On time dependent orthogonal polynomials on the unit circle
Two index formulas for operators defined by infinite band matrices are proved. These results may be interpreted as a generalization of the classical theorem of M. G. Krein for orthogonal polynomials. The proofs are based on dichotomy and nonstationary inertia theory.
Saved in:
Date: | 1994 |
---|---|
Main Authors: | Ben-Artzi, A., Gohberg, I. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
1994
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/152530 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | On time dependent orthogonal polynomials on the unit circle / А. Ben-Artzi, I. Gohberg // Український математичний журнал. — 1994. — Т. 46, № 1-2. — С. 18–36. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle
by: Bultheel, A., et al.
Published: (2017) -
On the Convergence of Fourier Series with Orthogonal Polynomials inside and on the Closure of a Region
by: Abdullaev, F.G., et al.
Published: (2002) -
On Some Properties of Orthogonal Polynomials over an Area in Domains of the Complex Plane. III
by: Abdullayev, G.A.
Published: (2001) -
Orthogonal Polynomials on the Unit Ball and Fourth-Order Partial Differential Equations
by: Martínez, C., et al.
Published: (2016) -
Correction of nonlinear orthogonal regression estimator
by: Fazekas, I., et al.
Published: (2004)