Exponent matrices and topological equivalence of maps
Conjugate classes of continuous maps of the interval [0,1] into itself, whose iterations form a finite group are described. For each of possible groups of iterations one to one correspondence between conjugate classes of maps and equivalent classes of (0,1)-exponent matrices of special form is const...
Saved in:
Date: | 2007 |
---|---|
Main Authors: | Fedorenko, V., Kirichenko, V., Plakhotnyk, M. |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2007
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/152381 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Exponent matrices and topological equivalence of maps / V. Fedorenko, V. Kirichenko, M. Plakhotnyk // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 4. — С. 45–58. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Exponent matrices and topological equivalence of maps
by: Fedorenko, Volodymyr, et al.
Published: (2018) -
Quivers of 3×3-exponent matrices
by: Dokuchaev, M., et al.
Published: (2015) -
Quivers of 3×3 exponent matrices
by: Dokuchaev, M., et al.
Published: (2015) -
Quivers of 3 Ч 3-exponent matrices
by: M. Dokuchaev, et al.
Published: (2015) -
Quivers of \(3\times 3\)-exponent matrices
by: Dokuchaev, M., et al.
Published: (2015)