + x4x7 + x5x6 t7 + t6 − 2t4 − 2t3 + t + 1 = F Ẽ6 (t), E-type =Ẽ6 (p24, w5) (p24, w6) (p31, w5) (p6, w3) q12(x) =∑7 i=1 x2 i −x1x3−x2x3−x2x4−x2x5−x2x6 + x2x7 + x3x6 + x4x5 + x4x6 + x5x6 t7 + t6 − 2t4 − 2t3 + t + 1 = F Ẽ6 (t), E-type =Ẽ6 (p7, w2) (p7, w4) (p17, w3) (p27, w2) (p31, w7) q66(x) = ∑7 i=1 x2 i −x1x5 −x2x3 −x2x4 −x2x5 −x3x6 + x4x7 t7 + t6 − 2t4 − 2t3 + t + 1 = F Ẽ6 (t), E-type =Ẽ6 Remark 5.10. It follows from Tables 5.6 and 5.7 that the surjective correspondence ind : O(5,Z)-Orb(Z5) −−−−−→ O(6,Z)-Orb(P -crit(Z6,Z)) (3.3) induced by the map (p, w) 7→ inds,εs(p, w) := qp,s,w,εs , is far from being injective. Indeed, the pairs (p2, w), (p4, w), (p7, w1) lie in differ- ent O(5,Z)-orbits in Z5, but the P -critical unit forms ind(p2, w) = q2, inds,εs(p4, w) = q5 and inds,εs(p7, w1) = q8 presented in Table 5.7 lie in the O(6,Z)-orbit of the unit form q2(x) = 6∑ i=1 x2 i + x1x5 + x1x6 − x2x3 − x2x4 − x2x5 + x2x6 + x3x5 + x4x5, because we have q5 ∗ B1 = q2, q8 ∗ B2 = q2, and q8 ∗ B3 = q5, where B1 =   0 0 0 −1 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1  , B2 =   0 −1 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 0 0 0 −1  , B3 =   0 0 0 0 1 0 0 −1 0 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 −1  . 280 P -critical edge-bipartite graphs Now we present a complete list of the Coxeter polynomials cox∆(t) ∈ Z[t] of P -critical bigraphs ∆, with at most 10 vertices. To- gether with the following corollary, the list is obtained by a computer search. Corollary 5.11. Assume that ∆ is a P -critical bigraph, with at most 10 vertices. (a) If ∆ is of the Euclidean type D∆ = Ãn, n ≤ 9, then cox∆(t) is one of the polynomials listed in the following table, see [25]. Table 5.12. Coxeter polynomials cox∆(t) of P -critical bigraphs ∆ of E-type Ãn, n ≤ 9 and their reduced Coxeter numbers č∆ j F (j) ∆ (t) č∆ j = 1 tn+1 − tn − t + 1 n j ∈ {2, . . . , mn} tn+1 − tn+1−j − tj + 1 lcm(n−j+1, j) where mn = { n 2 , if n is even, n+1 2 , if n + 1 is even. (b) If ∆ is of the Euclidean type D∆ ∈ {D̃n, Ẽ6, Ẽ7, Ẽ8}, n ≤ 9, then cox∆(t) is one of the polynomials presented in Table 5.13. Table 5.13. Coxeter polynomials cox∆(t) of P -critical bigraphs ∆ D∆ CGpolPEucl = {cox∆(t)}D∆=Eucl = { F (j) D∆ (t) } č∆ D̃4 F (1) D̃4 (t) = t5 + t4 − 2t3 − 2t2 + t + 1 č∆ = 2 F (2) D̃4 (t) = t5 − t4 − t + 1 = F (1) Ã4 (t) č∆ = 4 D̃5 F (1) D̃5 (t) = t6 + t5 − t4 − 2t3 − t2 + t + 1 č∆ = 6 F (2) D̃5 (t) = t6 − t5 − t + 1 = F (1) Ã5 (t) č∆ = 5 F (3) D̃5 (t) = t6 − t4 − t2 + 1 = F (2) Ã5 (t) č∆ = 4 F (4) D̃5 (t) = t6 − t5 − t4 + 2t3 − t2 − t + 1 č∆ = 6 F (5) D̃5 (t) = t6 − 2t5 + 3t4 − 4t3 + 3t2 − 2t + 1 č∆ = 4 A. Polak, D. Simson 281 Table 5.13. Coxeter polynomials cox∆(t) of P -critical bigraphs ∆ D∆ CGpolPEucl = {cox∆(t)}D∆=Eucl = { F (j) D∆ (t) } č∆ D̃6 F (1) D̃6 (t) = t7 + t6 − t5 − t4 − t3 − t2 + t + 1 č∆ = 4 F (2) D̃6 (t) = t7 − t6 − t + 1 = F (1) Ã6 (t) č∆ = 6 F (3) D̃6 (t) = t7 − t4 − t3 + 1 = F (3) Ã6 (t) č∆ = 12 F (4) D̃6 (t) = t7 − t6 + t5 − t4 − t3 + t2 − t + 1 č∆ = 4 F (5) D̃6 (t) = t7 − t6 − t5 + t4 + t3 − t2 + t + 1 č∆ = 8 F (6) D̃6 (t) = t7 − 2t6 + 2t5 − t4 − t3 + 2t2 − 2t + 1 č∆ = 12 F (7) D̃6 (t) = t7 − 2t5 + t4 + t3 − 2t2 + 1 č∆ = 6 D̃7 F (1) D̃7 (t) = t8 + t7 − t6 − t5 − t3 − t2 + t + 1 č∆ = 10 F (2) D̃7 (t) = t8 − t7 − t + 1 = F (1) Ã7 (t) č∆ = 7 F (3) D̃7 (t) = t8 − t6 − t2 + 1 = F (2) Ã7 (t) č∆ = 6 F (4) D̃7 (t) = t8 − 2t4 + 1 = F (4) Ã7 (t) č∆ = 4 F (5) D̃7 (t) = t8 − t7 + t5 − 2t4 + t3 − t + 1 č∆ = 12 F (6) D̃7 (t) = t8 − 2t6 + 2t4 − 2t2 + 1 č∆ = 8 F (7) D̃7 (t) = t8 − 2t7 + 2t6 − 2t5 + 2t4 − 2t3 + 2t2 − 2t + 1 č∆ = 8 F (8) D̃7 (t) = t8 − 2t7 + t6 + 2t5 − 4t4 + 2t3 + t2 − 2t + 1 č∆ = 6 F (9) D̃7 (t) = t8 − t7 + 2t6 − 3t5 + 2t4 − 3t3 + 2t2 − t + 1 č∆ = 12 F (10) D̃7 (t) = t8 − t7 − t6 + t5 + t3 − t2 − t + 1 č∆ = 10 D̃8 F (1) D̃8 (t) = t9 + t8 − t7 − t6 − t3 − t2 + t + 1 č∆ = 6 F (2) D̃8 (t) = t9 − t8 − t + 1 = F (1) Ã8 (t) č∆ = 8 F (3) D̃8 (t) = t9 − t5 − t4 + 1 = F (4) Ã8 (t) č∆ = 20 F (4) D̃8 (t) = t9 − t8 + 2t7 − 2t6 − 2t3 + 2t2 − t + 1 č∆ = 4 F (5) D̃8 (t) = t9 − t8 + t7 − t6 − t3 + t2 − t + 1 č∆ = 12 F (6) D̃8 (t) = t9 − t8 − t7 + t6 + t3 − t2 − t + 1 č∆ = 12 F (7) D̃8 (t) = t9 − t8 − t7 + 3t6 − 2t5 − 2t4 + 3t3 − t2 − t + 1 č∆ = 6 F (8) D̃8 (t) = t9 − t7 + t6 − t5 − t4 + t3 − t2 + 1 č∆ = 12 F (9) D̃8 (t) = t9 − t7 − t6 + t5 + t4 − t3 − t2 + 1 č∆ = 24 F (10) D̃8 (t) = t9 − 2t7 + t5 + t4 − 2t2 + 1 č∆ = 10 F (11) D̃8 (t) = t9 − 2t8 + t7 + t6 − t5 − t4 + t3 + t2 − 2t + 1 č∆ = 24 F (12) D̃8 (t) = t9 − 2t8 + 2t7 − 2t6 + t5 + t4 − 2t3 + 2t2 − 2t + 1 č∆ = 20 282 P -critical edge-bipartite graphs Table 5.13. Coxeter polynomials cox∆(t) of P -critical bigraphs ∆ D∆ CGpolPEucl = {cox∆(t)}D∆=Eucl = { F (j) D∆ (t) } č∆ D̃9 F (1) D̃9 (t) = t10 + t9 − t8 − t7 − t3 − t2 + t + 1 č∆ = 14 F (2) D̃9 (t) = t10 − t9 − t + 1 = F (1) Ã9 (t) č∆ = 9 F (3) D̃9 (t) = t10 − t8 − t2 + 1 = F (2) Ã9 (t) č∆ = 8 F (4) D̃9 (t) = t10 − t6 − t4 + 1 = F (4) Ã9 (t) č∆ = 12 F (5) D̃9 (t) = t10 − t9 + t8 − 2t7 + 2t6 − 2t5 + 2t4 − 2t3 + t2 − t + 1 č∆ = 24 F (6) D̃9 (t) = t10 − t9 + 2t8 − 2t7 + t6 − 2t5 + t4 − 2t3 + 2t2 − t + 1 č∆ = 20 F (7) D̃9 (t) = t10 − t9 + t8 − 2t6 + 2t5 − 2t4 + t2 − t + 1 č∆ = 12 F (8) D̃9 (t) = t10 − t9 − t6 + 2t5 − t4 − t + 1 č∆ = 20 F (9) D̃9 (t) = t10 − 2t9 + 2t8 − 2t7 + t6 + t4 − 2t3 + 2t2 − 2t + 1 č∆ = 12 F (10) D̃9 (t) = t10 −2t9 + t8 + t7 −2t6 +2t5 −2t4 + t3 + t2 −2t+1 č∆ = 30 F (11) D̃9 (t) = t10 − t9 − t8 + 2t7 − 2t5 + 2t3 − t2 − t + 1 č∆ = 24 F (12) D̃9 (t) = t10 − t9 + t7 − t6 − t4 + t3 − t + 1 č∆ = 6 F (13) D̃9 (t) = t10 − 2t9 + t8 + 2t6 − 4t5 + 2t4 + t2 − 2t + 1 č∆ = 8 F (14) D̃9 (t) = t10 − t9 − t8 + t7 + t3 − t2 − t + 1 č∆ = 14 F (15) D̃9 (t) = t10 − t8 + t7 − 2t5 + t3 − t2 + 1 č∆ = 30 F (16) D̃9 (t) = t10 − t8 − t7 + 2t5 − t3 − t2 + 1 č∆ = 30 F (17) D̃9 (t) = t10 − 2t8 + t6 + t4 − 2t2 + 1 č∆ = 12 Ẽ6 F (1) Ẽ6 (t) = t7 + t6 − 2t4 − 2t3 + t + 1 č∆ = 6 F (2) Ẽ6 (t) = t7 − t6 − t + 1 = F (1) Ã6 (t) č∆ = 6 F (3) Ẽ6 (t) = t7 − t5 − t2 + 1 = F (2) Ã6 (t) č∆ = 10 F (4) Ẽ6 (t) = t7 − 2t6 + 2t5 − t4 − t3 + 2t2 − 2t + 1 č∆ = 12 F (5) Ẽ6 (t) = t7 − t6 − t5 + t4 + t3 − t2 − t + 1 č∆ = 8 Ẽ7 F (1) Ẽ7 (t) = t8 + t7 − t5 − 2t4 − t3 + t + 1 č∆ = 12 F (2) Ẽ7 (t) = t8 − t7 − t + 1 = F (1) Ã7 (t) č∆ = 7 F (3) Ẽ7 (t) = t8 − t6 − t2 + 1 = F (2) Ã7 (t) č∆ = 6 F (4) Ẽ7 (t) = t8 − t5 − t3 + 1 = F (3) Ã7 (t) č∆ = 15 F (5) Ẽ7 (t) = t8 − t7 + t5 − 2t4 + t3 − t + 1 č∆ = 12 F (6) Ẽ7 (t) = t8 − 2t6 + 2t4 − 2t2 + 1 č∆ = 8 F (7) Ẽ7 (t) = t8 − 2t7 + 2t6 − 2t5 + 2t4 − 2t3 + 2t2 − 2t + 1 č∆ = 8 A. Polak, D. Simson 283 Table 5.13. Coxeter polynomials cox∆(t) of P -critical bigraphs ∆ D∆ CGpolPEucl = {cox∆(t)}D∆=Eucl = { F (j) D∆ (t) } č∆ F (8) Ẽ7 (t) = t8 − 2t7 + t6 + 2t5 − 4t4 + 2t3 + t2 − 2t + 1 č∆ = 6 F (9) Ẽ7 (t) = t8 − 3t7 + 5t6 − 6t5 + 6t4 − 6t3 + 5t2 − 3t + 1 č∆ = 6 F (10) Ẽ7 (t) = t8 − 2t7 + t6 + t5 − 2t4 + t3 + t2 − 2t + 1 č∆ = 9 F (11) Ẽ7 (t) = t8 − t7 − t6 + t5 + t3 − t2 − t + 1 č∆ = 10 F (12) Ẽ7 (t) = t8 − t7 − t6 + 2t4 − t2 − t + 1 č∆ = 12 Ẽ8 F (1) Ẽ8 (t) = t9 + t8 − t6 − t5 − t4 − t3 + t + 1 č∆ = 30 F (2) Ẽ8 (t) = t9 − t8 − t + 1 = F (1) Ã8 (t) č∆ = 8 F (3) Ẽ8 (t) = t9 − t7 − t2 + 1 = F (2) Ã8 (t) č∆ = 14 F (4) Ẽ8 (t) = t9 − t5 − t4 + 1 = F (4) Ã8 (t) č∆ = 20 F (5) Ẽ8 (t) = t9 − t8 + t7 − t6 − t3 + t2 − t + 1 č∆ = 12 F (6) Ẽ8 (t) = t9 − t8 − t7 + 2t6 − t5 − t4 + 2t3 − t2 − t + 1 č∆ = 18 F (7) Ẽ8 (t) = t9 − t8 − t7 + t6 + t3 − t2 − t + 1 č∆ = 12 F (8) Ẽ8 (t) = t9 − t8 − t7 + t5 + t4 − t2 − t + 1 č∆ = 18 F (9) Ẽ8 (t) = t9 − 2t8 + 2t7 − t6 − t3 + 2t2 − 2t + 1 č∆ = 6 F (10) Ẽ8 (t) = t9 − 2t8 + 2t7 − 2t6 + t5 + t4 − 2t3 + 2t2 − 2t + 1 č∆ = 20 F (11) Ẽ8 (t) = t9 − 2t8 + t7 + t6 − t5 − t4 + t3 + t2 − 2t + 1 č∆ = 24 F (12) Ẽ8 (t) = t9 − 2t8 + t7 + t2 − 2t + 1 č∆ = 14 F (13) Ẽ8 (t) = t9 − 2t8 + 3t6 − 2t5 − 2t4 + 3t3 − 2t + 1 č∆ = 12 F (14) Ẽ8 (t) = t9 − 3t8 + 4t7 − 3t6 + t5 + t4 − 3t3 + 4t2 − 3t + 1 č∆ = 30 F (15) Ẽ8 (t) = t9 − 4t8 + 8t7 − 9t6 + 4t5 + 4t4 − 9t3 + 8t2 − 4t + 1 č∆ = 6 F (16) Ẽ8 (t) = t9 − t7 − t6 + t5 + t4 − t3 − t2 + 1 č∆ = 24 F (17) Ẽ8 (t) = t9 − 2t7 − t6 + 2t5 + 2t4 − t3 − 2t2 + 1 č∆ = 12 References [1] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, Vol. 1. Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge-New York, 2006. [2] K.T. Balińska and S.K Simić, The nonregular, bipartite, integral graphs with maximum degree four, Discrete Math. 236(2001), 13–24. [3] M. Barot and J.A. de la Peña, The Dynkin type of a non-negative unit form, Expo. Math. 17(1999), 339–348. 284 P -critical edge-bipartite graphs [4] G. Belitskij and V. V. Sergeichuk, Complexity of matrix problems, Linear Algebra Appl. 361(2003), 203–222. [5] V. M. Bondarenko and M. V. Stepochkina, (Min, max)-equivalency of posets and nonnegative of the quadratic Tits forms, Ukrain. Mat. Zh. 60(2008), 1157–1167. [6] V. M. Bondarenko and M. V. Stepochkina, Description of posets with respect to the nonnegativity Tits forms, Ukrain. Mat. Zh. 61(2009), 734–746. [7] R.A. Brualdi and D. M. Cvetković, Combinatorial Approach to Matrix Theory and its Application, CRS Press (Boca Raton), 2008. [8] J. A. Drozd, Coxeter transformations and representations of partially ordered sets, Funkc. Anal. i Priložen. 8(1974), 34–42 (in Russian); English version: Funct. Anal. Appl. 8(1974), 219–225. [9] P. Dräxler, J. A. Drozd, N. S. Golovachtchuk, S. A. Ovsienko, M. Zeldych, To- wards the classification of sincere weakly positive unit forms, Europ. J. Combinat. 16(1995), 1-16. [10] P. Gabriel and A. V. Roiter, Representations of Finite Dimensional Algebras, Algebra VIII, Encyclopaedia of Math. Sc., Vol. 73, Springer–Verlag, 1992. [11] Y. Han and D. Zhao, Superspecies and their representations, J. Algebra 321(2009), 3668–3680. [12] H. -J. von Höhne, On weakly positive unit forms, Comment Math. Helvetici, 63(1988), 312–336. [13] S. M. Johnson, Generation of permutations by adjacent transpositions, Math. Comp. 17(1963), 282–285. [14] A. Kisielewicz and M. Szykuła, Rainbow induced subgraphs in proper vertex color- ings, Fund. Inform. 111(2011), 437–451, doi: 10.3233/FI-2011-572. [15] D. E. Knuth, The Art of Computer Programming, Vol. 4, Fascicle 2: Generating All Tuples and Permutations, Addison-Wesley Professional, 2005. [16] J. Kosakowska, Inflation algorithms for positive and principal edge-bipartite graphs and unit quadratic forms, Fund. Inform. 119(2012), 149-162, doi: 10.3233/FI-2012- 731. [17] J. Kosakowska and D. Simson, Hereditary coalgebras and representations of species, J. Algebra 293(2005), 457–505. [18] S. Ladkani, On the periodicity of Coxeter transformations and the non-negativity of their Euler forms, Linear Algebra Appl. 428(2008), 742–753. [19] P. Lakatos, On spectral radius of Coxeter transformation of trees, Publ. Math. 54(1999), 181–87. [20] H. Lenzing and J.A de la Peña, Spectral analysis of finite dimensional algebras and singularities, In: Trends in Representation Theory of Algebras and Related Topics, ICRA XII, (ed. A. Skowroński), Series of Congress Reports, European Math. Soc. Publishing House, Zürich, 2008, pp. 541–588. [21] G. Marczak, A. Polak and D. Simson, P -critical integral quadratic forms and positive forms. An algorithmic approach, Linear Algebra Appl. 433(2010), 1873– 1888, doi: 10.1016/j.laa. 2010.06.052. A. Polak, D. Simson 285 [22] S. A. Ovsienko, Integral weakly positive forms, in Schur Matrix Problems and Quadratic Forms, Inst. Mat. Akad. Nauk USSR, Preprint, 78.25 (1978), pp. 3–17. [23] A. Polak, http://www.mat.umk.pl/~aga13/pkrytyczne.html, Cited 1 May 2013. [24] A. Polak and D. Simson, Symbolic and numerical computation in determining P -critical unit forms and Tits P -critical posets, Proc. Sixth European Conference on Combinatorics, Graph Theory and Applications, EuroComb2011, Budapest, August 2011,Electronic Notes in Discrete Mathematics 38(2011), 723–730, doi: 10.1016/j.endm.2011.10.021. [25] A. Polak and D. Simson, On Coxeter spectral classification of P -critical edge- bipartite graphs of Euclidean type Ãn, Proc. Combinatorics 2012, Perugia, Septem- ber 2012, Electronic Notes in Discrete Mathematics 40(2013), 311–316, doi: 10.1016/j.endm.2013.05.055. [26] A. Polak and D. Simson, Algorithmic experiences in Coxeter spectral study of P -critical edge-bipartite graphs and posets, SYNASC 2013, IEEE Computer Society, IEEE CPS, Tokyo, 2013, in press. [27] A. Polak and D. Simson, Coxeter spectral classification of almost T P -critical one-peak posets using symbolic and numeric computations, Linear Algebra Appl. 2014, in press, doi: 10.1016/j.laa. 2013.12.018. [28] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., Vol. 1099, Springer–Verlag, Berlin–Heidelberg–New York-Tokyo, 1984. [29] M. Sato, Periodic Coxeter matrices and their associated quadratic forms, Linear Algebra Appl. 406(2005), 99–108; doi: 10.1016/j.laa. 2005.03.036. [30] V. V. Sergeichuk, Canonical matrices for linear matrix problems, Linear Algebra Appl. 317(2000), 53–102. [31] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra, Logic and Applications, Vol. 4, Gordon & Breach Science Publishers, 1992. [32] D. Simson, A reduction functor, tameness and Tits form for a class of orders, J. Algebra 174(1995), 430–452. [33] D. Simson, Incidence coalgebras of intervally finite posets, their integral quadratic forms and comodule categories, Colloq. Math. 115(2009), 259–295. [34] D. Simson, Integral bilinear forms, Coxeter transformations and Coxeter polyno- mials of finite posets, Linear Algebra Appl. 433(2010), 699–717; doi: 10.1016/j.laa. 2010.03.04. [35] D. Simson, Mesh geometries of root orbits of integral quadratic forms, J. Pure Appl. Algebra 215(2011), 13–34, doi: 10.1016/j.jpaa. 2010.02.029. [36] D. Simson, Mesh algorithms for solving principal Diophantine equations, sand-glass tubes and tori of roots, Fund. Inform. 109(2011), 425–520, doi: 10.3233/FI-2011- 603. [37] D. Simson, Algorithms determining matrix morsifications, Weyl orbits, Coxeter polynomials and mesh geometries of roots for Dynkin diagrams, Fund. Inform. 123(2013), 447–490. [38] D. Simson, A Coxeter-Gram classification of positive simply-laced bipartite graphs and unit forms, SIAM J. Discr. Math. 27(2013), 827-854. 286 P -critical edge-bipartite graphs [39] D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, Vol. 2, Tubes and Concealed Algebras of Euclidean Type, London Math. Soc. Student Texts 71, Cambridge Univ. Press, Cambridge-New York, 2007. [40] D. Simson and M. Wojewódzki, An algorithmic solution of a Birkhoff type problem, Fund. Inform. 83(2008), 389–410. [41] H. F. Trotter, Perm (Algorithm 115), Comm. ACM, 5(1962), 434–435. [42] T. Zaslavsky, Signed graphs, Discrete Appl. Math. 4(1982), 47–74. [43] Y. Zhang, Eigenvalues of Coxeter transformations and the structure of the regular components of the Auslander-Reiten quiver, Comm. Algebra 17(1989), 2347–2362. Contact information A. Polak Faculty of Mathematics and Computer Sciences, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland E-Mail: apolak@mat.umk.pl D. Simson Faculty of Mathematics and Computer Sciences,Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland E-Mail: simson@mat.umk.pl Received by the editors: 26.07.2013 and in final form 26.07.2013.