Rigid, quasi-rigid and matrix rings with (σ,0)-multiplication

Let R be a ring with an endomorphism σ. We introduce (σ, 0)-multiplication which is a generalization of the simple 0- multiplication. It is proved that for arbitrary positive integers m ≤ n and n ≥ 2, R[x; σ] is a reduced ring if and only if Sn,m(R) is a ring with (σ, 0)-multiplication.

Saved in:
Bibliographic Details
Date:2014
Main Authors: Abdioglu, C., Şahinkaya, S., KÖR, A.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2014
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/152357
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Rigid, quasi-rigid and matrix rings with (σ,0)-multiplication / C. Abdioglu, S. Şahinkay, A. KÖR // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 1. — С. 1–11. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine