О распределении простых близнецов в множестве натуральных чисел

Выдвигается новая гипотеза о законе распределения простых близнецов в виде π₂(x)=π(π(x)). На основании теоремы Чебышева строятся нижняя и верхняя оценки функции π₂(x), рассмотрены вопросы плотности распределения простых близнецов в множестве простых чисел, доказана теорема π₂(x)=o(π(x)), получена эм...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:1986
1. Verfasser: Беньяминов, Б.Б.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут математики НАН України 1986
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/152703
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:О распределении простых близнецов в множестве натуральных чисел / Б.Б. Беньяминов // Український математичний журнал. — 1986. — Т. 38, № 1. — С. 78-83. — Бібліогр.: 6 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Выдвигается новая гипотеза о законе распределения простых близнецов в виде π₂(x)=π(π(x)). На основании теоремы Чебышева строятся нижняя и верхняя оценки функции π₂(x), рассмотрены вопросы плотности распределения простых близнецов в множестве простых чисел, доказана теорема π₂(x)=o(π(x)), получена эмпирическая функция распределения простых близнецов π₂*(x)=1,325067... (п² (x))/x, имеющая высокую степень точности. Доказано неравенство, аналогичное постулату Бертрана π(2π(x))—π(π(x))≥1, т. е. в интервале ]π(х) 2π(x)[ содержится по крайней мере одна пара простых близнецов, и его обобщение π(mπ(x))−π(π(x))≥k если π(m)=k. С помощью этого неравенства в предположении правильности выдвинутой гипотезы о законе распределения простых близнецов решена проблема простых близнецов: число пар близнецов бесконечно.