The immunochemical cross-reactivity between cytoplasmic and mitochondrial mammalian lysyl-tRNA synthetases

Animal and fungal cells (in contrast to prokaryotes) contain two distinct sets of related aminoacyl-tRNA synthetases (aaRSs) encoded by nuclear genes and functioning in cytosol and mitochondria. The structural differences between mitochondrial and cytoplasmic enzymes may reflect the functional adapt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2000
Hauptverfasser: Sidorik, L.L., Rybkinska, T.A., Bakhiya, N.G., Rodnin, N.V., Filonenko, V.V., Entelis, N.S., Tarassov, I.A., Martin, R.P., Matsuka, G.Kh.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут молекулярної біології і генетики НАН України 2000
Schriftenreihe:Биополимеры и клетка
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/152833
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The immunochemical cross-reactivity between cytoplasmic and mitochondrial mammalian lysyl-tRNA synthetases / L.L. Sidorik, T.A. Rybkinska, N.G. Bakhiya, N.V. Rodnin, V.V. Filonenko, N.S. Entelis, I.A. Tarassov, R.P. Martin, G.Kh. Matsuka // Биополимеры и клетка. — 2000. — Т. 16, № 5. — С. 363-368. — Бібліогр.: 26 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152833
record_format dspace
spelling irk-123456789-1528332019-07-05T19:10:55Z The immunochemical cross-reactivity between cytoplasmic and mitochondrial mammalian lysyl-tRNA synthetases Sidorik, L.L. Rybkinska, T.A. Bakhiya, N.G. Rodnin, N.V. Filonenko, V.V. Entelis, N.S. Tarassov, I.A. Martin, R.P. Matsuka, G.Kh. Структура и функции биополимеров Animal and fungal cells (in contrast to prokaryotes) contain two distinct sets of related aminoacyl-tRNA synthetases (aaRSs) encoded by nuclear genes and functioning in cytosol and mitochondria. The structural differences between mitochondrial and cytoplasmic enzymes may reflect the functional adaptation to fulfil mitochondrial processes in addition to protein synthesis. Mitochondrial import of nuclearencoded tRNAs has been described in yeast, plants and protozoans but it has not been observed in mammalian cells. Ifs established that mitochondrial lysyl-tRNA synthetase (MSK) plays a prominent role in the transport of tRNA into yeast mitochondria for complementation o f mitochondrial tRNAs genes mutations. We tried to identify MSK homologues in mammalian cells with the help of monospecific antibodies against pre-MSK by ELISA and Western-blot analysis. We have identified cross-reactive proteins in mitochondrial and cytoplasmic fractions of mammalian cell lysates. These data, together with the results of cross-aminoacylation on mitochondrial and cytoplasmic tRNAs, suggest the presence of common antigenic determinants in the mitochondrial and cytoplasmic lysyl-tRNA synthetases from higher animals. Клітини еукаріот на відміну від прокаріот містять дві різні групи аміноацил-тРНК синтетаз, які кодуються ядерним геномом та функціонують в цитозолі і мітохондріях. Струк­турні відмінності між ферментами мітохондрій і цитоплаз­ми можуть бути відображенням функціональної адаптації до процесів, які відбуваються в мітохондріях, крім участі в біосинтезі білка. Імпорт цитозольних тРНК у мітохондрії описано для дріжджів, рослин і найпростіиіих, однак він не спостерігався в клітинах ссавців. Виявлено, що мітохондріальна лізил-тРНК синтетаза (MSK) відіграє провідну роль у транспорті тРНК у мітохондрії дріжджів для комплемен­тації мутацій мітохондріальних генів тРНК За допомогою моноспецифічних антитіл проти npe-MSK ми зробили спробу ідентифікувати гомологи MSK у клітинах ссавців методами ELISA і Вестерн-блотинга. В цитоплазматичних і міто­хондріальних фракціях лізатів клітин ссавців нам вдалося виявити білки, які мають імунологічний перехрест з MSK Разом з результатами перехресного аміноацилювання ці дані дають підставу для припущення щодо наявності спільних антигенних детермінант у мітохондріальних і цитоплазма­тичних лізил-тРНК синтетаз ссавців. Клетки эукариот (в отличие от клеток прокариот) содержат две различные группы аминоацил-тРНК синтетаз, кодируе­мых ядерным геномом и функционирующих в ц и то золе и митохондриях. Структурные отличия между ферментами митохондрий и цитоплазмы могут быть отражением функци­ональной адаптации к процессам, происходящим в митохонд­риях помимо участия в биосинтезе белка Импорт цитозольных тРНК в митохондрии описан у дрожжей, растений и простейших, однако не наблюдался в клетках млекопитаю­щих. Установлено, что митохондриальная лизил-тРНК син­тетаза (MSK) играет ведущую роль в транспорте тРНК в митохондрии дрожжей для комплементации мутаций митохондриальных генов тРНК. С помощью моноспецифических антител против npe-MSK мы попытались идентифицировать гомологи MSK в клетках млекопитающих методами ELISA и Вестерн-блотинга. В цитоплазматических и митохондриальных фракциях лизатов клеток млекопитающих нам удалось обнаружить белки, имеющие иммунологический перекрест с MSK В совокупности с результатами перекрестного аминоацилирования эти данные дают основание предположить нали­чие общих антигенных детерминант у митохондриальных и цитоплазматических лизил-тРНК синтетаз высших живо­тных. 2000 Article The immunochemical cross-reactivity between cytoplasmic and mitochondrial mammalian lysyl-tRNA synthetases / L.L. Sidorik, T.A. Rybkinska, N.G. Bakhiya, N.V. Rodnin, V.V. Filonenko, N.S. Entelis, I.A. Tarassov, R.P. Martin, G.Kh. Matsuka // Биополимеры и клетка. — 2000. — Т. 16, № 5. — С. 363-368. — Бібліогр.: 26 назв. — англ. 0233-7657 DOI:http://dx.doi.org/10.7124/bc.00057E http://dspace.nbuv.gov.ua/handle/123456789/152833 577.1 en Биополимеры и клетка Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Структура и функции биополимеров
Структура и функции биополимеров
spellingShingle Структура и функции биополимеров
Структура и функции биополимеров
Sidorik, L.L.
Rybkinska, T.A.
Bakhiya, N.G.
Rodnin, N.V.
Filonenko, V.V.
Entelis, N.S.
Tarassov, I.A.
Martin, R.P.
Matsuka, G.Kh.
The immunochemical cross-reactivity between cytoplasmic and mitochondrial mammalian lysyl-tRNA synthetases
Биополимеры и клетка
description Animal and fungal cells (in contrast to prokaryotes) contain two distinct sets of related aminoacyl-tRNA synthetases (aaRSs) encoded by nuclear genes and functioning in cytosol and mitochondria. The structural differences between mitochondrial and cytoplasmic enzymes may reflect the functional adaptation to fulfil mitochondrial processes in addition to protein synthesis. Mitochondrial import of nuclearencoded tRNAs has been described in yeast, plants and protozoans but it has not been observed in mammalian cells. Ifs established that mitochondrial lysyl-tRNA synthetase (MSK) plays a prominent role in the transport of tRNA into yeast mitochondria for complementation o f mitochondrial tRNAs genes mutations. We tried to identify MSK homologues in mammalian cells with the help of monospecific antibodies against pre-MSK by ELISA and Western-blot analysis. We have identified cross-reactive proteins in mitochondrial and cytoplasmic fractions of mammalian cell lysates. These data, together with the results of cross-aminoacylation on mitochondrial and cytoplasmic tRNAs, suggest the presence of common antigenic determinants in the mitochondrial and cytoplasmic lysyl-tRNA synthetases from higher animals.
format Article
author Sidorik, L.L.
Rybkinska, T.A.
Bakhiya, N.G.
Rodnin, N.V.
Filonenko, V.V.
Entelis, N.S.
Tarassov, I.A.
Martin, R.P.
Matsuka, G.Kh.
author_facet Sidorik, L.L.
Rybkinska, T.A.
Bakhiya, N.G.
Rodnin, N.V.
Filonenko, V.V.
Entelis, N.S.
Tarassov, I.A.
Martin, R.P.
Matsuka, G.Kh.
author_sort Sidorik, L.L.
title The immunochemical cross-reactivity between cytoplasmic and mitochondrial mammalian lysyl-tRNA synthetases
title_short The immunochemical cross-reactivity between cytoplasmic and mitochondrial mammalian lysyl-tRNA synthetases
title_full The immunochemical cross-reactivity between cytoplasmic and mitochondrial mammalian lysyl-tRNA synthetases
title_fullStr The immunochemical cross-reactivity between cytoplasmic and mitochondrial mammalian lysyl-tRNA synthetases
title_full_unstemmed The immunochemical cross-reactivity between cytoplasmic and mitochondrial mammalian lysyl-tRNA synthetases
title_sort immunochemical cross-reactivity between cytoplasmic and mitochondrial mammalian lysyl-trna synthetases
publisher Інститут молекулярної біології і генетики НАН України
publishDate 2000
topic_facet Структура и функции биополимеров
url http://dspace.nbuv.gov.ua/handle/123456789/152833
citation_txt The immunochemical cross-reactivity between cytoplasmic and mitochondrial mammalian lysyl-tRNA synthetases / L.L. Sidorik, T.A. Rybkinska, N.G. Bakhiya, N.V. Rodnin, V.V. Filonenko, N.S. Entelis, I.A. Tarassov, R.P. Martin, G.Kh. Matsuka // Биополимеры и клетка. — 2000. — Т. 16, № 5. — С. 363-368. — Бібліогр.: 26 назв. — англ.
series Биополимеры и клетка
work_keys_str_mv AT sidorikll theimmunochemicalcrossreactivitybetweencytoplasmicandmitochondrialmammalianlysyltrnasynthetases
AT rybkinskata theimmunochemicalcrossreactivitybetweencytoplasmicandmitochondrialmammalianlysyltrnasynthetases
AT bakhiyang theimmunochemicalcrossreactivitybetweencytoplasmicandmitochondrialmammalianlysyltrnasynthetases
AT rodninnv theimmunochemicalcrossreactivitybetweencytoplasmicandmitochondrialmammalianlysyltrnasynthetases
AT filonenkovv theimmunochemicalcrossreactivitybetweencytoplasmicandmitochondrialmammalianlysyltrnasynthetases
AT entelisns theimmunochemicalcrossreactivitybetweencytoplasmicandmitochondrialmammalianlysyltrnasynthetases
AT tarassovia theimmunochemicalcrossreactivitybetweencytoplasmicandmitochondrialmammalianlysyltrnasynthetases
AT martinrp theimmunochemicalcrossreactivitybetweencytoplasmicandmitochondrialmammalianlysyltrnasynthetases
AT matsukagkh theimmunochemicalcrossreactivitybetweencytoplasmicandmitochondrialmammalianlysyltrnasynthetases
AT sidorikll immunochemicalcrossreactivitybetweencytoplasmicandmitochondrialmammalianlysyltrnasynthetases
AT rybkinskata immunochemicalcrossreactivitybetweencytoplasmicandmitochondrialmammalianlysyltrnasynthetases
AT bakhiyang immunochemicalcrossreactivitybetweencytoplasmicandmitochondrialmammalianlysyltrnasynthetases
AT rodninnv immunochemicalcrossreactivitybetweencytoplasmicandmitochondrialmammalianlysyltrnasynthetases
AT filonenkovv immunochemicalcrossreactivitybetweencytoplasmicandmitochondrialmammalianlysyltrnasynthetases
AT entelisns immunochemicalcrossreactivitybetweencytoplasmicandmitochondrialmammalianlysyltrnasynthetases
AT tarassovia immunochemicalcrossreactivitybetweencytoplasmicandmitochondrialmammalianlysyltrnasynthetases
AT martinrp immunochemicalcrossreactivitybetweencytoplasmicandmitochondrialmammalianlysyltrnasynthetases
AT matsukagkh immunochemicalcrossreactivitybetweencytoplasmicandmitochondrialmammalianlysyltrnasynthetases
first_indexed 2025-07-14T04:18:59Z
last_indexed 2025-07-14T04:18:59Z
_version_ 1837594563621945344
fulltext ISSN 0233-7657. Биополимеры и клетка. 2000. Т. 16. № 5 The immunochemical cross-reactivity between cytoplasmic and mitochondrial mammalian lysyl-tRNA synthetases L. L. Sidorik, T. A. Rybkinska, N. G. Bakhiya, N. V- Rodnin, V. V. Filonenko, N. S. Entelis1, I. A. Tarassov1, R. P. Martin1, G. Kh. Matsuka Institute of Molecular Biology and Genetics National Academy of Sciences of Ukraine Acad. Zabolotnoho vul., 150, Kyiv, 03143, Ukraine !UPR 9005, IBMC CNRS Rue Rene Descart, 15, Strasbourg, France Animal and fungal cells (in contrast to prokaryotes) contain two distinct sets of related aminoacyl-tRNA synthetases (aaRSs) encoded by nuclear genes and functioning in cytosol and mitochondria. The structural differences between mitochondrial and cytoplasmic enzymes may reflect the functional adaptation to fulfil mitochondrial processes in addition to protein synthesis. Mitochondrial import of nuclear-encoded tRNAs has been described in yeast, plants and protozoans but it has not been observed in mammalian cells. Its established that mitochondrial lysyl-tRNA synthetase (MSK) plays a prominent role in the transport of tRNA into yeast mitochondria for complementation of mitochondrial tRNAs genes mutations. We tried to identify MSK homologues in mammalian cells with the help of monospecific antibodies against pre-MSK by ELISA and Western-blot analysis. We have identified cross-reactive proteins in mitochondrial and cytoplasmic fractions of mammalian cell lysates. These data, together with the results of cross- aminoacylation on mitochondrial and cytoplasmic tRNAs, suggest the presence of common antigenic determinants in the mitochondrial and cytoplasmic lysyl-tRNA synthetases from higher animals. Introduction. Aminoacyl-tRNA synthetases (aaRSs) (EC 6.1.1) — are a heterogeneous family of enzymes differing in size and subunit s tructure but catalyzing the same reaction of the selective a t tachment of amino acids to their cognate tRNAs. T h e animal and fungal cells (in contrast to prokaryotes) contain two different sets of related aaRSs encoded by nuclear genes, one set localized in the cytosol and functioning in the cytoplasmic protein synthesis while the second lo­ calized in mitochondria and functioning in the or­ ganella translation. In addit ion, plant cells posses the third set of aaRSs involved in the chloroplastic protein synthesis [1 , 2 ] . T h e molecular and catalytic properties of cyto­ plasmic enzymes have been extensively studied over © L. h. SIDORIK, T. A. RYBKINSKA, N. G. BAKHIYA, N. V. RODNIN, V. V. FILONENKO, N. S. ENTELIS, I. A. TARASSOV, R. P. MARTIN, G. Kh. MATSUKA, 2000 the past 20 years . However, the information about mitochondrial aaRSs remained scarce so far. Studies of the organelle-specific synthetases a re important for several reasons . T h e information about sequences of these enzymes contr ibute to bet ter unders tand ing of the evolution of this enzyme family. On the other hand , the structural differences between the mito­ chondrial and cytoplasmic enzymes reflect the func­ tional adaptat ions to fulfil mitochondrial processes in addition to the protein synthesis . For example, in fungi, certain mitochondrial aaRSs a re involved in either the splicing of mitochondrial RNAs [1 , 2 ] , or the import of tRNA from the cytoplasm [3 ]. In the yeast Saccharomyces cerevisiae, the se­ lective import into mitochondria of one of the two cytoplasmic lysine isoacceptors, t R N A L y s C U U , requi­ res the integrity of the mitochondrial pre-protein import machinery as well as soluble cytosolic factors [4] . One of the essential import factors has been identified as the precursor of the mitochondrial lysyl- 363 SIDORIK L L. ET AL. tRNA synthetase (pre-MSK). Fur thermore , it has been shown that pre-MSK can selectively bind to the aminoacylated form of t R N A L y s C U U (and to im­ portable mutant tRNAs) and is, therefore, likely to act as a carrier for t ransport of the tRNA across the mitochondrial membrane [5 ] . T h e mi tochondr ia l import of nuc lear -coded tRNAs appears to be a widely spread process among eukaryotes since it has been described not only in yeast but also in plants and protozoans [6, 7 ] . However, this process is likely not to occur in mammalian cells. Establishing artificial system of tRNA mitochondrial import in human cells could be of high biomedical interest because several human mitochondrial neurodegenerative and muscular dise­ ases (such as MERRF and MELAS syndromes and several cardiomyopathies) are associated with point mutations in mitochondrial tRNA genes [8 ]. Indeed, theoretically such defects should be cured by exp­ ressing functional tRNAs in the nucleus and impor­ ting them from the cytoplasm to mitochondria. Because the mitochondrial lysyl-tRNA synthetase plays a prominent role in the transport of tRNA into yeast mitochondria, we tried to identify MSK homo- logues in mammalian cells with the help of mono­ specific polyclonal antibodies directed against the yeast pre-MSK by ELISA and Western-blot analysis. We have identified cross-reactive proteins in mito­ chondrial and cytoplasmic fractions of mammalian cells lysates possessing an electrophoretic mobility similar to that of yeast pre-MSK. These data , toge­ ther with the results of cross-aminoacylation studies on mitochondrial and cytoplasmic tRNAs, suggest the presence of common antigenic determinants in mito­ chondrial (mt) and cytoplasmic (ct) lysyl-tRNA syn­ thetases (LysRSs) from the mammals and allow us to suppose that mammalian mitochondrial and cyto­ plasmic lysyl-tRNA synthetases could be encoded by the same gene. Materials and Methods. Protein G-Sepharose was from «Sigma-Aldrich» (USA); anti-rabbit IgG labelled by horse-radish peroxidase from «DAKO» (Den­ mark) ; unfractionated yeast cytoplasmic and Escheri­ chia coli tRNAs were from «Boehringer-Mannheim» (Germany); the immunoblotting detection ECL sys­ tem and [ 1 4 C]-Lys from «Amersham» (USA); all other chemicals were from «Мегск» (Germany) , «Sig- ma» (USA) and «Віо-Rad» (USA). The high molecular weight complex of cyto­ plasmic aaRSs was purified from bovine and rabbit liver by the immunoprecipitation method on the affinity column with coupled monoclonal antibodies against rabbit cytoplasmic GluRS accordingly to the described method [9] . Recombinant pre-MSK was obtained using the Pichya pastoris expression system («Invitrogen») and purified on DEAE-cellulose and Mono-Q Sepharose. Isolation of mammalian mitochondria and prepa­ ration of a mitochondrial crude extract Mitochondria from rabbit liver were obtained as described in [10] with some modifications. Rabbit liver was briefly homogenized in buffer A: 25 mM T r i s / H C l , pH 7.5, 2 mM EDTA, 1.5 mM CaCl 2 , 250 mM sucrose. Nuclei and cell debris were removed by two 5 min sequential centrifugation at low speed (1000 x g for 5 min) and mitochondria were collected by high-speed centri­ fugation (10000 xg for 10 min) and washed three times with 250 mM sucrose in Т Е buffer (25 mM T r i s / H C l , pH 7.5, 2 mM EDTA) . T h e mitochondrial fraction in 250 mM sucrose and Т Е was layered on a sucrose step-gradient consisting 50 %, 36 % and 20 % sucrose in buffer В (50 mM T r i s / H C l , pH 7.5, 2 mM EDTA, 1 g/1 bovine serum albumin) and centrifuged at 25000 rpm (1 h, rotor Beckman SW27). Intact mitochondria collected from the 36 % sucrose layer were diluted in 4 volumes 0.5 M sorbitol and centrifuged at 22000 x g for 15 min. To obtain a mitochondrial crude extract, pelleted mitochondria were suspended in buffer С (25 mM potassium phosphate, pH 7.5, 10 mM MgCl 2 , 1 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 10 % glycerol) and disrupted by sonication. Membranous debris were removed by centrifugation at 10000 x g, 50 min. Protein concentration was estimated by the Brad­ ford method [11 ]. Mitochondrial tRNA was purified from bovine liver mitochondria according to the method [12] . Preparation of antibodies against pre-MSK. The partially purified protein (50 jug) was electrophorized in 12 % PAAG-SDS gel [13] and transferred onto a nitrocellulose filter. T h e colored band with apparent molecular weight consistent with that of pre-MSK was cut, dissolved in DMSO and used for immunization. Rabbit was immunized by 30—40 jug of pre-MSK extracted in DMSO with complete Freund ' s adjuvant (1:1, v /v ) . A booster of 30 jug of antigen in incomplete Freund ' s adjuvant was administered twice at 3 weeks intervals. The serum was collected, and immuno­ globulins were precipitated with ammonium sulfate buffer at 50 % of saturat ion, and then purified by three chromatographic steps on DEAE-cellulose, on Protein G-Sepharose (according to the Firm protocol) and on an affinity column with coupled antigen [14] to obtain high-affinity and specific anti-pre-MSK antibodies. The specificity of antibodies fractions obtained at each purification step was controlled by the ELISA 364 method and their purity was estimated by 12 % PAGE-SDS electrophoresis. Western-blot analysis. Lysates (cytoplasmic and mitochondrial) of cells and organs were electro- phorized in 12 % PAAG-SDS gel and transferred onto a nitrocellulose membrane . Washing and blocka­ ge of the membrane was done in TBS-T-M buffer (TBS buffer with 0Л % Tween-20 and 5 % dry milk) during at 1 h at 25 ° С Incubation with antibodies in TBS-T-M was during 2 h at 25 ° С After extensive washing with TBS-T-M, the filters were incubated with anti-rabbit IgG labelled by peroxidase in TBS- T-M during 2 h at 25 ° С After extensive washing with TBS-T, the fluorogene ECL was added to the filters (according to the firm protocol) and after 10 min of incubation filters were autographied on an X-ray film («Kodak») for visualization of the signals. Aminoacylation assay. Lysyl- tRNA synthetase aminoacylation test was performed in 0.1 ml of the mixture containing 100 mM T r i s / H C l , pH 7.5, 30 mM KC1, 10 mM MgCl 2 , 2 mM A T P , 60 / Ш [ 3 H]-Lysine (60—80 Ci /mmol , «Amersham»), with saturating amounts of relevant unfractionated tRNA and limiting amounts of enzyme. A unit of activity corresponds to 1 nmol aminoacyl-tRNA formed at 37 ° С The influence of antibodies on the aminoacy- lating activity of the mitochondrial and cytoplasmic lysyl-tRNA synthetases was detected according to the method [14] . Results and Discussion. A problem of obtaining antibodies of high specificity and affinity is connected with the homogeneity of antigen, the scheme of immunization and the methods of antibodies purifica­ tion. The purification of majority of recombinant antigens is problematic without use of specific affine ligands. In our case the absence of such a ligand for the antigen (pre-MSK), low level of the recombinant protein secretion by producent and disability to purify the antigen to homogeneity put forward a problem of working out an effective method of immunization and following antibodies purification to produce antibodies of high titer and specificity. Our scheme of immunization allowed us to obtain the antisera with titer more than 1:10000. T h e affinity of antibodies increased after each purification stage accompanied by simultaneous nonspecificity decre­ asing. Fig. 1 and Fig. 2 04, B) represent the immunoreactivity of the antibodies after different stages of purification. It is obvious that even after protein G-Sepharose chromatography (Fig. 1) the affinity of antibodies is not enough for the antigen detection in cell and tissue lysates. Only after their purification on the affine column with coupled antigen THE CROSS-REACTIVITY BETWEEN LYSYL-tRNA SYNTHETASES 1 2 3 4 Fig. 1. Immunoreactivity of anti-pre-MSK antibodies after pu­ rification on DEAE-cellulose and Protein G-Sepharose columns, determined by Western-blot analysis: / — yeast pre-MSK; 2 — ctLysRS (high molecular weight complex from bovine liver); 3 — lysate of mitochondria from bovine liver; 4 — post-mitochondrial supernatant (SI00) from bovine liver; The position of protein molecular weight standard indicated by arrows 1 2 3 1 2 Fig. 2. Immunoreactivity of monospecific anti-pre-MSK antibodies (after immune-affine purification) determined by Western-blot ana­ lysis: (Л) 1 — lysate of mitochondria from rabbit liver; 2 — postmitochondrial supernatant (S100) of rabbit liver; 3 — yeast pre-MSK; (В) 1 — lysate of mitochondria from human placenta; 2 — posmitochondrial supernatant (SI00) from human placenta (pre-MSK) the affinity was considered satisfactory (Fig. 2 ) . The studies of antibodies immunoreactivity with cell and tissue lysates have shown that mentioned antibodies recognized the polypeptide band with elec- trophoretic mobility corresponding to that of LysRS subunit in the majority of the lysates investigated 365 SIDORIK L. L. ET AL. kDa 45 67 Fig. 3. Immunoreactivity of monospecific anti-pre-MSK antibodies detected by Wes­ tern-blot analysis in mitochondrial and cyto­ plasmic (SI00) lysates from different cells and mammalian organs: 1 — bovine serum 25 albumin (control of non-specificity); 2 — high molecular weight complex from bovine liver; 3 — mitochondrial lysate from bovine liver; 4 — cytoplasmic lysate (S100) from rabbit liver; 5 — lysate of yeast mitochon­ dria; 6 — cytoplasmic (S100) lysate of ye­ ast; 7 — pre-MSK (Fig. 3) . T h e occurence of several low molecular weight peptides in yeast lysate (Fig. 3 , lane 6) is a result of high level of endogeneous proteolysis in yeast. The study of he antibodies influence on the enzymat ic activity of mammal ian mtLysRS and ctLysRS in the reaction of aminoacylation did not demonstrate any effect on this activity. One could suggest that anti-pre-MSK monospecific antibodies were directed against non-catalytic domains of both enzymes investigated (data not shown). The data of the cross-aminoacylation experi­ ments (Fig. 4) have shown unusual properties of the mammalian mitochondrial LysRS — a high level of aminoacylation of the cytoplasmic tRNA by the mito­ chondrial enzyme comparing with that for the mito­ chondrial tRNAs. We have found that mtLysRS aminoacylated the cytoplasmic tRNAs with the same efficiency as LysRS from cytoplasmic high molecular weight complex (ctLysRS). On the o ther hand , mtLysRS aminoacylated the mitochondrial tRNAs but did not aminoacylate E. coli tRNAs in fact. In contrast yeast mtLysRS is known to aminoacylate E. coli tRNA with the same efficiency as yeast mito­ chondrial tRNA but practically is not able to amino­ acylate the cytoplasmic tRNA from yeast [15] . T h e data published recently about expression and charac­ terization of the human mitochondrial PheRS [16] and LeuRS [17] have shown that these enzymes expressed in functionally active monomelic form are able to aminoacylate E. coli tRNA but less effectively than the yeast cytoplasmic aaRSs. Whether the dis­ tinct properties of mtLysRSs from higher eukaryotes revealed are specific or common features of other mammalian mitochondrial aaRSs — is to be eluci­ dated. Most eukaryotic cells possess at least two com- partmentally distinct sets of aaRSs, one located in the cytoplasm, and the other — in mitochondria (plants have the third set of chloroplast-specific synthetases) . In some instances the same gene can code for both the mitochondrial and cytoplasmic aaRSs [18, 19] . More commonly, however, the functionally equivalent homologues are encoded by different genes. This is the case for the two lysyl- tRNA synthetases (KRS and MSK) of yeast. T h e gene KRS1, described by Mirande and Waller [20] , has been shown to code for the cytoplasmic LysRS. T h e MSK1 gene, reported by Gatti and Tsagoloff [15] , codes for the homologous yeast mitochondrial synthetase . However, concerning the LysRSs from higher eukaryotes , our knowledge is restricted to the information on the cytoplasmic synthetases functioning in the high molecular weight complex. Based on the theory of Wong [21 ] that the genetic code may have evolved «hand- in-hand» with biosynthetic pathways for new amino acids and the hypothesis about mitochondria as prokaryotic endo- symbiont incorporated into ancient eukaryotic cells [22—25], our data on the immunochemical cross- reactivity between the cytoplasmic and mitochondrial mammalian lysyl-tRNA synthetases taken together with those on the cross-aminoacylation (Fig. 4) allow us to suppose that the mitochondrial and cytoplasmic 366 THE CROSS-REACTIVITY BETWEEN LYSYL-tRNA SYNTHETASES Fig. 4. Aminoacylation of tRNA by cytoplasmic LysRS (o) and mitochondrial LysRS (o): The time courses of aminoacylation of cytoplasmic tRNA by LysRS from high molecular weight complex of rabbit liver (/) and LysRS from rabbit mitochondria (2); of mitochondrial tRNA (3) and E. coli tRNA (4) by LysRS from rabbit mitochondria lysyl-tRNA synthetases of mammals could be enco­ ded by the same gene. Our suggestion has been approved by recently published data concerning the unusual alternative splicing of the human lysyl- tRNA synthetase gene which encodes for both the cyto­ plasmic and mitochondrial enzymes [26 ]. Fur ther investigation of the mammalian mito­ chondrial LysRS is important not only for solving many questions in the protein biosynthesis, molecular import into organelles, molecular evolution of aaRSs, but has a practical value as many severe pathologies are connected with mitochondrial disfunctions, espe­ cially with mutations in t R N A L y s gene and defects in the protein importing machine, with a leading role of KRS and preMSK. This work was supported by grant INTAS 96- 1515. Л. Л. Сидорик, T. О. Рибкінська, H. Г. Бахія, M. В. Роднін, В. В. Філоненко, И. С. Ентеліс, І. О. Тарасов, Р. П. Мартан, Г. X. Мацука Перехресна імунореактивність між цитоплазматичними і мітохондріальними лізил-тРНК синтетазами ссавців Резюме Клітини еукаріот на відміну від прокаріот містять дві різні групи аміноацил-тРНК синтетаз, які кодуються ядерним геномом та функціонують в цитозолі і мітохондріях. Струк­ турні відмінності між ферментами мітохондрій і цитоплаз­ ми можуть бути відображенням функціональної адаптації до процесів, які відбуваються в мітохондріях, крім участі в біосинтезі білка. Імпорт цитозольних тРНК у мітохондрії описано для дріжджів, рослин і найпростіиіих, однак він не спостерігався в клітинах ссавців. Виявлено, що мітохон- дріальна лізил-тРНК синтетаза (MSK) відіграє провідну роль у транспорті тРНК у мітохондрії дріжджів для комплемен­ тації мутацій мітохондріальних генів тРНК За допомогою моноспецифічних антитіл проти npe-MSK ми зробили спробу ідентифікувати гомологи MSK у клітинах ссавців методами ELISA і Вестерн-блотинга. В цитоплазматичних і міто­ хондріальних фракціях лізатів клітин ссавців нам вдалося виявити білки, які мають імунологічний перехрест з MSK Разом з результатами перехресного аміноацилювання ці дані дають підставу для припущення щодо наявності спільних антигенних детермінант у мітохондріальних і цитоплазма­ тичних лізил-тРНК синтетаз ссавців. Л. Л. Сидорик, Т. А. Рибкинска, Н. Г. Бахия, Н. В. Роднин, В. В. Филоненко, Н. С. Энтелис, И. А. Тарасов, Р. Л. Мартан, Г. X. Мацука Перекрестная иммунореактивность между цитоплазматическими и митохондриальными лизил-тРНК синтетазами животных Резюме Клетки эукариот (в отличие от клеток прокариот) содержат две различные группы аминоацил-тРНК синтетаз, кодируе­ мых ядерным геномом и функционирующих в ц и то золе и митохондриях. Структурные отличия между ферментами митохондрий и цитоплазмы могут быть отражением функци­ ональной адаптации к процессам, происходящим в митохонд­ риях помимо участия в биосинтезе белка Импорт цитозоль- ных тРНК в митохондрии описан у дрожжей, растений и простейших, однако не наблюдался в клетках млекопитаю­ щих. Установлено, что митохондриальная лизил-тРНК син­ тетаза (MSK) играет ведущую роль в транспорте тРНК в митохондрии дрожжей для комплементации мутаций мито- хондриальных генов тРНК. С помощью моноспецифических антител против npe-MSK мы попытались идентифицировать гомологи MSK в клетках млекопитающих методами ELISA и Вестерн-блотинга. В цитоплазматических и митохондриаль- ных фракциях лизатов клеток млекопитающих нам удалось обнаружить белки, имеющие иммунологический перекрест с MSK В совокупности с результатами перекрестного аминоа- цилирования эти данные дают основание предположить нали­ чие общих антигенных детерминант у митохондриальных и цитоплазматических лизил-тРНК синтетаз высших живо­ тных. REFERENCES 1. Akins R. S., Lambowitz A. M. A Protein required for splicing group I introns in Neurospora mitochondria is mitochondrial 367 SIDORIK L. L. ET AL. tyrosyl-tRNA synthetase or a derivative thereof / / Cell.— 1987.—50, N 1.—P. 331—345. 2. Labouesse J., Herbert C. Dujardin G., Slominski P. P. Three suppressor mutations which cure a mitochondrial RNA maturase deficiency occur at the same codon in the open reading frame of the nuclear NAM2 gene / / EMBO J.— 1987.—6, N 2.—P. 713—721. 3. Entelis N. S., Krasheninnikov I. A , Martin R. P., Tarassov /. A Mitochondrial import of a yeast cytoplasmic tRNALys: possible roles of aminoacylation and modified nucleosides in subcellular partitioning / / FEBS Lett.—1996.—384.—P. 38— 42. 4. Tarassov /., Entelis N, Martin R. P. An Intact protein translocating machinery is required for mitochondrial import of a yeast cytoplasmic tRNA / / J. Мої. Biol.—1995.—245.—P. 315—328. 5. Entelis N. S.t Kieffer S., Kolesnikova O. A , Martin R. P. Tarassov I. A. Structural requiremets of tRNA L y s for its import into yeast mitochondriaad / / Proc. Nat. Acad. Sci. USA.— I998.—95, N 6.—P. 2838—2843. 6. Dietrich A , Weil J. #., Marechal-Drouard L. Nuclear-en­ coded transfer RNAs in plant mitochondria / / Annu. Rev. Cell Biol.—1992.—8.—P. 115—131. 7. Schneider A , Martin J., Agabian N. A nuclear encoded tRNA of Trypanosoma brucei is imported into mitochondria / / Мої. Cell. Biol.—1994.—14.—P. 2317—2322. 8. Luft R. The development of mitochondrial medicine / / Proc. Nat. Acad. Sci. USA.—1994.—91.—P. 8731—8738. 9. Filonenko V. V., Deutcher M. Evidenve for similar structural organization of the multienzyme aminoacyl-tRNA synthetase complex in vivo and in vitro II J. Biol. Chem.—1994.—269.— P. 17375—17378. 10. Ausenda C , Chromyn A. Purification of mitochondrial DNA from human cell cultures and placenta / / Meth. Enzymol.— 1996.—264.—P. 122—128. 11. Bradford M. M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of dye binding / / Anal. Biochem.—1976.—72.—P. 248—254. 12. Brungraber E. A. A simplified procedure for the preparation of ^soluble* RNA from rat liver / / Biochem, Biophys. Res. communs.—1962.—8.—P. 1—3. 13. Laemmli V. K. Cleavage of structural proteins during in the assembly of the bacteriophage T4 / / Nature.—1970.—227, N 5.—P. 680—685. 14. Sidorik L L., Gudzera O. /., Dragovoz V. A , Tukalo M. A , Beresten S. F. Immuno-chemical non-cross-reactivity between eukaryotic and prokaryotic seryl-tRNA synthetases / / FEBS Lett—1991.-292, N 1, 2 . - P . 7 6 - 7 8 . 15. Gatti D. L., Tsagoloff A. Structure and evolution of a group of related aminoacyl-tRNA synthetases / / J. Мої. Biol.—1991.— 218.—P. 557—568. 16. Bullard J. M., Cai У.-С, Demeler B.t Spremulli L. L. Expression and characterization of a human mitochondrial phenylalanyl-tRNA synthetase / / J. Мої. Biol.—1999.— 288.—P. 567—577. 17. Bullard J. M.f Cay Y. C, Spremulli L. L. Expression and characterization of the human mitochondrial leucyl-tRNA syn­ thetase / / Biochim. et biophys. acta.—2000.—1490, N 3.—P. 245—258. 18. Tzagoloff A , Gatti D.t Gampel A Mitochondrial aminoacyl- tRNA synthetases / / Progr. Nucl. Acid Res. Мої. Biol.— 1990.—39.—P. 129—158. 19. Natsoulis G., Higler F.t Fink G. R. The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA syn­ thetases of S. cerevisiae II Cell.—1986.—46.—P. 235—243. 20. Mirande M., Waller J.-P. The yeast lysyl-tRNA synthetase gene / / J. Biol. Chem.—1988.—263.—P. 18433—18451. 21. Wong J. T.-F. Role of minimization of chemical distances between amino acids in the evolution of the genetic code / / Proc. Nat. Acad. Sci. USA.—1980.—77.—P. 1083—1086. 22. Schwartz R. M.t Dayhoff M. 0.y Schwartz R. M., Dayhoff M. Origins of prokaryotes, eukaryotes, mitochondria and chlo- roplasts / / Science.—1978.—199.—P. 395—403. 23. Borst P., Grivell L. A. The mitochondrial genome of yeast / / Cell.—1978.—15.—P. 705—723. 24. Nagel G. M., Doolittle R. F. Evolution and relatedness in two aminoacyl-tRNA synthetase families / / Proc. Nat. Acad. Sci. USA.—1991.—88.—P. 8121—8125. 25. Lipman R. S. A., Hou Y.-M. Aminoacylation of tRNA in the evolution of an aminoacyl-tRNA synthetase / / Proc. Nat. Acad. Sci. USA.—1998.—95.—P. 13495—13500. 26. Tolkunova E.t Park #., Xia J., King M. P., Davidson E. The human lysyl-tRNA synthetase gene encodes both the cytoplas­ mic and mitochondrial enzymes by means of an unusual alternative splicing of the primary transcript / / J. Biol. Chem.—2000, August 21 (preprint). УДК 577.1 Received 10.06.99 368