Analysis of mutations in GBA gene in Ukrainian patients with Gaucher disease

Gaucher disease (MIM 230800) is the most common storage disorder, caused by hereditary deficiency of the lysosomal enzyme of glucocerebrosidase (EC 3.2.1.45). Human glucocerebrosidase gene (GBA) is mapped to the 1q21 locus, it is 7.5 kb long and consists of 11 exons. According to human gene mutation...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Olkhovych, N.V., Nedoboy, A.M., Pichkur, N.O., Gorovenko, N.H.
Формат: Стаття
Мова:English
Опубліковано: Інститут молекулярної біології і генетики НАН України 2017
Назва видання:Вiopolymers and Cell
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152889
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Analysis of mutations in GBA gene in Ukrainian patients with Gaucher disease / N.V. Olkhovych, A.M. Nedoboy, N.O. Pichkur, N.H. Gorovenko // Вiopolymers and Cell. — 2017. — Т. 33, № 1. — С. 34-47. — Бібліогр.: 26 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152889
record_format dspace
spelling irk-123456789-1528892019-06-14T01:27:57Z Analysis of mutations in GBA gene in Ukrainian patients with Gaucher disease Olkhovych, N.V. Nedoboy, A.M. Pichkur, N.O. Gorovenko, N.H. Biomedicine Gaucher disease (MIM 230800) is the most common storage disorder, caused by hereditary deficiency of the lysosomal enzyme of glucocerebrosidase (EC 3.2.1.45). Human glucocerebrosidase gene (GBA) is mapped to the 1q21 locus, it is 7.5 kb long and consists of 11 exons. According to human gene mutation databases, there are over 300 currently described pathogenic GBA variants, most of them are related to the development of Gaucher disease. Aim. To identify rearrangements in the GBA gene which conditioned the development of Gaucher disease in Ukrainian patients, to compare their spectrum with the variants in patients from Slavonic and other European countries and to evaluate genotype-phenotype associations for this disease. Methods. The Sanger’s method of direct automated sequencing using ABI 3130 analyzer (Applied Biosystems). Results. We identified 96.8 % of mutant alleles in Ukrainian patients with Gaucher disease. Six new and previously not described rearrangements of the GBA gene were identified. Conclusion. The comparison of genotypes with the linical form of the disease demonstrated that our results agree with the currently recognized genotype-phenotype correlations, which allow predicting the type and clinical course of the Gaucher disease to some degree. Хвороба Гоше (MIM 230800) є найбільш поширеним захворюванням накопичення, яке спричинене спадковим дефіцитом лізосомного ферменту глюкоцереброзідази (EC 3.2.1.45). Ген глюкоцереброзідази (GBA) картований в локусі 1q21, його довжина 7,5 тис. п. н. і складається з 11 екзонів. За даними найбільших баз даних мутацій генів людини, існує більше 300 описаних в даний час патогенних варіантів гена GBA, більшість з них пов’язані з розвитком хвороби Гоше. Мета. Виявлення перебудов в гені GBA, які зумовили розвиток хвороби Гоше у хворих в Україні, порівняння їх частоти і спектру з варіантами у пацієнтів з інших європейських країн, а також оцінка генотип-фенотип асоціації для цього захворювання. Методи. Метод прямого автоматичного сиквенування за Сенгером на аналізаторі ABI 3130 (Applied Biosystems). Результати. Застосування різних молекулярних і генетичних підходів, включаючи пряме секвенування послідовності гена, дозволило нам ідентифікувати 96,8% мутантних алелів у українських пацієнтів з хворобою Гоше. Також були виявлені шість нових раніше не описаних перебудов послідовності гена GBA. Висновки. Порівняння виявлених у пацієнтів генотипів з клінічною формою захворювання показали, що отримані результати не суперечать сучасним визнаним генотип-фенотип кореляціям, які дозволяють певною мірою прогнозувати тип і клінічний перебіг хвороби Гоше. Болезнь Гоше (MIM 230800) является наиболее распространенным заболеванием накопления, которое вызвано наследственным дефицитом лизосомного фермента глюкоцереброзидазы (EC 3.2.1.45). Ген глюкоцереброзидазы (GBA) картирован в локусе 1q21, его длина 7,5 тыс. п. н. и состоит из 11 экзонов. По данным крупнейших баз данных мутаций генов человека, существует более 300 описанных в настоящее время патогенных вариантов гена GBA, большинство из них связаны с развитием болезни Гоше. Цель. Выявление перестроек в гене GBA, которые обусловили развитие болезни Гоше у больных в Украине, сравнение их частоты и спектра с вариантами у пациентов из других европейских стран, а также оценки генотип-фенотип ассоциации для этого заболевания. Методы. Метод прямого автоматического секвенирования по Сенгеру на анализаторе ABI 3130 (Applied Biosystems). Результаты. Применение различных молекулярных и генетических подходов, включая прямое секвенирование последовательности гена, позволило нам идентифицировать 96,8% мутантных аллелей у украинских пациентов с болезнью Гоше. Также были обнаружены шесть новых ранее не описанных перестроек последовательности гена GBA. Выводы. Сравнение выявленных у пациентов генотипов с клинической формой заболевания показали, что полученные результаты не противоречат современным признанным генотип-фенотипическим корреляциям, позволяющим в определенной степени прогнозировать тип и клиническое течение болезни Гоше. 2017 Article Analysis of mutations in GBA gene in Ukrainian patients with Gaucher disease / N.V. Olkhovych, A.M. Nedoboy, N.O. Pichkur, N.H. Gorovenko // Вiopolymers and Cell. — 2017. — Т. 33, № 1. — С. 34-47. — Бібліогр.: 26 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.000940 http://dspace.nbuv.gov.ua/handle/123456789/152889 616-056.7-07 en Вiopolymers and Cell Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Biomedicine
Biomedicine
spellingShingle Biomedicine
Biomedicine
Olkhovych, N.V.
Nedoboy, A.M.
Pichkur, N.O.
Gorovenko, N.H.
Analysis of mutations in GBA gene in Ukrainian patients with Gaucher disease
Вiopolymers and Cell
description Gaucher disease (MIM 230800) is the most common storage disorder, caused by hereditary deficiency of the lysosomal enzyme of glucocerebrosidase (EC 3.2.1.45). Human glucocerebrosidase gene (GBA) is mapped to the 1q21 locus, it is 7.5 kb long and consists of 11 exons. According to human gene mutation databases, there are over 300 currently described pathogenic GBA variants, most of them are related to the development of Gaucher disease. Aim. To identify rearrangements in the GBA gene which conditioned the development of Gaucher disease in Ukrainian patients, to compare their spectrum with the variants in patients from Slavonic and other European countries and to evaluate genotype-phenotype associations for this disease. Methods. The Sanger’s method of direct automated sequencing using ABI 3130 analyzer (Applied Biosystems). Results. We identified 96.8 % of mutant alleles in Ukrainian patients with Gaucher disease. Six new and previously not described rearrangements of the GBA gene were identified. Conclusion. The comparison of genotypes with the linical form of the disease demonstrated that our results agree with the currently recognized genotype-phenotype correlations, which allow predicting the type and clinical course of the Gaucher disease to some degree.
format Article
author Olkhovych, N.V.
Nedoboy, A.M.
Pichkur, N.O.
Gorovenko, N.H.
author_facet Olkhovych, N.V.
Nedoboy, A.M.
Pichkur, N.O.
Gorovenko, N.H.
author_sort Olkhovych, N.V.
title Analysis of mutations in GBA gene in Ukrainian patients with Gaucher disease
title_short Analysis of mutations in GBA gene in Ukrainian patients with Gaucher disease
title_full Analysis of mutations in GBA gene in Ukrainian patients with Gaucher disease
title_fullStr Analysis of mutations in GBA gene in Ukrainian patients with Gaucher disease
title_full_unstemmed Analysis of mutations in GBA gene in Ukrainian patients with Gaucher disease
title_sort analysis of mutations in gba gene in ukrainian patients with gaucher disease
publisher Інститут молекулярної біології і генетики НАН України
publishDate 2017
topic_facet Biomedicine
url http://dspace.nbuv.gov.ua/handle/123456789/152889
citation_txt Analysis of mutations in GBA gene in Ukrainian patients with Gaucher disease / N.V. Olkhovych, A.M. Nedoboy, N.O. Pichkur, N.H. Gorovenko // Вiopolymers and Cell. — 2017. — Т. 33, № 1. — С. 34-47. — Бібліогр.: 26 назв. — англ.
series Вiopolymers and Cell
work_keys_str_mv AT olkhovychnv analysisofmutationsingbageneinukrainianpatientswithgaucherdisease
AT nedoboyam analysisofmutationsingbageneinukrainianpatientswithgaucherdisease
AT pichkurno analysisofmutationsingbageneinukrainianpatientswithgaucherdisease
AT gorovenkonh analysisofmutationsingbageneinukrainianpatientswithgaucherdisease
first_indexed 2025-07-14T04:21:30Z
last_indexed 2025-07-14T04:21:30Z
_version_ 1837594723126083584
fulltext 34 N. V. Olkhovych, A. M. Nedoboy, N. O. Pichkur © 2017 N. V. Olkhovych et al.; Published by the Institute of Molecular Biology and Genetics, NAS of Ukraine on behalf of Bio- polymers and Cell. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited UDC 616-056.7-07 Analysis of mutations in GBA gene in Ukrainian patients with Gaucher disease N. V. Olkhovych1, A. M. Nedoboy2, N. O. Pichkur2, N. H. Gorovenko1 1 State Institute of Genetic and Regenerative Medicine, NAMS of Ukraine 67, Vyshhorodska Str., Kyiv, Ukraine, 04114 2 National Children's Specialized Hospital Okhmatdyt, Ministry of Health of Ukraine 28/1, Chornovola Str., Kyiv, Ukraine, 01135 nolhovich@gmail.com Gaucher disease (MIM 230800) is the most common storage disorder, caused by hereditary deficiency of the lysosomal enzyme of glucocerebrosidase (EC 3.2.1.45). Human glucocerebro- sidase gene (GBA) is mapped in locus lq21, it is 7.5 kb long and consists of 11 exons. According to the data of the largest human gene mutation databases, there are over 300 currently described pathogenic variants of GBA gene, most of them are related to the development of Gaucher disease. Aim. To identify rearrangements in the GBA gene which conditioned the development of Gaucher disease in Ukrainian patients, to compare their spectrum with the variants in patients from Slavonic and other European countries and to evaluate genotype-phenotype associations for this disease. Methods. The Sanger’s method of direct automated sequencing using ABI 3130 analyzer (Applied Biosystems). Results. The application of different molecular and genetic approaches, including direct sequencing of gene sequence, allowed us to identify 96.8 % of mutant alleles in Ukrainian patients with Gaucher disease. Also six new and previously not described rearrangements of the GBA gene sequence were identified. Conclusion. The com- parison of genotypes with clinical form of the disease, identified in patients, demonstrated that our results do not contradict the current recognized genotype-phenotype correlations, which allow predicting the type and clinical course of the Gaucher disease to some degree. K e y w o r d s: Gaucher disease, GBA gene. Introduction Gaucher disease (MIM 230800) is the most common storage disorder, caused by hereditary deficiency of the lysosomal enzyme of gluco- cerebrosidase (EC 3.2.1.45) [1]. In clinical terms, Gaucher disease is divided into three types depending on the presence and rate of neurological manifestation progress [2]. Type I Gaucher disease (non-neuronopathic) is the most common form, characterized by the ab- sence of neurological symptoms. The main Biomedicine ISSN 1993-6842 (on-line); ISSN 0233-7657 (print) Biopolymers and Cell. 2017. Vol. 33. N 1. P 34–47 doi: http://dx.doi.org/10.7124/bc.000940 35 Analysis of mutations in GBA gene in Ukrainian patients with Gaucher disease clinical features of this type of disorder are hepatosplenomegaly, pancytopenia and bone system abnormalities in rather a wide spectrum of severity – from asymptomatic cases to ear- ly and short manifestation with fatal outcome during the first years of life. Type II Gaucher disease (acute neuronopathic) is the rarest form, the main symptom of which, in addition to organomegaly, is early and rapid develop- ment of severe neurological damage, fatality in utero or during infancy. Type III Gaucher disease (chronic neuronopathic) is a transient form which covers all patients with organo- megaly and any neurological signs, manifes ted after the second year of life. The human glucocerebrosidase gene (GBA) is mapped in locus lq21, it is 7.5 kb long and consists of 11 exons. The pseudogene GBAP, remarkable for almost 96 % homology to the functional gene, is located 16 kb downstream [3]. The region, surrounding the GBA gene, contains seven other genes and pseudogenes (MTX1, MTX1P1, THBS3, MUC1, PROPIN1, COTE1, CLK2), which may be involved in the process of forming different fusion or recombinant vari- ants with the GBA gene during the crossing-over of this chromosome region [4]. According to the data of the largest human gene mutation databases (dbSNP, 1000 Genomes, HGMD), there are over 300 cur- rently described pathogenic variants of the GBA gene, most of them are related to the development of Gaucher disease. As for other pathological variants, there are some large described insertions/deletions, including the deletion of the whole gene [5], as well as a considerable number of complex alleles (rec- alleles), which were formed due to the cross- ing-over between the functional gene GBA and surrounding genetic structures, most frequent- ly the pseudogene GBAP. Similar to most hereditary human diseases, Gaucher disease is remarkable for considerable variability of the frequencies of pathological variants of the gene in different populations. For instance, the population of Ashkenazi Jews is notable for a very high frequency of several variants – p.N409S, p.L483P, c.84dupG, IVS2(+1)A, RecNciI and RecTL, which to- gether comprise about 90 % of all mutant al- leles, with a single replacement p.N409S re- markable for over 70 % mutant alleles [6]. At the same time, these pathological variants in non-Jewish patients account for the total of no more than 60 % of mutant alleles, and the fre- quency of replacement p.N409S is in the range of 10–50 % depending on the population [5]. There have been studies of the spectrum of pathological variants of the GBA gene in patients, suffering from Gaucher disease, in many European countries [7–15]. This information is of great relevance for understanding the origin and distribution of the pathological variants of this disease as well as for the evaluation of geno- type-phenotype correlations among patients. The aim of our work was to identify patho- logical variants in the GBA gene which caused the development of Gaucher disease in Ukrainian patients, to compare their spectrum with the variants in the patients from Slavonic and other European countries and to evaluate the geno- type-phenotype associations for this disease. Materials and Methods Patients The genotype was analyzed in 63 patients of age from 6 months to 65 years from different 36 N. V. Olkhovych, A. M. Nedoboy, N. O. Pichkur et al. regions of Ukraine, who were diagnosed with Gaucher disease during the period from 2001 to 2016, based on the complex of clinical (anemia, thrombocytopenia, hepatospleno- megaly), morphological (Gaucher-like cells in the bone marrow biopsy sample) and bio- chemical (glucocerebrosidase activity defi- ciency in blood leukocytes) data. As the Center of Orphan Diseases of NCSH OKHMATDYT of the Ministry of Health of Ukraine is the only institution in Ukraine to conduct biochemical and molecular-genetic testing of Gaucher patients, the group of pa- tients, examined by us, may be deemed as the representative group of Ukrainian population. The control group to analyze the pathogenic- ity of new mutations was formed from the blood samples of 50 vo lun teer donors aged from 18 to 60 years without any clinical signs of lysosomal pathology. All patients (patients’ parents) and volunteer donors gave their in- formed consent to the use of their biomate- rial for the study. The work has been ap- proved by the Ethics Committee of SI IGRM NAMS of Ukraine. Screening of major mutations Genomic DNA was isolated from peripheral blood samples, obtained from EDTA, using commercial sets NucleoSpin®Blood (Ma- cherey-Nagel, Germany) according to the manufacturer’s instructions. Missense re- placements p.N409S and p.L483P were de- termined by the method of nested PCR and subsequent RFLP-analysis as described pre- viously [16]. The identification of the men- tioned mutations was conducted using re- striction endonucleases Xho1 and Msp1 (MBI Fermentas). Sequencing of GBA gene Due to the availability of highly homologous pseudogene GBAP, the exon amplification of the GBA gene was conducted using the tech- nology of nested PCR, the first stage of which involved the primers, specific for the se- quence of the functional gene (GenBank Accession No. AH006907.2). The sequence of primers, which were used for each stage of nested PCR, is presented in Table 1. The design of primers was independently elabo- rated using Primer3 software, web-version 4.0.0 (http://bioinfo.ut.ee/primer3/), the syn- thesis of primers was ordered in Apply Biosystems (USA). The first stage of nested PCR envisaged obtaining PCR products of 1–4 exons using primers 1F and 4R (product 1873 bp), 4–8 exons using primers 4F and 8R (product 3777 bp) and 8–11 exons using primers 8F and 11BR (product 2267 bp). At the second stage of nested PCR the fragments of the coding part of the GBA gene exons were obtained along with 5’- and 3’-non-translating regions and intron/exon boundary, using exon-specific primers (Table 1). The purification of PCR products was conducted using the commercial kits NucleoSpin® Gel and PCR Clean-up (Macherey-Nagel, Germany) according to the manufacturer’s instructions. The identification of sequence variants of the GBA gene was conducted by the method of Sanger’s direct automatic sequencing using ABI Prism 3130 (Applied Biosystems, USA) and BigDye Terminator sequencing kit (Applied Biosystems, USA) according to the manufacturer’s protocol. All the identified re- arrangements were confirmed by sequencing using both forward- and reverse-primers. The http://bioinfo.ut.ee/primer3/ 37 Analysis of mutations in GBA gene in Ukrainian patients with Gaucher disease analysis of sequencing results was made using programs Chromas and BLAST (http://www. ncbi.nlm.nih.gov/blast). The electronic data- bases of known pathogenic variants – dbSNP, 1000 Genomes, HGMD – were used to char- acterize the identified rearrangements. The analysis of pathogenicity of new variants was made using programs PolyPhen2 (http://genet- ics.bwh.harvard.edu/pph2), SNPs3D (http:// www.snps3d.org) and Provean (http://provean. jcvi.org/index.php). The description of rear- rangements in the GBA gene was based on the nomenclature, recommended by the Human Genome Variation Society (HGVS ver- sion 15.11, 2016), with the consideration of the first 39 amino acids of preprotein [17, 18]. To facilitate the comparison of the obtained results against the previous publications, the first mention of the rearrangement was made with the indication of the traditional name in brackets, without the consideration of 39 ami- no acids of preprotein. Results Our examination involved 63 patients from 63 families with confirmed diagnosis of Gaucher disease from all the regions of Ukraine, includ- ing 57 patients, clinically classified as type I Gaucher disease (type I GD), 2 patients with type II Gaucher disease (type II GD), and 4 patients with type III Gaucher disease (type III GD). The severity degree of the clin- ical course was determined according to the severity index (SSI), suggested by Zimran et al. [19]. Table 2 presents the summarized clinical and molecular-genetic characteristics of the patients, examined by us. Three families had two sick siblings each, but only one sibling from each family was used in calculations of allele frequencies. A total of 124 out of 126 (98.4 %) mutant alleles of the GBA gene were identified. If two previously described rearrangements were identified in a patient, it was assumed that they were in trans-position, which was confirmed by the analysis of parents, if available. The biological material of parents was unavailable Table 1. The design of primers for the GBA gene analysis Ex on Type of primer The sequence of primer (5’-3’) Tm, °C The product size, bp 1 F аacagatgagaggaagccaat* 57.9 509 R tctgtgccttgctcaaagag 59.3 2 F gtgggccttgtcctaatgaa 60.3 372 R aacaaaatcctcaccccaaa 62.9 3 F ctcggcctcctaaagtgcta 59.6 552 R gtagcaggcctgaggacatc 59.8 4 F taaccattacacccctcacc* 57.2 507 R caccactgcactcctgtctc* 59.4 5 F aacccaggagcccaagttc 61.4 494 R gttcagccattagcctccac 69.7 6 F gacattttgtcccctgctgt 60.0 533 R ctgatggagtgggcaagatt 60.0 7 F aggctgttctcgaactcctg* 59.6 598 R aggggaatggtgctctagga 61.0 8 F aaaaatctccccaaacctctc* 58.6 585 R atcatggttccccagagttg 59.8 9 F cccacatgtgacccttacct 59.7 354 R gttccaccctgaacaccttc 59.4 10 F agcctctgcaggagttatgg 59.5 477 R agagtgtgatcctgccaagg 60.3 11a F gctctgctgttgtggtcgt 60.0 498 R gtttccaaagcaagcagcac 61.0 11b F tgactaaagagggcacagca 59.6 592 R gtcctcacgctcccaagact 61.8 * Primers specific to the sequence of the functional GBA gene http://www.ncbi.nlm.nih.gov/blast http://www.ncbi.nlm.nih.gov/blast http://genetics.bwh.harvard.edu/pph2/ http://genetics.bwh.harvard.edu/pph2/ http://www.snps3d.org/ http://www.snps3d.org/ http://provean.jcvi.org/index.php http://provean.jcvi.org/index.php 38 N. V. Olkhovych, A. M. Nedoboy, N. O. Pichkur et al. N D is ea se ty pe A ge o f m an ife st at io n, ye ar s Genotype SS I sc or e 1 allele 2 allele 1 I 3 N409S RecNciI 7 2 I 3 del55 L483P+RecG 6 3 I 9 N409S N409S 6 4 I 55 N409S R159W 6 5 I 1 S390I L483P 7 6 I 3 N409S N409S 6 7 I 3 N409S RecC 2 8 8 I 3 ? Rec G 7 9 I 10 N409S L483P 7 10 I 4 R87W RecC 2 7 11 I 3 R202* L483P+RecG 6 12 I 18 N409S N409S 6 13 I 0,5 L483P RecNciI 8 14 I 19 N409S c1324_1326delATT 6 15 I 45 N409S N409S 4 16 I 5 R502C L483P 11 17 I 3 ? Rec G 8 18 I 6 N409S L483P+RecG 6 19 I 7 R87W c901delC 4 20 I 3 N409S W223R 9 21 I 40 F167L Q453R 7 22 I 15 N409S R159W 8 23 I 1 I200S L483P 5 24 I 5 N409S R202* 6 25 I 3 N409S L327P 7 26 I 20 N409S P430A 8 27 I 2 N409S L483P 7 28 I 0,5 R202* G241R 8 29 I 25 N409S L483P 6 30 I 16 N409S RecC 2 6 31 II 0,5 84GG P430A 26 32 I 12 N409S R535C 7 N D is ea se ty pe A ge o f m an ife st at io n, ye ar s Genotype SS I sc or e 1 allele 2 allele 33 I 21 N409S R159W 5 34 I 15 N409S L483P 11 35 I 20 N409S L483P 7 36 I 3 G416S G416S 6 37 I 5 N409S L483P 6 38 I 2 N409S RecC 2 5 39 I 6 N409S L483P 6 40 I 15 N409S R159W 5 41 I 10 N409S L483P 7 42 I 3 N409S P217S 8 43 I 15 N409S N131I 6 44 I 3 N409S L483P 5 45 I 45 N409S L483P 5 46 I 5 N409S RecNciI 8 47 I 5 N409S RecNciI 6 48 I 15 N409S RecC 6 49 III 5 R159W+ G241R D448H 26 50 III 1 G416S c999G-A 37 51 I 0,5 V414L RecC 13 52 I 6 N409S L483P 6 53 I 6 N409S L483P 13 54 III 3 N277S Y244* 25 55 I 12 N409S A423D 8 56 I 42 L483P RecC 2 4 57 III 0,5 G416S c203dupC 26 58 I 5 N409S N409S 6 59 I 5 N409S R159W 6 60 I 4 N409S R202* 6 61 II 0,5 G241R A423D 26 62 I 5 G416S G416S 8 63 I 4 N409S L483P 7 Table 2. The genotype and phenotype of Gaucher patients from Ukraine 39 Analysis of mutations in GBA gene in Ukrainian patients with Gaucher disease for patients No. 4, 15, 21, 45 and 56. New variants were identified while obtaining the identical results of sequencing two indepen- dent PCR products and confirmed by the anal- ysis of parents. In total, 32 different pathogenic variants of the GBA gene were identified. As expected, the most common variant was a single nucle- otide replacement in exon 9 p.N409S (N370S) – it was found in 45 out of 124 al- leles, which amounted to 36.3 %. Five patients had this replacement in homozygous state, and 35 – in heterozygous state. The second most frequent pathogenic vari- ant of the GBA gene was the missense replace- ment in exon 10 p.L483P (L444P), it was identified as an individual mutation in 18 al- leles out of 124, which amounted to 14.5 %. This replacement was not identified in homo- zygous state in any case. Three other patients had the p.L483P replacement as part of the most common recombinant allele RecNciI, which is the result of the conversion of a frag- ment of exon 10 of the functional gene and a pseudogene, and which, in addition to replace- ment p.L483p, also carries two replacements p.A495P (A456P) and p.V499V (V460V) in cis-position, remarkable for the pseudogene sequence. Additionally, it was established that three patients had replacement p.L483P in cis- position with single nucleotide replacements c.*92G>A and c.*102T>C, localized in 3’-non- translating region (3’UTR) of the GBA gene. These replacements were also notable for the sequence of pseudogene GBAP, thus, there is high probability of these patients to have the recombination between a gene and a pseudo- gene in the site of intron 10 – 3’UTR, de- scribed as RecG allele [5]. The third most frequent variant (6 out of 124 alleles, 4.8 %) was found to be a missense replacement in exon 5 p.R159W (R120W), which was identified in six patients: in five – in the compound with p.N409S, and in one pa- tient with type III GD in the compound with a missense replacement in exon 6 p.G241R (G202R). The same number of alleles (6 out of 124, 4.8 %) had a missense replacement in exon 9 p.G416S (G377S), which was identified in four patients: two had it in a homozygous state and two – in the compound with another single nucleotide rearrangement. Additionally, our studies identified previ- ously described missense replacement p.G241R (G202R) – in three alleles (2.4 %), missense replacements p.R87W (R48W) and p.A423D (A384D) – in two alleles each (1.6 % each), missense replacements p.I200S (I161S), p.P217S (P178S), p.N227S (N188S), p.W223R (W184R), p.L327P (L288P), p.Q453R (Q414R), p.D448H (D409H), p.V414L (V375L), p.R502C (R463C) and p.R535C (R496C) – in one allele each (0.8 % each). It was established that four alleles (3.2 %) had a nonsense replacement in exon 6 p.R202* (R163*) in a heterozygous state. Other single nucleotide rearrangements, identi- fied in single cases, were the duplications of c.84dupG and c.203dupC, as well as a three- nucleotide deletion without any shift in the read- ing frame c.1324_1326delATT and deletion c.1265_1319del55 in exon 9. It was observed that there was rather a high prevalence of recombinant alleles among our examined patients with the involvement of the functional gene GBA and pseudogene GBAP. For instance, in addition to the abovementioned seven patients with alleles RecNciI and RecG, five patients with a complex of six replace- 40 N. V. Olkhovych, A. M. Nedoboy, N. O. Pichkur et al. ments of pseudogene origin in cis-position in exon 6 (p.W223R, p.N227R, p.V230G, p.S235P, p.G241R, p.F252I) were identified, which may correspond to the described recom- binant allele RecC with the conversion of a site between intron 5 and exon 7 (g.4179_5042con) [5]. It was found that two more patients had cis-position of the abovementioned six replace- ments of pseudogene origin in exon 6 and re- placements p.R159W in exon 5. This combina- tion may correspond to the described recombi- nant allele RecC5a with the conversion of a site between intron 4 and exon 6 (g.3941_4430con) [5]. Furthermore, two pa- tients had the single nucleotide replacements c.*92G>A and c.*102T>C, localized in 3’-non- translating region (3’UTR) of the GBA gene. These replacements were also notable for the sequence of pseudogene GBAP, thus, there is high probability of these patients to have the recombination between a gene and a pseudo- gene in the site of intron 11 – 3’UTR [5]. Therefore, the total frequency of recombinant alleles was 12.9 %. Notably, the final confirma- tion of the availability and localizations of recombinant alleles requires additional studies. Six pathogenic rearrangements, which have not been previously described, are identified in the GBA gene – four missense replacements: p.N131I in exon 4, p.F167L in exon 5, p.S390I in exon 8 and p.P430A in exon 9; a nonsense replacement p.Y244* in exon 6 and a single nucleotide deletion c.901delC in exon 7. The pathogenicity of the identified rearrangements was confirmed in silico using programs PolyPhen2, SNPs3D and Provean (Table 3). None of the mentioned rearrangements was found in the database of 1000 Genomes or in 50 samples of donor blood, examined by us. The paternal analysis demonstrated that re- placements p.S390I and p.Y244* were inher- ited by probands from fathers, whereas rear- rangements p.N131I and c.901delC were in- herited by probands from mothers. The pater- nal analysis of rearrangements p.F167L and p.P430A was not conducted due to the unavail- ability of the parental biological material of the probands. Unfortunately, genotypes of two patients (patients 8 and 17) are yet to be determined completely. It was identified that patient 8 had a previously non-described missense replace- ment p.P94S in exon 3 of the GBA gene, which was evaluated as a polymorphic variant during the pathogenicity check (Table 4). However, we have no possibility to detect the second pathogenic alleles in these patients due to a lack of material. Table 3. The analysis of pathogenicity of new mutations in the GBA gene Rearrangements Score Conclusion protein cDNA PolyPhen21 SNPs3D2 Provean3 p.P94S c.402C>T 0.001 1.86 -0.555 benign p.N131I c.514A>T 1.000 -1.07 -7.134 deleterious p.F167L c.621T>C 0.990 -2.36 -5.350 deleterious p.S390I c.1291G>T 0.997 0.21 -2.800 deleterious p.P430A c.1410C>G 1.000 -2.82 -7.516 deleterious 1 ΔPSIC ≤ 0,5 – benign; 2 SVM score > 0,5 – benign; 3 Provean score > -2,5 – benign. 41 Analysis of mutations in GBA gene in Ukrainian patients with Gaucher disease Discussion Our examination of 63 independent Ukrainian patients suffering from Gaucher disease identified a total of 32 pathogenic rear- rangements: 22 one nucleotide substitutions, 2 of which were nonsense replacements, 2 du- plications, 3 deletions, 1 splicing mutation and 4 recombinant rearrangements. Replacement p.N409S is known to belong to so called “mild” variants of the gene and is almost not found in patients with neurological disorders [5]. In the group of Ukrainian pa- tients replacement p.N409S was also found only in patients with type I GD – 41 of them carried this replacement in at least one allele, which amounted to 71.9 % of all the patients with type I GD (Table 4). Moreover, the data, obtained by us, confirm the conclusions of other researchers on the mitigating impact of replacement p.N409S [6]. For instance, the availability of this replacement in patients 24 and 60, regardless of the availability of zero- mutation p.R202* in another allele, condi- tioned type I (non-neuronopathic) clinical course of medium severity (Table 2). Three patients, who had the identified recombinant alleles in the compound with replacement p. N409S which impairs the structure and func- D is ea se ty pe Genotype Number of genotypes/ total number of investigated patients (frequences) I p.N409S/p.N409S 5/63 (7.9 %) p.N409S/p.L483P 13/63 (20.6 %) p.N409S/p.R159W 5/63 (7.9 %) p.N409S/RecNciI 3/63(4.8 %) p.N409S/RecC5a 3/63 (4.8 %) p.N409S/p.R202* 2/63 (3.2 %) p.N409S/p.A423D 1/63 (1.6 %) p.N409S/c.1324_1326delATT 1/63 (1.6 %) p.N409S/p.L327P 1/63 (1.6 %) p.N409S/p.N131I 1/63 (1.6 %) p.N409S/p.P217S 1/63 (1.6 %) p.N409S/p.W223R 1/63 (1.6 %) p.N409S/p.P430A 1/63 (1.6 %) p.N409S/p.R535C 1/63 (1.6 %) p.N409S/RecC 1/63 (1.6 %) p.N409S/p.L483P+RecG 1/63 (1.6 %) p.L483P/p.I200S 1/63 (1.6 %) p.L483P/RecC5a 1/63 (1.6 %) D is ea se ty pe Genotype Number of genotypes/ total number of investigated patients (frequences) I p.L483P/p.R502C 1/63 (1.6 %) p.L483P/p.S390I 1/63 (1.6 %) del55/p.L483P+RecG 1/63 (1.6 %) p.F167L/p.Q453R 1/63 (1.6 %) p.G416S/p.G416S 2/63 (3.2 %) p.R202*/p.L483P+RecG 1/63 (1.6 %) p.R202*/p.G241R 1/63 (1.6 %) p.R87W/RecC5а 1/63 (1.6 %) p.R87W/c.901delC 1/63 (1.6 %) p.V414L/RecC 1/63 (1.6 %) p.L483P/RecNciI 1/63 (1.6 %) RecG/? 2/63 (3.2 %) II c.84dupG/p.P430A 1/63 (1.6 %) p.G241R/p.A423D 1/63 (1.6 %) III p.D448H/[p.R159W+p.G241R] 1/63 (1.6 %) p.G416S/c.999G-A 1/63 (1.6 %) p.N227S/p.Y244* 1/63 (1.6 %) p.G416S/c203dupC 1/63 (1.6 %) Table 4. The genotype frequencies in Gaucher patients from Ukraine 42 N. V. Olkhovych, A. M. Nedoboy, N. O. Pichkur et al. tion of the GBA gene considerably, underwent also a protective impact of the mentioned re- placement, which conditioned the development of type I (non-neuronopathic) Gaucher disease. Similar to most populations, replacement p.L483P was ranked the second most frequent among our patients – 14.5 % (18/124) alleles contained this replacement as an individual mutation, and 5.6 % more (7/124) – as a con- stituent of recombinant alleles of distal regions of the GBA gene. Traditionally, the replacement p.L483P is classified as “severe”, it is often associated with the availability of neurological disorders in patients, especially in homozygous state [5]. No homozygote p.L483P/p.L483P was identified in the Ukrainian patients. 17 out of 18 carriers of replacement p.L483P, as an individual mutation, had type I (non-neurono- pathic) Gaucher disease i.e. they had no neu- rological disorders. The severity of this replace- ment in 13 of them was mitigated by replace- ment p.N409S in the second allele, in two – by the presence of missense replacements p.I200S and p.R502C, also remarkable just for non- neuronopathic type of the disease [5]. One patient had replacement p.L483P, identified in the compound with RecC5a allele which was described predominantly for patients with type I Gaucher disease [5, 15]. Two homozygous carriers of replacement p.G416S were identified among the examined patients, both had type I (non-neuronopathic) Gaucher disease, which is in agreement with the data of other authors about “mild” nature of this replacement [20]. In two more patients, this variant was identified in the compound with another single nucleotide rearrangement – one had cytosine duplication in exon 3 of the gene (c.203dupC) which conditions the shift in the reading frame, and another had the re- placement of guanine for adenine in the last triplet of exon 7, which does not result in the amino acid replacement, but impairs the splic- ing site. Therefore, both rearrangements are “severe” by their phenotypic manifestation. It is noteworthy that there was no mitigating ef- fect from “mild” replacement p.G416S on the impact of “severe” rearrangement in both pa- tients who had type III (chronic neuronopa thic) Gaucher disease (patients 50 and 57). Replacement p.R159W is rather common for European populations and is usually char- acterized as “mild” by its phenotypic manifes- tation [5]. Among the Ukrainian patients this variant was identified in 5 patients with type I (non-neuronopathic) Gaucher disease in the compound with p.N409S and in one patient with type III chronic neuronopathic disease (patient 49) in the composition of a complex allele [p.R159W+p.G241R] and replacement p.D448H in the second allele. While analyzing the phenotype of patients with identified recombinant alleles in the GBA gene, it should be noted that genotype-pheno- type correlation in them is ambiguous. On the one hand, it was predictable that all patients with genotype p.N409S/RecNciI would have type I (non-neuronopathic) Gaucher disease. A patient with genotype p.L483P/RecNciI (pa- tient 13) was notable for early manifestation and severe clinical course of the disease, which conditioned the fatal outcome after a hemor- rhage, resistant to treatment, at the age of four, regardless of conducted enzyme-replacement therapy. The absence of neurological symp- toms in this patient at diagnostics was the reason why this case was classified as type I (non-neuronopathic) Gaucher disease. 43 Analysis of mutations in GBA gene in Ukrainian patients with Gaucher disease However, the “severity” of both mutations and early death allow for an assumption that there was no sufficient time for manifestation of the neurological symptoms in this patient], thus, this case may be considered to be type III (chronic neuronopathic) Gaucher disease. Most described cases of the recombinant alleles, involving exons 5–7 of the GBA gene (RecC and RecC5a), were observed in the patients with no neurological disorders that was also demonstrated by us. It is notable the identification of genotype p.V414L/RecC in the patient with early severe clinical course of Gaucher disease without any neurological dis- orders but with hepatic gaucheroma and fatal outcome at the age of 6 (patient 51). Taking into consideration the published data about the clinical course in the patients, homozygous by the missense replacement p.V414L, this vari- ant should be related to “mild” ones by its phenotypic manifestation [21]. Therefore, in combination with allele RecC, which is also mainly observed in the patients with type I Gaucher disease, it could be expected that the patient 51 has either mild or medium degree of clinical course severity. Such contradiction requires detailed study to identify the genetic, epigenetic, and environmental factors, impact- ing the phenotypic manifestation of a specific genotype. The results of genotyping other patients with neuronopathic types of Gaucher disease are in some agreement with the published data. Both mutations, identified in the patient 61 with type II acute neuronopathic disease (gen- otype p.G241R/p.A423D), described before, are remarkable for neuronopathic forms of Gaucher disease [22]. The duplication of gua- nine c.84dupG in exon 2 of the GBA gene, identified in a patient with type II (acute neu- ronopathic) Gaucher disease, was also de- scribed as a “severe” form according to its phenotypic manifestation and is notable for neuronopathic forms of the disease. As seen from the published data, the phenotypic man- ifestation of missense replacement p.N227S depends on the rearrangement in the second allele. The combination of this variant with “mild” mutations, such as p.N409S, leads to the development of type I Gaucher disease, whereas the combination with “severe” muta- tions, such as Rec-alleles or p.L483P, leads to the occurrence of neuronopathic types of the disease [5]. Therefore, the nonsense replace- ment p.Y244*, identified in the compound with p.N227S in patient 54, conditioned the deve- lop ment of type III (chronic neuronopathic) Gaucher disease. The analysis in silico of new rearrange- ments in the GBA gene, described by us, demonstrated that nonsense replacement p.Y244* and missense replacement p.P430A might impair the structure and function of the gene product the most. The nonsense replace- ment p.Y244* is responsible for it due to the occurrence of a stop-codon in exon 6 and, as a result, the formation of a shortened gene product, which lost over half of amino acid residues and, first and foremost, the active site of the enzyme (E379) [23]. The effect of missense replacement p.P430A is due to the fact that amino acid residue P430 is localized in the loop, contacting with β8-strand of the first domain TIM barrel in GBA molecule. This loop is localized on the upper surface of the active site and contacts the substrate mol- ecule, which makes any replacements in this region critical for normal functioning of the 44 N. V. Olkhovych, A. M. Nedoboy, N. O. Pichkur et al. active site of the enzyme [24]. Notably, in 1998 Cormand et al. described another re- placement of proline 430 – p.P430L in two patients with type I Gaucher disease [25]. However, in both patients this replacement was in the compound with p.N409S, which, taking into consideration the mitigating nature of this variant, made it impossible to evaluate the correlation of replacement p.P430L and the patients’ phenotype. Replacement p. P430A was identified by us in two patients – in the patient 26 with type I Gaucher dis- ease, conditioned by the presence of replace- ment p.N409S in the second allele, and in the patient 31 with type II Gaucher disease, with the duplication c.84dupG in the second allele. The development of severe acute neurono- pathic form of the disease in patient 31 (gen- otype p.P430A/c.84dupG) confirms that the replacement of proline 430 is a zero-mutation, conditioning a considerable loss in the enzy- matic activity of glucocerebrosidase. It is probable that missense replacement p.F167L might also impact the functional ac- tivity of GBA. Phenylalanine 167 is one of seven aromatic amino acids, forming a chain on one side of the active site pocket of a GBA molecule and is involved into the substrate recognition [27]. Leucine is not an aromatic amino acid, thus the replacement of phenyl- alanine with leucine leads to the impairment in the aromatic chain structure and therefore to the impairment of spatial organization of the active site pocket of the enzyme, which may have negative impact on the catalytic activity of glucocerebrosidase. Unfortunately, we were unable to evaluate phenotype-geno- type association of this replacement because it was identified in the compound with “mild” replacement p.Q453R, which conditioned type I Gaucher disease in the patient 21. Replacements p.N131I and p.S390I, de- scribed by us, influence amino acid residues, localized in domain III, the catalytic domain of GBA molecule, but do not participate di- rectly in the recognition and binding of the substrate or activator of saposin C [23, 24]. This is the most likely factor, conditioning the “mild” impact of conformational changes in GBA molecule, caused by these replacements, on its catalytic activity. This is also confirmed by the clinical data of the patients, described by us, – replacement p.N131I in the compound with p.N409S led to the development of type I Gaucher disease with late manifestation (pa- tient 43, the first symptoms were identified at the age of 15), and replacement p.S390I miti- gated the impact of “severe” replacement p. L483P in patient 5 and caused the development of type I Gaucher disease, albeit of medium severity with early manifestation (first symp- toms at the age of 1 year), but without neuro- logical disorders. Therefore, the application of different mo- lecular and genetic approaches, including di- rect gene sequencing, allowed us to identify 96.8 % of mutant alleles in Ukrainian patients with Gaucher disease. Also six new and previ- ously not described rearrangements of the GBA gene sequence were identified. The comparison of genotypes with clinical form of the disease, identified in patients, demonstrated that at present there are recognized genotype-pheno- type correlations for this disease, which allow predicting the type and clinical course of the disease to some degree. In most patients, de- scribed by us, the combination of genotype and phenotype corresponded to the data of 45 Analysis of mutations in GBA gene in Ukrainian patients with Gaucher disease numerous previous studies. The information about clinical signs of the disease in patients with new, previously not described mutations, allowed us to complement current information about genotype-phenotype correlations for Gaucher disease. However remarkably, there is considerable heterogeneity in the clinical course of the disease even among people with a similar genotype. This depends on different factors, influencing the realization of genetic information in a certain individual – the avail- ability of complex alleles, the influence of adjacent or modifying genes, the impact of environmental factors, etc. These factors im- pact the possibilities of the clinical prognosis and require additional studies. Therefore, the determination of molecular and genetic nature of a disease in a specific patient is the mandatory information, which allows confirming the diagnosis, predicting the clinical course of the disease and envisaging the response to specific therapy. REREFERCES: 1. Lysosomal storage disorders: a practical guide. Eds: Mehta A, Winchester B. London: Wiley-Blackwell, 2012; 208 p. 2. Beutler E, Grabowski GA. Gaucher disease. In: The metabolic & molecular bases of inherited diseases. Eds. Scriver CR, Beaudet AL, Sly WS, Valle D. New York: McGraw-Hill, 2009; 3668 p. 3. Horowitz M, Wilder S, Horowitz Z, Reiner O, Gel- bart T, Beutler E. The human glucocerebrosidase gene and pseudogene: structure and evolution. Ge- nomics. 1989;4(1):87–96. 4. Winfield SL, Tayebi N, Martin BM, Ginns EI, Sid- ransky E. Identification of three additional genes contiguous to the glucocerebrosidase locus on chro- mosome 1q21: implications for Gaucher disease. Genome Res. 1997;7(10):1020–6. 5. Hruska KS, LaMarca ME, Scott CR, Sidransky E. Gaucher disease: mutation and polymorphism spec- trum in the glucocerebrosidase gene (GBA). Hum Mutat. 2008;29(5):567–83. 6. Beutler E, Gelbart T. Erroneous assignment of Gau- cher disease genotype as a consequence of a complete gene deletion. Hum Mutat. 1994;4(3):212–6. 7. Koprivica V, Stone DL, Park JK, Callahan M, Frisch A, Cohen IJ, Tayebi N, Sidransky E. Analysis and classification of 304 mutant alleles in patients with type 1 and type 3 Gaucher disease. Am J Hum Genet. 2000;66(6):1777–86. 8. Hatton CE, Cooper A, Whitehouse C, Wraith JE. Mutation analysis in 46 British and Irish patients with Gaucher’s disease. Arch Dis Child. 1997;77(1):17–22. 9. Germain DP, Puech JP, Caillaud C, Kahn A, Poe- naru L. Exhaustive screening of the acid beta-glu- cosidase gene, by fluorescence-assisted mismatch analysis using universal primers: mutation profile and genotype/phenotype correlations in Gaucher disease. Am J Hum Genet. 1998;63(2):415–27. 10. Erdos M, Hodanova K, Taskó S, Palicz A, Stol- naja L, Dvorakova L, Hrebicek M, Maródi L. Ge- netic and clinical features of patients with Gau- cher di sea se in Hungary. Blood Cells Mol Dis. 2007;39(1):119–23. 11. Malini E, Grossi S, Deganuto M, Rosano C, Pari- ni R, Dominisini S, Cariati R, Zampieri S, Bembi B, Filocamo M, Dardis A. Functional analysis of 11 novel GBA alleles. Eur J Hum Genet. 2014;22(4): 511–6. 12. Alfonso P, Aznarez S, Giralt M, Pocovi M, Giral- do P; Spanish Gaucher’s Disease Registry.. Muta- tion analysis and genotype/phenotype relationships of Gaucher disease patients in Spain. J Hum Genet. 2007;52(5):391–6. 13. Hodanová K, Hrebícek M, Cervenková M, Mrázo vá L, Vepreková L, Zemen J. Analysis of the beta-glucocer- ebrosidase gene in Czech and Slovak Gaucher patients: mutation profile and description of six novel mutant alleles. Blood Cells Mol Dis. 1999;25(5–6):287–98. 14. Mattošová S, Chandoga J, Hlavatá A, Saligová J, Maceková D. Spectrum of GBA mutations in patients with Gaucher disease from Slovakia: identification of five novel mutations. Isr Med Assoc J. 2015;17(3):166–70. 46 N. V. Olkhovych, A. M. Nedoboy, N. O. Pichkur et al. 15. Tylki-Szymañska A, Keddache M, Grabowski GA. Characterization of neuronopathic Gaucher disease among ethnic Poles. Genet Med. 2006;8(1):8–15. 16. Boukina TM, Tsvetkova IV. Distribution of mutations of acid b-d-glucosidase gene (GBA) among 68 rus- sian patients with Gaucher’s disease. Biochemistry (Moscow) Suppl Ser B: Biomed Chem. 2008;2(1): 105–10. 17. Horovenko NH, Ol’khovych NV, Nedoboĭ AM, Pi- chkur NO. [Detection of the frequencies of GBA gene major mutations in patients with Gaucher disease in Ukraine]. Tsitol Genet. 2007;41(4):41–7. 18. Miocić S, Filocamo M, Dominissini S, Montalvo AL, Vlahovicek K, Deganuto M, Mazzotti R, Cariati R, Bembi B, Pittis MG. Identification and functional characterization of five novel mutant alleles in 58 Italian patients with Gaucher disease type 1. Hum Mutat. 2005;25(1):100. 19. den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, Roux AF, Smith T, Antonarakis SE, Taschner PE. HGVS Rec- ommendations for the Description of Sequence Vari- ants: 2016 Update. Hum Mutat. 2016;37(6):564–9. 20. Zimran A, Kay A, Gelbart T, Garver P, Thurston D, Saven A, Beutler E. Gaucher disease. Clinical, lab- oratory, radiologic, and genetic features of 53 pa- tients. Medicine (Baltimore). 1992;71(6):337–53. 21. Amaral O, Marcão A, Sá Miranda M, Desnick RJ, Grace ME. Gaucher disease: expression and char- acterization of mild and severe acid beta-glucosidase mutations in Portuguese type 1 patients. Eur J Hum Genet. 2000;8(2):95–102. 22. Cormand B, Grinberg D, Gort L, Fiumara A, Baro- ne R, Vilageliu L, Chabás A. Two new mild homo- zygous mutations in Gaucher disease patients: clinical signs and biochemical analyses. Am J Med Genet. 1997;70(4):437–43. 23. Stone DL, Tayebi N, Orvisky E, Stubblefield B, Madike V, Sidransky E. Glucocerebrosidase gene mutations in patients with type 2 Gaucher disease. Hum Mutat. 2000;15(2):181–8. 24. Dvir H, Harel M, McCarthy AA, Toker L, Silman I, Futerman AH, Sussman JL. X-ray structure of hu- man acid-beta-glucosidase, the defective enzyme in Gaucher disease. EMBO Rep. 2003;4(7):704–9. 25. Atrian S, López-Viñas E, Gómez-Puertas P, Cha- bás A, Vilageliu L, Grinberg D. An evolutionary and structure-based docking model for glucocerebrosi- dase-saposin C and glucocerebrosidase-substrate interactions – relevance for Gaucher disease. Pro- teins. 2008;70(3):882–91. 26. Cormand B, Grinberg D, Gort L, Chabás A, Vilage- liu L. Molecular analysis and clinical findings in the Spanish Gaucher disease population: putative hap- lotype of the N370S ancestral chromosome. Hum Mutat. 1998;11(4):295–305. Аналіз мутацій в гені GBA у пацієнтів з хворобою Гоше в Україні Н. В. Ольхович, А. М. Недобой, Н. О. Пічкур, Н. Г. Горовенко Хвороба Гоше (MIM 230800) є найбільш поширеним захворюванням накопичення, яке спричинене спадко- вим дефіцитом лізосомного ферменту глюкоцеребро- зідази (EC 3.2.1.45). Ген глюкоцереброзідази (GBA) картований в локусі 1q21, його довжина 7,5 тис.п.н. і складається з 11 екзонів. За даними найбільших баз даних мутацій генів людини, існує більше 300 описаних в даний час патогенних варіантів гена GBA, більшість з них пов’язані з розвитком хвороби Гоше. Мета. Виявлення перебудов в гені GBA, які зумовили розвиток хвороби Гоше у хворих в Україні, порівняння їх частоти і спектру з варіантами у пацієнтів з інших європейських країн, а також оцінка генотип-фенотип асоціації для цього захворювання. Методи. Метод прямого автоматичного сиквенування за Сенгером на аналізаторі ABI 3130 (Applied Biosystems). Результа­ ти. Застосування різних молекулярних і генетичних підходів, включаючи пряме секвенування послідовнос- ті гена, дозволило нам ідентифікувати 96,8 % мутант- них алелів у українських пацієнтів з хворобою Гоше. Також були виявлені шість нових раніше не описаних перебудов послідовності гена GBA. Висновки. Порівняння виявлених у пацієнтів генотипів з клініч- ною формою захворювання показали, що отримані результати не суперечать сучасним визнаним генотип- фенотип кореляціям, які дозволяють певною мірою прогнозувати тип і клінічний перебіг хвороби Гоше. К л юч ов і с л ов а: хвороба Гоше, ген GBA. 47 Analysis of mutations in GBA gene in Ukrainian patients with Gaucher disease Анализ мутаций в гене GBA у пациентов с болезнью Гоше в Украине Н. В. Ольхович, А. Н. Недобой, Н. А. Пичкур, Н. Г. Горовенко Болезнь Гоше (MIM 230800) является наиболее рас- пространенным заболеванием накопления, которое вызвано наследственным дефицитом лизосомного фермента глюкоцереброзидазы (EC 3.2.1.45). Ген глюкоцереброзидазы (GBA) картирован в локусе 1q21, его длина 7,5 тис.п.н. и состоит из 11 экзонов. По данным крупнейших баз данных мутаций генов человека, существует более 300 описанных в насто- ящее время патогенных вариантов гена GBA, боль- шинство из них связаны с развитием болезни Гоше. Цель. Выявление перестроек в гене GBA, которые обусловили развитие болезни Гоше у больных в Украине, сравнение их частоты и спектра с вариан- тами у пациентов из других европейских стран, а также оценки генотип-фенотип ассоциации для это- го заболевания. Методы. Метод прямого автомати- ческого сиквенирования по Сенгеру на анализаторе ABI 3130 (Applied Biosystems). Результаты. Применение различных молекулярных и генетиче- ских подходов, включая прямое секвенирование последовательности гена, позволило нам идентифи- цировать 96,8 % мутантных аллелей у украинских пациентов с болезнью Гоше. Также были обнаруже- ны шесть новых ранее не описанных перестроек последовательности гена GBA. Выводы. Сравнение выявленных у пациентов генотипов с клинической формой заболевания показали, что полученные ре- зультаты не противоречат современным признанным генотип-фенотипическим корреляциям, позволяю- щим в определенной степени прогнозировать тип и клиническое течение болезни Гоше. К л юч е в ы е с л ов а: болезнь Гоше, ген GBA. Received 01.12.2016