On two windows multivariate cryptosystem depending on random parameters

The concept of multivariate bijective map of an affine space Kn over commutative Ring K was already used in Cryptography. We consider the idea of nonbijective multivariate polynomial map Fn of Kn into Kn represented as ''partially invertible decomposition'' F(1)nF(2)n…F(k)n, k=k...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Romańczuk-Polubiec, U., Ustimenko, V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2015
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152793
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On two windows multivariate cryptosystem depending on random parameters / U. Romańczuk-Polubiec, V. Ustimenko // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 1. — С. 101-129. — Бібліогр.: 46 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The concept of multivariate bijective map of an affine space Kn over commutative Ring K was already used in Cryptography. We consider the idea of nonbijective multivariate polynomial map Fn of Kn into Kn represented as ''partially invertible decomposition'' F(1)nF(2)n…F(k)n, k=k(n), such that knowledge on the decomposition and given value u=F(v) allow to restore a special part v′ of reimage v. We combine an idea of ''oil and vinegar signatures cryptosystem'' with the idea of linguistic graph based map with partially invertible decomposition to introduce a new cryptosystem. The decomposition will be induced by pseudorandom walk on the linguistic graph and its special quotient (homomorphic image). We estimate the complexity of such general algorithm in case of special family of graphs with quotients, where both graphs form known families of Extremal Graph Theory. The map created by key holder (Alice) corresponds to pseudorandom sequence of ring elements. The postquantum version of the algorithm can be obtained simply by the usage of random strings instead of pseudorandom.