Familial adenomatous polyposis: age of onset and association with mutations of the APC gene in patients from West Ukraine
Aim. To evaluate the average age of familial adenomatous polyposis (FAP) onset in both males, females and in their relatives, carriers or not carriers of the APC gene mutations, to estimate the anticipation in successive generations for early identification of the individuals in the risk group. Meth...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут молекулярної біології і генетики НАН України
2017
|
Schriftenreihe: | Вiopolymers and Cell |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/152908 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Familial adenomatous polyposis: age of onset and association with mutations of the APC gene in patients from West Ukraine / M.R. Lozynska, Y.S. Lozynskyy, A. Plawski, R.O. Pinyazhko, N.M. Prokopchuk, O.M. Fedota // Вiopolymers and Cell. — 2017. — Т. 33, № 2. — С. 102-115. — Бібліогр.: 46 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152908 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1529082019-06-14T01:27:56Z Familial adenomatous polyposis: age of onset and association with mutations of the APC gene in patients from West Ukraine Lozynska, M.R. Lozynskyy, Y.S. Plawski, A. Pinyazhko, R.O. Prokopchuk, N.M. Fedota, O.M. Biomedicine Aim. To evaluate the average age of familial adenomatous polyposis (FAP) onset in both males, females and in their relatives, carriers or not carriers of the APC gene mutations, to estimate the anticipation in successive generations for early identification of the individuals in the risk group. Methods. The medical records, genealogical information were gathered and molecular genetic study of blood was carried out in 25 probands with adenomatous polyposis. FAP was confirmed in 44.0 % of probands. The probands with FAP had 36 affected relatives. The amplified frag-ments of the APC gene were screened for the mutations involving heteroduplex analysis and detection of single-stranded conformational polymorphism. The age of FAP onset was evaluated in probands and their relatives. The anticipation index (A) was calculated. Results. Among patients with FAP 61.7 % were males and 38.3 % were females. The age of FAP onset in males was 36.0 ± 1.4 years, while in females the disease manifested earlier – in 29.5 ± 2.4 years (p<0.01). The APC mutations, including four novel mutations, were found in 63.6 % of probands with FAP. The lowest age of polyposis onset was observed in carriers of the APC mutation c.3927_3931delAAAGA p.Q1309fs. The average age difference between FAP onset in the parents and their offspring was 12.0 ± 1.7 years. In 3 of 4 families with FAP and novel mutations of the APC gene predominance of males (12:4) and anticipation phenomenon were observed.The strongest age correlations of FAP onset were found in mother-offspring pairs and parents-son pairs. The statistically significant difference between the data confirmed more similarities of descendant, especially sons, with parents. Conclusions. There was no statistically significant differ-ence between average age of the disease onset in patients carriers of the APC mutations (33.1 ± 2.1 years) and in patients without the APC mutations studied by the traditional methods (33.7 ± 1.6 years). In offsprings with FAP the reduced age of disease onset compared to the parents was revealed irrespective of the presense of the APC mutations. The anticipation index in FAP was 18.0 %. Accounting anticipation allows estimating the approximate average age at FAP onset during genetic counseling, and therefore timely carries out targeted prevention. Мета. Визначити середній вік виникнення сімейного аденоматозного поліпозу (САП) у чоловіків, жінок, їх родичів, носіїв мутацій гена АРС, або ж у хворих без підтверджених мутацій цього гена, для оцінки антиципації у наступних поколіннях для раннього виявлення осіб групи ризику. Методи. Провели аналіз медичної документації, генеалогічної інформації та виконали молекулярно-генетичне дослідження крові в 25 пробандів із аденоматозним поліпозом. У 44,0 % пробандів було підтверджено САП. Пробанди мали 36 родичів із цим синдромом. Ампліфіковані фрагменти гена APC були скриновані на наявність мутацій з використанням гетеродуплексного аналізу й конформаційного поліморфізму однотиткової ДНК. Вік початку захворювання визначали в пробандів, їх родичів та рахували індекс антиципації (A). Результати. Серед пацієнтів із САП було 61,7 % чоловіків і 38,3 % жінок. Встановлено, що вік маніфестації синдрому в чоловіків становив 36,03 ± 1,44 років, а в жінок захворювання виникало раніше – у віці 29,5 ± 2,43 років (р<0,01). Мутації гена APC, включаючи 4 нові мутації, виявили в 63,6 % пробандів із САП. Найменший вік виникнення поліпозу спостерігали в носіїв мутації с.3927_3931delAAAGA p.Q1309fs гена АРС. Середня різниця у віці початку САП у батьків і їх потомства становила 12,0 ± 1,7 років. У 3 із 4 сімей із САП, члени яких були носіями нових мутацій, спостерігали переважання чоловічої статі (12:4) і явище антиципації, а один пробанд був носієм мутації, яка виникла de novo. Найсильнішу кореляцію за віком виникнення САП були знайдені в парах матері-нащадки і батьки-сини. Статистично значуща різниця між отриманими даними підтверджує більшу подібність нащадків, особливо синів, з батьками. Висновки. Між віком виникнення САП у пацієнтів, носіїв мутації гена АРС (33.1±2.1 років) і віком хворих, у яких не підтверджено мутацій цього гена за допомогою традиційних методів (33.7±1.6 років), не було виявлено статистично істотної різниці. Індекс антиципації (А) у пацієнтів із САП дорівнював 18,0 %. У нащадків із САП зменшення віку виникнення захворювання порівняно з батьками не залежало від наявності мутацій гена АРС. Облік антиципації дозволяє оцінити середній вік початку САП під час генетичного консультування, і, отже, своєчасно здійснювати цільову профілактику. Цель. Определить средний возраст начала семейного аденоматозного полипоза (САП) у мужчин, женщин, а также у родственников пробандов носителей мутаций гена АРС, или же у больных без подтвержденных мутаций этого гена, в последующих поколениях для оценки явления антиципации и для раннего выявления лиц групп риска. Методы. Провели анализ медицинской документации, генеалогической информации и выполнили молекулярно-генетическое исследование крови в 25 пациентов с аденоматозным полипозом. В 44,0 % пробандов с полипозом было подтверждено САП. Пробанды имели 36 родственников с этим синдромом. Амплифицированные фрагменты гена APC были скриновани на наличие мутаций с использованием гетеродуплексного анализа и конформационного полиморфизма однонитевой ДНК. Возраст начала заболевания определяли у пробандов, их родственников и вычисляли индекс антиципации (A). Результаты. Среди пациентов из САП было 61,7 % мужчин и 38,3 % женщин. Усновлено, что возраст начала синдрома в мужчин составлял 36,03 ± 1,44 лет, а у женщин заболевания возникало раньше – в возрасте 29,5 ± 2,43 лет (р<0,01). Мутации гена APC, включая 4 новые мутации, обнаружили в 63,6 % пробандов из САП. Наименьший возраст возникновения полипоза наблюдали у носителей мутации с.3927_3931delAAAGA p.Q1309fs гена АРС. Средняя разница в возрасте начала САП у родителей и их потомства составила 12,0 ± 1,7 лет. У 3 из 4 семей из САП, члены которых были носителями новых мутаций, наблюдали преобладание мужского пола (12:4) и явление антиципации, а один пробанд был носителем мутации, которая возникла de novo. Самую сильную корреляцию по возрасту возникновения САП было найдено в парах матери-потомки и родители-сыновья. Статистически значимая разница между полученными данными подтверждает большее сходство потомков, особенно сыновей, с родителями. Выводы. Между возрастом возникновения САП у пациентов, носителей мутаций гена АРС (33.1 ± 2.1 года), и возрастом больных, у которых не подтверждено мутаций этого гена с помощью традиционных методов (33.7 ± 1.6 года), не было выявлено статистически значимой разницы. Индекс антиципации у пациентов из САП равнялся 18,0 %. У потомков из САП уменьшение возраста возникновения заболевания по сравнению с родителями не зависело от наличия мутаций гена АРС. Учет антиципации позволяет оценить средний возраст начала САП при генетическом консультировании, и, следовательно, своевременно осуществлять целевую профилактику. 2017 Article Familial adenomatous polyposis: age of onset and association with mutations of the APC gene in patients from West Ukraine / M.R. Lozynska, Y.S. Lozynskyy, A. Plawski, R.O. Pinyazhko, N.M. Prokopchuk, O.M. Fedota // Вiopolymers and Cell. — 2017. — Т. 33, № 2. — С. 102-115. — Бібліогр.: 46 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.000948 http://dspace.nbuv.gov.ua/handle/123456789/152908 616– 006.5/.55 – 031.81– 056.7/.76 – 02:616–053–055(477.83) en Вiopolymers and Cell Інститут молекулярної біології і генетики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Biomedicine Biomedicine |
spellingShingle |
Biomedicine Biomedicine Lozynska, M.R. Lozynskyy, Y.S. Plawski, A. Pinyazhko, R.O. Prokopchuk, N.M. Fedota, O.M. Familial adenomatous polyposis: age of onset and association with mutations of the APC gene in patients from West Ukraine Вiopolymers and Cell |
description |
Aim. To evaluate the average age of familial adenomatous polyposis (FAP) onset in both males, females and in their relatives, carriers or not carriers of the APC gene mutations, to estimate the anticipation in successive generations for early identification of the individuals in the risk group. Methods. The medical records, genealogical information were gathered and molecular genetic study of blood was carried out in 25 probands with adenomatous polyposis. FAP was confirmed in 44.0 % of probands. The probands with FAP had 36 affected relatives. The amplified frag-ments of the APC gene were screened for the mutations involving heteroduplex analysis and detection of single-stranded conformational polymorphism. The age of FAP onset was evaluated in probands and their relatives. The anticipation index (A) was calculated. Results. Among patients with FAP 61.7 % were males and 38.3 % were females. The age of FAP onset in males was 36.0 ± 1.4 years, while in females the disease manifested earlier – in 29.5 ± 2.4 years (p<0.01). The APC mutations, including four novel mutations, were found in 63.6 % of probands with FAP. The lowest age of polyposis onset was observed in carriers of the APC mutation c.3927_3931delAAAGA p.Q1309fs. The average age difference between FAP onset in the parents and their offspring was 12.0 ± 1.7 years. In 3 of 4 families with FAP and novel mutations of the APC gene predominance of males (12:4) and anticipation phenomenon were observed.The strongest age correlations of FAP onset were found in mother-offspring pairs and parents-son pairs. The statistically significant difference between the data confirmed more similarities of descendant, especially sons, with parents. Conclusions. There was no statistically significant differ-ence between average age of the disease onset in patients carriers of the APC mutations (33.1 ± 2.1 years) and in patients without the APC mutations studied by the traditional methods (33.7 ± 1.6 years). In offsprings with FAP the reduced age of disease onset compared to the parents was revealed irrespective of the presense of the APC mutations. The anticipation index in FAP was 18.0 %. Accounting anticipation allows estimating the approximate average age at FAP onset during genetic counseling, and therefore timely carries out targeted prevention. |
format |
Article |
author |
Lozynska, M.R. Lozynskyy, Y.S. Plawski, A. Pinyazhko, R.O. Prokopchuk, N.M. Fedota, O.M. |
author_facet |
Lozynska, M.R. Lozynskyy, Y.S. Plawski, A. Pinyazhko, R.O. Prokopchuk, N.M. Fedota, O.M. |
author_sort |
Lozynska, M.R. |
title |
Familial adenomatous polyposis: age of onset and association with mutations of the APC gene in patients from West Ukraine |
title_short |
Familial adenomatous polyposis: age of onset and association with mutations of the APC gene in patients from West Ukraine |
title_full |
Familial adenomatous polyposis: age of onset and association with mutations of the APC gene in patients from West Ukraine |
title_fullStr |
Familial adenomatous polyposis: age of onset and association with mutations of the APC gene in patients from West Ukraine |
title_full_unstemmed |
Familial adenomatous polyposis: age of onset and association with mutations of the APC gene in patients from West Ukraine |
title_sort |
familial adenomatous polyposis: age of onset and association with mutations of the apc gene in patients from west ukraine |
publisher |
Інститут молекулярної біології і генетики НАН України |
publishDate |
2017 |
topic_facet |
Biomedicine |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152908 |
citation_txt |
Familial adenomatous polyposis: age of onset and association with mutations of the APC gene in patients from West Ukraine / M.R. Lozynska, Y.S. Lozynskyy, A. Plawski, R.O. Pinyazhko, N.M. Prokopchuk, O.M. Fedota // Вiopolymers and Cell. — 2017. — Т. 33, № 2. — С. 102-115. — Бібліогр.: 46 назв. — англ. |
series |
Вiopolymers and Cell |
work_keys_str_mv |
AT lozynskamr familialadenomatouspolyposisageofonsetandassociationwithmutationsoftheapcgeneinpatientsfromwestukraine AT lozynskyyys familialadenomatouspolyposisageofonsetandassociationwithmutationsoftheapcgeneinpatientsfromwestukraine AT plawskia familialadenomatouspolyposisageofonsetandassociationwithmutationsoftheapcgeneinpatientsfromwestukraine AT pinyazhkoro familialadenomatouspolyposisageofonsetandassociationwithmutationsoftheapcgeneinpatientsfromwestukraine AT prokopchuknm familialadenomatouspolyposisageofonsetandassociationwithmutationsoftheapcgeneinpatientsfromwestukraine AT fedotaom familialadenomatouspolyposisageofonsetandassociationwithmutationsoftheapcgeneinpatientsfromwestukraine |
first_indexed |
2025-07-14T04:22:23Z |
last_indexed |
2025-07-14T04:22:23Z |
_version_ |
1837594778349338624 |
fulltext |
102
M. R. Lozynska, Y. S. Lozynskyy, A. Plawski
© 2017 M. R. Lozynska et al.; Published by the Institute of Molecular Biology and Genetics, NAS of Ukraine on behalf of Bio-
polymers and Cell. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited
UDC: 616– 006.5/.55 – 031.81– 056.7/.76 – 02:616–053–055(477.83)
Familial adenomatous polyposis: age of onset and association
with mutations of the APC gene in patients from West Ukraine
M. R. Lozynska4, Y. S. Lozynskyy¹, A. Plawski², R. O. Pinyazhko¹,
N. M. Prokopchuk4, O. M. Fedota3
¹ Danylo Halytsky Lviv National Medical University
69, Pekarska Str., Lviv, Ukraine, 79010
² Institute of Human Genetics of Polish Academy of Sciences
32, Strzeszynska Str., Poznan, Poland, 60-479
3 V. N. Karazin Kharkiv National University
4, Svobody Sq., Kharkiv, Ukraine, 61077
4 State Institution "Institute of Hereditary Pathology, NAMS of Ukraine"
31a, M. Lysenko Str., Lviv, Ukraine, 79008
maria_lozynska@ukr.net
Aim. To evaluate the average age of familial adenomatous polyposis (FAP) onset in both males,
females and in their relatives, carriers or not carriers of the APC gene mutations, to estimate
the anticipation in successive generations for early identification of the individuals in the risk
group. Methods. The medical records, genealogical information were gathered and molecular
genetic study of blood was carried out in 25 probands with adenomatous polyposis. FAP was
confirmed in 44.0 % of probands. The probands with FAP had 36 affected relatives. The am-
plified fragments of the APC gene were screened for the mutations involving heteroduplex
analysis an d detection of single-stranded conformational polymorphism, heteroduplex analy-
sis, and also high resolution melting analysis. The age of FAP onset was evaluated in probands
and their relatives. The anticipation index (A) was calculated. Results. Among patients with
FAP 61.7 % were males and 38.3 % were females. The age of FAP onset in males was 36.0 ± 1.4
years, while in females the disease manifested earlier – in 29.5 ± 2.4 years (p<0.01). The APC
mutations, including four novel mutations, were found in 63.6 % of probands with FAP. The
lowest age of polyposis onset was observed in carriers of the APC mutation
с.3927_3931delAAAGA p.Q1309fs. The average age difference between FAP onset in the
parents and their offspring was 12.0 ± 1.7 years. In 3 of 4 families with FAP and novel muta-
tions of the APC gene predominance of males (12:4) and anticipation phenomenon were ob-
served.The strongest age correlations of FAP onset were found in mother-offspring pairs and
parents-son pairs. The statistically significant difference between the data confirmed more
similarities of descendant, especially sons, with parents. Conclusions. There was no statisti-
ISSN 1993-6842 (on-line); ISSN 0233-7657 (print)
Biopolymers and Cell. 2017. Vol. 33. N 2. P 102–115
doi: http://dx.doi.org/10.7124/bc.000948
103
FAP: age of onset and association with mutations of the APC gene for assessment of the genetic anticipation
cally significant difference between average age of the disease onset in patients carriers of the
APC mutations (33.1 ± 2.1 years) and in patients without the APC mutations studied by the
traditional methods (33.7 ± 1.6 years). In offsprings with FAP the reduced age of disease
onset compared to the parents was revealed irrespective of the presense of the APC mutations.
The anticipation index in FAP was 18.0 %. Accounting anticipation allows estimating the ap-
proximate average age at FAP onset during genetic counseling, and therefore timely to carry
out targeted prevention.
K e y w o r d s: anticipation, APC mutations, age of FAP onset in males and females, familial
adenomatous polyposis.
Introduction
The most common аdenomatous polyposis
disorders include familial adenomatous pol-
yposis (FAP), attenuated FAP (AFAP), and
other multiple colorectal adenomatous syn-
dromes – MUTYH-associated polyposis
(MAP), NTHL1-associated polyposis (NAP)
and polymerase proofreading-associated po-
ly posis (PPAP). Genetical and clinical mani-
festations of the polyposis syndromes vary,
and cases with clinical diagnosis of FAP
«might molecularly be presented by different
diagnosis» [1, 2]. A classic FAP (MIM No.
175000) is an autosomal dominantly inherited
disease characterized by the development of
hundreds to thousands of colorectal adenoma-
tous polyps after the first decade of life and
affects both genders. FAP is an orphan dis-
ease: estimates of the prevalence of syndrome
vary from 1:6,850 to 1:31,250 live births and
account for 0.2 %–1.0 % of all colorectal can-
cer (CRC) [3–4]. The risk of CRC is virtually
100 % by the 50 years for the classic form of
this syndrome. FAP is the second most com-
mon inherited CRC syndrome. Many FAP
patients show extracolonic tumors (hepato-
blastoma, cancer of thyroid glands and brain,
desmoid and pancreatic tumors), which can
contribute to morbidity and mortality [4–5].
The average age of onset for FAP is 35.9
(22–63) years [6]. Most classic FAP cases
arise as a consequence of a germline hetero-
zygous mutation in the adenomatous polypo-
sis coli gene (APC), a tumor suppressor gene
located on chromosome 5 (5q21). The coding
region is divided into 15 exons and encodes
a large protein (309 kilo-Daltons) [7]. The
APC gene plays several important roles in
cells, influen cing cell adhesion, cytoskeleton
and cell cycle [8]. Since the first description
in 1986 by Herrera L. et al., over 1000 muta-
tions have been found, which are inserted into
the international reference database. About
25 % of people with FAP do not have any
family history of the disease and harbour a de
novo mutation in the APC gene without any
clinical or genetic evidence of FAP in the
family [9, 10]. Conventional techniques leave
approximately 30 % of families with classical
FAP and approximately 90 % of AFAP fami-
lies APC mutation–negative [11]. There re-
mains a high proportion of APC mutation
negative patients even after extensive sear ches
for new causative genes. 25 % of APC muta-
tion negative samples were found to harbour
pathogenic mutations in MUTYH [12, 13].
Differential diagnoses include other disorders
causing multiple polyps (such as Peutz-
Jeghers syndrome, familial juvenile polyps or
104
M. R. Lozynska, Y. S. Lozynskyy, A. Plawski et al.
hyperplastic polyposis, hereditary mixed pol-
yposis syndromes).
In patients with FAP the first symptoms are
often manifested in puberty. These include
dyspepsia with frequent liquid defecation, ab-
dominal pain, anemia, metabolic disorders
leading to a delay in physical develop-
ment [14]. The earlier FAP is manifested, the
severer is its course, and the sooner decom-
pensation state follows [15]. The overall sex
ratio among affected individuals was
55 %:45 % (male:female) with similar ratios
in the APC positive and APC negative groups
(57 %:43 % and 51 %:49 %, respectively) [6].
However, a mutation of the APC gene is stable,
and the site of mutation determines the sever-
ity or associated features of FAP with strong
parent-child correlation [16].
In families with FAP a phenomenon of ge-
netic anticipation was observed, in which the
age of onset of a disorder reduced and/or the
severity of the phenotype increased in succes-
sive generation [17]. For along time, geneti-
cists were skeptical on the real existence of the
phenomenon. Clinical anticipation for dis-
eases onset has been reported since the 19th
century. Nowadays, this phenomenon has a
molecular genetic evidence. In 1991 the tri-
nucleotide expansion mechanism was first
identified in a group of inherited neuromuscu-
lar disorders [18]. This phenomenon is com-
monly encountered in human dominant type
hereditary disorders, such as Von Hippel-
Lindau [19] and Li-Fraumeni syndromes [20].
The evidence for genetic anticipation has been
described in some cancer genetic syndromes
like breast cancer [21], pancreatic cancer [22],
ovarian cancer [23], CRC [24], leukemia [25],
lymphoma [26], melanoma [27]. In 1994,
Shibata et al. were the first to suggest that
younger onset of cancer observed in consecu-
tive generations of Lynch families could be
explained by the accumulation of mismatch
repair slippage events due to the diminished
DNA mismatch repair proficiency. A few years
later, the same group using a mathematical
model hypothesized that the number of muta-
tions accumulated in a tumor was dependent
on the mutation rate and the number of cell
division [28]. According to the modern con-
cepts, an increased risk of a variety of tumors
and genetic anticipation are associated with
the telomere length changes [29–30].
The aim of the study was to evaluate the
average age of FAP onset of males and females
and in their relatives, carriers or not carriers
of the APC gene mutations, in successive ge-
ne ra tions to estimate the anticipation for early
identification of the individuals in the risk
group.
Methods
In the period from 2002 to 2015 year the me-
di cal records and genealogical information
from 25 probands with adenomatous polypo-
sis were analyzed. FAP was confirmed in 10
(40.0 %) probands with adenomatous polypo-
sis and a family history of the disease or a
family history of the malignant tumors associ-
ated with the syndrome (CRC, gastric cancer
or pancreatic cancer). One proband (the APC
mutation carrier) from the FAP group had
neither clinical nor genetic evidence of FAP
in family members, so we assumed she carried
the de novo mutation of the APC gene. The
probands with FAP had 36 affected relatives.
The individuals with 100 or more adenoma-
tous polyps as well as those with fewer than
105
FAP: age of onset and association with mutations of the APC gene for assessment of the genetic anticipation
100 adenomatous polyps and a family history
of FAP are clinically diagnosed as FAP ac-
cording to the diagnostic criteria. The genea-
logical information in 3–4 generations was
collected using a single registration of pro-
bands according to the appropriate ethical
requirements. The mode of inheritance of the
diseases was determined using the clinical,
genealogical, laboratory and literature
(OMIM) database. The age of FAP onset was
evaluated in the probands and in their rela-
tives. The patients were residents of five re-
gions of Ukraine: Lviv, Ivano-Frankivsk,
Ternopil, Volyn and Chernivtsi.
The molecular genetic study in 25 probands
with adenomatous polyposis and in 4 their
relatives was carried out. Genomic DNA was
isolated from peripheral blood using a salting-
out method [31]. Before blood sampling for
molecular genetic studies, the informed con-
sent to perform such analysis was obtained
from patients. The primers, described by
Prosser et al., were used including individual
exonic splicing sites.
DNA samples of all the patients tested for
the presence of small mutations using screen-
ing methods such as strand conformational
polymorphism methods (SSCP), heteroduplex
analysis (HD), and also high resolution melting
(HRM). Our study included patients whose
gene fragments (or entire genes) had under-
gone large rearrangements as well as those in
which small mutations had been detected.
We screened the APC gene fragments that
encompassed exons 5–8, exons 10–14, and
the fragment from A to L of exon 15 for mu-
tations with heteroduplex analysis (HD) and
single strand conformational polymorphism
methods (SSCP) [32]. Parameters influencing
SSCP analysis: DNA amplification, denatur-
ation, and the electrophoretic conditions.
Another important aspect of SSCP analysis is
the visualization of the single-stranded DNA
fragments. In brief, after electrophoresis, the
PAAG are first fixed with 10 % acetic acid for
approximately 30 min at room temperature
and subsequently washed with water. Depen-
ding on the concentration of silver nitrate,
incubation with the silver nitrate solution can
last for approximately 60 min (in a 0.001 %
AgNO3, 0.036 % formaldehyde solution).
This incubation step is performed in the dark,
while avoiding any contamination with pro-
tein-containing solution. Subsequently, the
PAAG are washed with water and color de-
velopment is performed by incubating the gel
for 5 to 10 min with a color development
solution (containing 2.5 % Na2CO3, 0.036 %
formaldehyde, and 0.002 % sodium thiosul-
fate). Color development can be stopped with
a solution containing a chelating agent (such
as 1.5 % EDTA). Gels can be subsequently
fixed with 30 % ethanol and 4 % glycerol. The
stained gels are transferred to a vacuum dryer
and are immobilized to a porous paper. Results
are can be analyzed by means of an image
analysis system.
All mutations were verified by the DNA
sequence determination from both the 5` and
3` directions. PCR was carried out in the same
way as for the SSCP/HD analyses using the
same PCR primers. The DNA fragments that
showed heteroduplex in HD analysis or ad-
ditional patterns in SSCP analysis were se-
quenced by direct PCR product sequencing
and analysed with ALF Express (Amersham
Pharmacia Biotech, Uppsala, Sweden) accor-
ding to the manufacturer’s specifications [33].
106
M. R. Lozynska, Y. S. Lozynskyy, A. Plawski et al.
C-HRM primers
We designed sets of primers for a simultane-
ous amplification of a reference fragment
(with an unchanged number of copies) and a
target fragment (with APC gene fragments as
its template). Designed primers for the APC
gene (fragments of exons 9, 14 and 15) in-
clude large rearrangements and also small
sequence changes detected in our group of
patients. Primers were designed using the
Primer3plus (www.bioinformatics.nl/primer-
3plus/) software. The melting temperature of
all primers was in the range of 58.0–62.3 °C
(Table 1).
Subsequently, the primer pairs were se-
lected for a multiplex reaction, with one of the
products including the target fragment of the
studied gene and the second one as a reference.
Amplicons were paired in respect of their mel-
ting temperature ranges (no overlaps between
the amplicons) and lack of non-specific inte-
rac tions between primers that could impair the
amplification efficiency.
Assay design: the products were amplified
using the type-it HRM kit (Qiagen) on the
DNA templates at a concentration of 50 ng/μl
diluted in AE buffer (Qiagen). The analysis
was performed on a Rotor-Gene® Q equipment
(Qiagen). PCR reactions were carried out for
the 30 cycles (with a 5 min preincubation at
95 °C) of 95 °C for 10 s, 55 °C for 30 s and
72 °C for 10 s, the products were then melted
and PCR was continued to the 40th cycle in
the same conditions followed by another mel-
ting process. The first melting analysis was
performed from 70 °C to 90 °C by raising the
temperature by 0.3° at each step after which
the second one, designed to detect small
changes in the sequence, was carried out with
higher resolution raising the temperature by
0.1° at each step.
Anticipation index (A) was calculated using
the formula:
А=(Р-D)/(Р+D),
P – age of disease onset in one parent, D – age of disease
onset in offsprings [34].
Statistical analysis had been carried out us-
ing Shapiro-Wilk test for normality, Student’s
t Test and Spearman correlation.
Results and Discussion
The characteristics of probands and their rela-
tives with FAP by gender and age at polyposis
onset are shown in table 2.
Table 1. Sets of primers
Studied
exon
Pr
od
uc
t l
en
gt
h
(b
p) Forward primer Tm
(°C)
Final
concen-
tration
(nM)
Reverse primer Tm
(°C)
Fi
na
l c
on
ce
n-
tra
tio
n
(n
M
)
9 Target
amplicon 249 GCCCACAGGTGGAAATGG 62.3 172 GAATGATGTTGTGGAGTGCTG 59.2 172
14 Target
amplicon 239 GAAGTTAATGAGAGACAAATTCCA 58.0 172 TCCGTAATATCCCACCTCCA 60.1 172
15 Target
amplicon 180 TCTGCTGCCCATACACATTC 59.7 688 GGATTCAATCGAGGGTTTCA 59.9 688
http://www.bioinformatics.nl/primer3plus/
http://www.bioinformatics.nl/primer3plus/
107
FAP: age of onset and association with mutations of the APC gene for assessment of the genetic anticipation
Table 2. The characteristics of probands and their relatives with familial adenomatous polyposis by the
gender and the age of polyposis onset
Probands Gender of probands Age (years)
Number of the relatives of
probands Age of polyposis onset in the relatives
of probands (years)
males females
1. A f 24 – – –
2. B f 28 1 0 46
3. C f 32 5 3 41, 32, 42, 33, 32, 45*, 40*, 19*
4. D f 26 2 0 28, 43
5. E f 15 1 1 40,16*
6. F f 32 4 1 43, 33, 26, 32, 45*
7. G f 36 3 1 24, 32, 40,18*
8. H f 44 1 0 ?
9. I f 29 3 2 32, 35, 30, 31*, 31*
10. J m 36 5 1 48, 45, 32, 41, 19, 20*
11. K m 48 2 0 40, (?)
Total 9 females/2 males 31.8 27 9 27 males / 9 females
Note. * – marked females, (?) – the age of polyposis onset is uknnown.
Among the patients with FAP 29 (61.7 %)
were males and 18 (38.3 %) were females,
whereas women dominated among probands
with polyposis (Table 2).
The age of patients ranged from 15 to
48 years. The age of FAP onset in males was
36.0 ± 1.4 years of age, whereas in females
disease manifested earlier – at 29.5 ± 2.4 years
of age (t = 2.69, p<0.01). The average age of
FAP onset was 32 (15–48) years and was low-
er compared to the data given in the literature
36 (22–63) years [6].
The APC mutations, including four novel
mutations, were found in 7 (63.6 %) probands
with FAP and 6 of them were females of
7 families with FAP (table 3). Other 4 (16.0 %)
probands with familial anamnesis of polyposis
and cancer had no mutations. Among mutation
carriers were 8 females and 3 males (probands
and their relatives). The lowest age of polypo-
sis onset was observed in carriers of the APC
mutation с.3927_3931delAAAGA p.Q1309fs.
The mutation leads to premature termination
of the APC gene protein product [35, 36]. This
deletion is one of the most frequent APC mu-
tations in Europe [14, 33]. In most cases the
mutation in codon 1309 leads to early onset of
the disease accompanied by hundreds of pol-
yps at a young age, early occurrence of CRC
and extracolonic manifestations [14].
There was no statistically significant diffe-
ren ce between average age of the disease onset
in patients carriers of the APC mutations
(33.1 ± 2.1 years) and in patients without the
APC mutations identified by traditional me-
thods (33.7 ± 1.6 years). In 3 of 4 families with
FAP and novel mutations of the APC gene
(probands 4D, 6F, 10J, table 2, 2) predomi-
108
M. R. Lozynska, Y. S. Lozynskyy, A. Plawski et al.
nance of males with FAP (12:4) and anticipa-
tion phenomenon were observed. One proband
(1A) with the APC gene mutation had neither
clinical nor genetic evidence of FAP in family
members, so she was supposed to carry the de
novo mutation. The example of anticipation in
the family with the novel с.3343delA p.
R1114fs APC mutation is shown in Fig. 1
(patient 10J, table 2, 2). Six relatives of the
proband had FAP and 5 of them were males.
Both earlier FAP onsets, the increased sever-
ity in offsprings, and the predominance of
males among patients were observed in this
affected family.
The example of anticipation in the family
pedigree without the APC mutations confirmed
by traditional methods is shown in Fig. 2 (pa-
tient 3C, table 2).
Table 3. The APC mutations in families with familial adenomatous polyposis and the average age of the
syndrome onset within the families
P
ro
ba
nd
s
№ of
exons Mutations
The evarage age
of FAP onset in
patients within the
family (*)
Number of
patients with FAP
within the family
Number of
patients those
identified
mutations within
the family
A 15 с.3931_3946delATTGGAACTAGGTCG 24,0 1 1
B 5 c.532-1G>A ** 39,5 2 1
D 11–14 deletion of exons 36,5 ± 6,7 3 1
E 15 с.3927_3931delAAAGA p.Q1309fs 23,7 ± 8,1 3 2
F 15 с.2021Т>TAG 35,8 ± 3,6 5 2
H 6 c.697С>Т ** 44,0 2 1
J 15 с.3343delA p.R1114fs 34,0 ± 4,7 7 3
Note. * – The average age of FAP onset in all affected individuals within the family; ** – splice site mutations. Cur-
sive marked mutations were not found in other ethnic groups.
Fig. 1. Pedigree of the proband and
his relatives with FAP carriers of
АРС с.3343delA p.R1114fs muta-
tion.
109
FAP: age of onset and association with mutations of the APC gene for assessment of the genetic anticipation
Fig. 2. Pedigree of the proband and
her relatives with APC mutation-
negative case of polyposis
Eight relatives of the proband had FAP. It
is widely accepted that the methods used to
identify mutations fail to detect certain muta-
tions because of the factors such as polymor-
phisms in the sequences to which PCR primers
bind that leads to allele dropout, or due to
somatic mosaicism or because the mutations
occur in the regions not targeted by the cur-
rently used methods. Castellsagué et al. [37]
and Spier et al. [38] reported the occurrence
of imbalanced allele-specific expression of
APC in 8 %–9 % of the APC mutation-nega-
tive polyposis cases, indicating that the under-
lying mutations were not detected by standard
mutation detection techniques. Some of these
cases carried pathogenic deep intronic variants
predicted to activate cryptic splice sites [38],
whereas others carried mutations in the pro-
moter region of APC [39].
In offsprings with FAP the reduced age of
disease onset compared to parents was re-
vealed irrespective of the presense of the APC
mutations. Analysis of the age of FAP onset in
the probands and their affected relatives is
shown in Table 4.
In most couples “parents-offspring” with
FAP in offspring, the disease begins at an ear-
lier age comparing to the parents with statisti-
cally significant difference. The average dif-
ference of the age of FAP onset and index of
anticipation in the parents and their offspring
are shown in Table 5.
The average age difference between the
FAP onset in the parents and their offspring
was 12.0 ± 1.7 years. The number of father-
daughter pairs and father-son pairs was
greater than the number of mother-daughter
pairs and mother-son pairs. The anticipation
index (A) in FAP was 18.0%. This index
ranges from 12.0% in pairs father-son to
25.0 % – in pairs father-daughter in different
family couples.
The highest values of anticipation index (A)
in the FAP were in father-daughter pairs. The
anticipation phenomenon in FAP was shown
by any parent-child pairing methods for the
110
M. R. Lozynska, Y. S. Lozynskyy, A. Plawski et al.
deceased in literature data: in the patients over
5 years of age, the mean age at death was
50.9 years for the parent, 42.3 years for the
proband, and 33.3 years for the child genera-
tions, respectively, p<0.001 [17].
The correlation coefficients for the age of
FAP onset in parents and offspring are shown
in Table 6.
The strongest age correlations of FAP onset
were found in mother-offspring (mother-
Table 6. The correlation coefficients between the
age values of familial adenomatous polyposis onset
in relatives of probands
Family couples n r t р
Mother-daughter 2 1 – –
Mother-son 2 1 – –
Mother-offspring 4 0.80±0.42 1.912 <0.05
Father-daughter 8 –0.01±41 –0.036 >0.05
Father-son 8 0.57±0.34 1.702 <0.01
Father-offspring 16 0.36±0.25 1.466 <0.01
Parents-daughter 10 0.04±0.35 0.113 >0.5
Parents -son 10 0.58±0.29 2.013 <0.01
Parents-offspring 20 0.44±0.21 2.059 <0.01
Note. n – number of pairs; r-correlation coefficients; t –
Student test; p – value level of significance.
Table 5. The average difference of the age of
familial adenomatous polyposis onset and the
anticipation index in parents and their offspring
Family couples
The average difference
of the age of FAP onset
(years)
Anticipation
index, (%)
n d ± sd А ± sа
Parents-offspring 20 12.0±1.7 18.0±3.1
Parents- daughter 10 13.5±2.6 23.2±3.2
Parents -son 10 8.5±2.3 13.7±3.4
Father-daughter 8 15.8±3.2 25.0±0.1
Father-son 8 9.3±2.7 12.0±0.1
Father-offspring 16 12.5±2.0 18.0±3.6
Mother-daughter 2 8.5±4.5 16.0±9.5
Mother-son 2 11.0±6.0 14.0±5.5
Mother-offspring 4 9.8±4.0 15.0±4.5
Note. n – the number of pairs of relatives, d ± sd – the
average age of FAP onset and its statistical error,
А ± sa – the average age of anticipation and its sta-
tistical error.
Table 4. The average age of familial adenomatous polyposis onset in family couples
Family couples n
The average age of FAP onset, x±sx р
parents offsprings
Parents-offspring 20 40.8±1.6 28.8±1.9 < 0.001
Parents-daughter 10 39.1±1.9 24.8±2.1 < 0.001
Parents -son 10 42.4±2.4 32.8±2.7 < 0.01
Mother- daughter 2 32.5±0.5 24.0±5.0 < 0.05
Mother -son 2 42.5±10.5 31.5±4.5 < 0.01
Father- daughter 8 40.8±2.0 25.0±2.4 < 0.001
Father-son 8 42.4±2.3 33.1±3.3 < 0.05
Mother-offspring 4 37.5±5.2 27.8±3.5 > 0.05
Father-offspring 16 41.6±1.5 29.1±2.2 < 0.001
Note. n – the number of pairs of relatives, x±sx – the average age of FAP onset and its statistical error, p – statistical
significance.
111
FAP: age of onset and association with mutations of the APC gene for assessment of the genetic anticipation
daughter and mother-son) pairs and parents-
son pairs. The statistically significant differ-
ence between the data confirmed more simi-
larities of descendant, especially sons, with
parents.
L.Roger et al. [40] suggest that the occur-
rence of the anticipation phenomenon is as-
sociated with the erosion of telomeres. The
erosion of telomeres, mainly because of cell
proliferation, may be accelerated by specific
alterations in the genes involved in CRC, such
as the APC gene [24]. Telomere/telomerase
interplay is an important mechanism involved
in both genomic stability and cellular replica-
tive potential, and its dysfunction plays a key
role in the oncogenetic process [30]. There is
general agreement that the shortening of telo-
meres plays a role in the early steps of CRC
carcinogenesis by promoting chromosomal
instability (CIN). The APC mutation and acti-
vation of the Wnt pathway in colonic epithe-
lial cells with long telomeres give rise to ade-
nomas with long telomeres; these telomeres
are stable and not prone to fusion [41].
The APC gene mutation in cells with short
telomeres gives rise to adenomas with short
telomeres that have a propensity to undergo
fusion; the resulting CIN leads to the large-
scale genomic rearrangements that can drive
the progression to malignancy. These data
therefore indicate that telomere erosion pre-
cedes the initiation of colorectal adenomage-
ne sis, and this may provide a mechanism con-
tributing to the age-associated profile of
colorectal carcinomas [40]. In vitro, hormones
and growth factors affect telomerase activity.
The sex hormones directly increase the telo-
merase reverse transcriptase (TERT) transcrip-
tion and the telomerase activity in human cells
[42, 43]. Natural and synthetic androgens can
restore telomerase activity to normal levels in
the cells in patients with TERT and TERC
mutations can be directly activated by the tu-
mor-suppressor protein c-Myc [44]. The rate
of terminal restriction fragment length shorten-
ing per year in men was found to be signifi-
cantly greater than that in women [45]. An
estrogen-responsive element is present in
TERT, so the hormone can stimulate telome-
rase [46]. This might reduce the shortening of
a telomere.
Accounting anticipation has prognostic
value, since it allows estimating an approxi-
mate average age of FAP onset during the
genetic counseling providing timely targeted
prevention. Due to autosomal dominant in-
heritance and high penetrance of FAP, the
probands and their first degree relatives should
be screened regularly by geneticist and on-
cologist. The cancer prevention and maintain-
ing a good quality of life are the main goals
of management and regular and systematic
follow-up and supportive care should be of-
fered to all patients.
REFERENCES
1. Urso EDL, Delaini GG, Campi M, Bacchelli C,
Pucciarelli S. Colorectal polyposis: clinical presen-
tation and surgical treatment. Colorectal Disease.
2014;17(1):61–6.
2. Talseth-Palmer BA. The genetic basis of colonic
adenomatous polyposis syndromes. Hered Cancer
Clin Pract. 2017;15:5.
3. Valle L. Genetic predisposition to colorectal cancer:
where we stand and future perspectives. World J
Gastroenterol. 2014;20(29):9828–49.
4. Bülow S, Faurschou Nielsen T, Bülow C, Bisga-
ard ML, Karlsen L, Moesgaard F. The incidence
rate of familial adenomatous polyposis. Results from
112
M. R. Lozynska, Y. S. Lozynskyy, A. Plawski et al.
the Danish Polyposis Register. Int J Colorectal Dis.
1996;11(2):88–91.
5. de la Chapelle A. Genetic predisposition to colorec-
tal cancer. Nat Rev Cancer. 2004;4(10):769–80.
6. Acar T, Kumkumolu Y. Our surgical experience on
familial adenomatous polyposis. Surgical Chroni-
cles. 2015; 20(1):217–20.
7. Groden J, Thliveris A, Samowitz W, Carlson M,
Gelbert L, Albertsen H, Joslyn G, Stevens J,
Spirio L, Robertson M, Sargeant l, Krapcho K,
Wolff E, Burt R, Hughes J.P., Warrington J, McPher-
son J, Wasmuth J, Le Paslier D, Abderrahim H,
Cohen D, Leppert M, White R. Identification and
characterization of the familial adenomatous pol-
yposis coli gene. Cell. 1991;66(3):589–600.
8. Kita K, Wittmann T, Nathke IS, Waterman-Sto-
rer CM. Adenomatous Polyposis Coli on microtu-
bule plus ends in cell extensions can promote mi-
crotubule net growth with or without EB1. Mol Biol
Cell. 2006; 17(5): 2331–45.
9. Gayther SA, Wells D, SenGupta SB, Chapman P,
Neale K, Tsioupra K, Delhanty JD. Regionally clus-
tered APC mutations are associated with a severe
phenotype and occur at a high frequency in new
mutation cases of adenomatous polyposis coli. Hum
Mol Genet. 1994;3(1):53–6.
10. Zhang Y, Lu G, Hu Q, Wang X, Li C, Mao Y, Cui M.
A de novo germline mutation of APC for inheritable
colon cancer in a Chinese family using multigene
next generation sequencing. Biochem Biophys Res
Commun. 2014;447(3):503–7.
11. Moisio AL, Järvinen H, Peltomäki P. Genetic and clin-
ical characterisation of familial adenomatous polyposis:
a population based study. Gut. 2002;50(6): 845–50.
12. Papp J, Kovacs ME, Matrai Z, Orosz E, Kásler M,
Børresen-Dale AL, Olah E. Contribution of APC
and MUTYH mutations to familial adenomatous
polyposis susceptibility in Hungary. Fam Cancer.
2016;15(1):85–97.
13. Lucci-Cordisco E, Risio M, Venesio T, Genuardi M. The
growing complexity of the intestinal polyposis syn-
dromes. Am J Med Genet A. 2013;161A(11):2777–87.
14. Delaini GG, Skřička T, Colucci G. Intestinal polyps
and polyposis. From genetics to treatment and fol-
low up. Italia: Springer-Verlag, 2009: 246 p.
15. Heinimann K, Müllhaupt B, Weber W, Attenhofer M,
Scott RJ, Fried M, Martinoli S, Müller H, Dobbie Z.
Phenotypic differences in familial adenomatous
polyposis based on APC gene mutation status. Gut.
1998;43(5):675–9.
16. Young J, Simms LA, Tarish J, Buttenshaw R,
Knight N, Anderson GJ, Bell A, Leggett B. A fam-
ily with attenuated familial adenomatous polyposis
due to a mutation in the alternatively spliced region
of APC exon 9. Hum Mutat. 1998;11(6):450–5.
17. Iwama T, Utsunomiya J. Anticipation phenomenon
in familial adenomatous polyposis:an analysis of its
origin. World J Gastroenterol. 2000; 6(3): 335–8.
18. McInnis MG. Anticipation: an old idea in new genes.
Am J Hum Genet. 1996;59(5):973–9.
19. Ning XH, Zhang N, Li T, Wu PJ, Wang X, Li XY,
Peng SH, Wang JY, Chen JC, Gong K. Telomere
shortening is associated with genetic anticipation in
Chinese Von Hippel-Lindau disease families. Can-
cer Res. 2014;74(14):3802–9.
20. Tabori U, Nanda S, Druker H, Lees J, Malkin D.
Younger age of cancer initiation is associated with
shorter telomere length in Li-Fraumeni syndrome.
Cancer Res. 2007;67(4):1415–8.
21. Hsu L, Zhao LP, Malone KE, Daling JR. Assessing
changes in ages at onset over successive generation:
an application to breast cancer. Genet Epidemiol.
2000;18(1):17–32.
22. McFaul CD, Greenhalf W, Earl J, Howes N, Neop-
tolemos JP, Kress R, Sina-Frey M, Rieder H, Hahn S,
Bartsch DK. European Registry of Hereditary Pan-
creatitis and Familial Pancreatic Cancer (EURO-
PAC); German National Case Collection for Famil-
ial Pancreatic Cancer (FaPaCa). Anticipation in
familial pancreatic cancer. Gut. 2006;55(2):252–8.
23. Goldberg JM, Piver MS, Jishi MF, Blumenson L.
Age at onset of ovarian cancer in women with a
strong family history of ovarian cancer. Gynecol
Oncol. 1997;66(1):3–9.
24. Bertorelle R, Rampazzo E, Pucciarelli S, Nitti D,
De Rossi A. Telomeres, telomerase and colorectal
cancer. World J Gastroenterol. 2014;20(8):1940–10.
25. Horwitz M, Goode EL, Jarvik GP. Anticipation in
familial leukemia. Am J Hum Genet. 1996; 59(5):
990–998.
113
FAP: age of onset and association with mutations of the APC gene for assessment of the genetic anticipation
26. Wiernik PH, Wang SQ, Hu XP, Marino P, Paietta E.
Age of onset evidence for anticipation in familial
non-Hodgkin's lymphoma. Br J Haematol. 2000;
108(1):72–9.
27. Goldstein AM, Clark WH Jr, Fraser MC, Tucker MA.
Apparent anticipation in familial melanoma. Mela-
noma Res. 1996;6(6):441–6.
28. Shibata D, Peinado MA, Ionov Y, Malkhosyan S,
Perucho M. Genomic instability in repeated se-
quences is an early somatic event in colorectal tu-
morigenesis that persists after transformation. Nat
Genet. 1994;6(3):273–81.
29. Bozzao C, Lastella P, Stella A. Anticipation in lynch
syndrome: where we are where we go. Curr Geno-
mics. 2011;12(7):451–65.
30. Seguí N, Pineda M, Guinó E, Borràs E, Navarro M,
Bellido F, Moreno V, Lázaro C, Blanco I, Capellá G,
Valle L. Telomere length and genetic anticipation in
Lynch syndrome. PLoS One. 2013;8(4):e61286.
31. Makuch GW, Zastavna DV, Tyrkus MN, et al.
Pat. 32044 Ukraine, IPC G01N33/49 (2006.01)
Method of DNA isolation from peripheral blood
leukocytes. patent owner SI "Institute of Hereditary
Pathology of National Academy of Medical Sci-
ences." N u200801896; appl. 14.02.2008;
publ.25.04.2008, Bull. N8/2008.
32. Plawski A, Jura J, Slomski R. Wykrywanie mutacji
punktowych w genie supresorowym APC czlowieka
metod heterodupleksów. Przyklady analiz DNA,
2001: 80–9.
33. Plawski A, Lubinski J, Banasiewicz T, et al. Muta-
tions in the APC gene were found in 42 (35 %)
Polish families with FAP, and 22 types of mutation
in the APC gene were identified. J Med Genet. 2004;
41: e11.
34. Atramentova LA, Belyaeva LV. Correlation between
family and age of manifestation of lung and colon
cancer. Genetika. 2003; 39(12):1702–9.
35. Sieber OM, Tomlinson IP, Lamlum H. The adeno-
matous polyposis coli (APC) tumour suppressor-
-genetics, function and disease. Mol Med Today.
2000;6(12):462–9. Review. Erratum in: Mol Med
Today 2001;7(1):40.
36. Aretz S, Uhlhaas S, Caspari R, Mangold E, Pagen-
stecher C, Propping P, Friedl W. Frequency and
parental origin of de novo APC mutations in famil-
ial adenomatous polyposis. Eur J Hum Genet.
2004;12(1):52–8.
37. Castellsagué E, González S, Guinó E, Stevens KN,
Borràs E, Raymond VM, Lázaro C, Blanco I, Gru-
ber SB, Capellá G. Allele-specific expression of
APC in adenomatous polyposis families. Gastroen-
terology. 2010;139(2):439–47, 447.e1.
38. Spier I, Horpaopan S, Vogt S, Uhlhaas S, Morak M,
Stienen D, Draaken M, Ludwig M, Holinski-Fe-
der E, Nöthen MM, Hoffmann P, Aretz S. Deep
intronic APC mutations explain a substantial pro-
portion of patients with familial or early-onset
adenomatous polyposis. Hum Mutat. 2012;33(7):
1045–50.
40. Roger L, Jones RE, Heppel NH, Williams GT, Samp-
son JR, Baird DM. Extensive telomere erosion in
the initiation of colorectal adenomas and its asso-
ciation with chromosomal instability. J Natl Cancer
Inst. 2013;105(16):1202–11.
41. Hoffmeyer K, Raggioli A, Rudloff S, Anton R, Hier-
holzer A, Del Valle I, Hein K, Vogt R, Kemler R.
Wnt/β-catenin signaling regulates telomerase in
stem cells and cancer cells. Science. 2012;336(6088):
1549–54.
42. Calado RT, Yewdell WT, Wilkerson KL, Regal JA,
Kajigaya S, Stratakis CA, Young NS. Sex hormones,
acting on the TERT gene, increase telomerase activ-
ity in human primary hematopoietic cells. Blood.
2009;114(11):2236–43.
43. Nanni S, Narducci M, Della Pietra L, Moretti F,
Grasselli A, De Carli P, Sacchi A, Pontecorvi A,
Farsetti A. Signaling through estrogen receptors
modulates telomerase activity in human prostate
cancer. J Clin Invest. 2002;110(2):219–27.
44. Wu KJ, Grandori C, Amacker M, Simon-Vermot N,
Polack A, Lingner J, Dalla-Favera R. Direct activa-
tion of TERT transcription by c-MYC. Nat Genet.
1999;21(2):220–4.
45. Newbold RF. The significance of telomerase activa-
tion and cellular immortalization in human cancer.
Mutagenesis. 2002;17(6):539–50.
46. Kyo S, Takakura M, Kanaya T, Zhuo W, Fujimoto K,
Nishio Y, Orimo A, Inoue M. Estrogen activates
telomerase. Cancer Res. 1999;59(23):5917–21.
114
M. R. Lozynska, Y. S. Lozynskyy, A. Plawski et al.
Сімейний аденоматозний поліпоз: зв’язок між
віком виникнення і мутаціями гена АРС для
оцінки генетичної антиципації в пацієнтів
західних областей України
М. Р. Лозинська, Ю. С. Лозинський, А. Плавскі,
Р. О. Піняжко, Н. М. Прокопчук, О. М. Федота
Мета. Визначити середній вік виникнення сімейно-
го аденоматозного поліпозу (САП) у чоловіків, жі-
нок, їх родичів, носіїв мутацій гена АРС, або ж у
хворих без підтверджених мутацій цього гена, для
оцінки антиципації у наступних поколіннях для
раннього виявлення осіб групи ризику. Методи.
Провели аналіз медичної документації, генеалогіч-
ної інформації та виконали молекулярно-генетичне
дослідження крові в 25 пробандів із аденоматозним
поліпозом. У 44,0 % пробандів було підтверджено
САП. Пробанди мали 36 родичів із цим синдромом.
Ампліфіковані фрагменти гена APC були скринова-
ні на наявність мутацій з використанням конформа-
ційного поліморфізму однониткової ДНК, гетероду-
плексного аналізу, а також аналізу кривих плавлен-
ня ампліконів із високою роздільною здатністю. Вік
початку захворювання визначали в пробандів, їх
родичів та рахували індекс антиципації (A).
Результати. Серед пацієнтів із САП було 61,7 %
чоловіків і 38,3 % жінок. Встановлено, що вік ма-
ніфестації синдрому в чоловіків становив
36,03 ± 1,44 років, а в жінок захворювання виника-
ло раніше – у віці 29,5 ± 2,43 років (р<0,01). Мутації
гена APC, включаючи 4 нові мутації, виявили в
63,6 % пробандів із САП. Найменший вік виник-
нення поліпозу спостерігали в носіїв мутації
с.3927_3931delAAAGA p.Q1309fs гена АРС. Середня
різниця у віці початку САП у батьків і їх потомства
становила 12,0 ± 1,7 років. У 3 із 4 сімей із САП,
члени яких були носіями нових мутацій, спостері-
гали переважання чоловічої статі (12:4) і явище
антиципації, а один пробанд був носієм мутації, яка
виникла de novo. Найсильнішу кореляцію за віком
виникнення САП були знайдені в парах матері-на-
щадки і батьки-сини. Статистично значуща різниця
між отриманими даними підтверджує більшу поді-
бність нащадків, особливо синів, з батьками.
Висновки. Між віком виникнення САП у пацієнтів,
носіїв мутації гена АРС (33.1±2.1 років) і віком
хворих, у яких не підтверджено мутацій цього гена
за допомогою традиційних методів (33.7±1.6 років),
не було виявлено статистично істотної різниці.
Індекс антиципації (А) у пацієнтів із САП дорівню-
вав 18,0 %. У нащадків із САП зменшення віку
виникнення захворювання порівняно з батьками не
залежало від наявності мутацій гена АРС. Облік
антиципації дозволяє оцінити середній вік початку
САП під час генетичного консультування, і, отже,
своєчасно здійснювати цільову профілактику.
К л юч ов і с л ов а: антиципація, мутації гена APC,
вік початку виникнення САП у чоловіків і жінок, сі-
мейний аденоматозний поліпоз.
Семейный аденоматозный полипоз: связь
между возрастом возникновения и спектром
мутаций гена АРС для оценки генетической
антиципации у пациентов западных областей
Украины
М. Р. Лозинская, Ю. С. Лозинский, А. Плавски,
Р. А. Пиняжко, Н. М. Прокопчук, О. М. Федота
Цель. Определить средний возраст начала семейного
аденоматозного полипоза (САП) у мужчин, женщин,
а также у родственников пробандов носителей мутаций
гена АРС, или же у больных без подтвержденных
мутаций этого гена, в последующих поколениях для
оценки явления антиципации и для раннего выявления
лиц групп риска. Методы. Провели анализ медицин-
ской документации, генеалогической информации и
выполнили молекулярно-генетическое исследование
крови в 25 пациентов с аденоматозным полипозом.
В 44,0 % пробандов с полипозом было подтверждено
САП. Пробанды имели 36 родственников с этим син-
дромом. Амплифицированные фрагменты гена APC
были скринированы на наличие мутаций с использо-
ванием конформационного полиморфизма одноните-
вой ДНК, гетеродуплексного анализа, а также анализа
кривых плавления ампликонов с высокой раздельной
способностью. Возраст начала заболевания определя-
ли у пробандов, их родственников и вычисляли индекс
антиципации (A). Результаты. Среди пациентов из
САП было 61,7 % мужчин и 38,3 % женщин. Усновлено,
что возраст начала синдрома в мужчин составлял
115
FAP: age of onset and association with mutations of the APC gene for assessment of the genetic anticipation
36,03 ± 1,44 лет, а у женщин заболевания возникало
раньше – в возрасте 29,5 ± 2,43 лет (р<0,01). Мутации
гена APC, включая 4 новые мутации, обнаружили в
63,6 % пробандов из САП. Наименьший возраст воз-
никновения полипоза наблюдали у носителей мутации
с.3927_3931delAAAGA p.Q1309fs гена АРС. Средняя
разница в возрасте начала САП у родителей и их по-
томства составила 12,0 ± 1,7 лет. У 3 из 4 семей из
САП, члены которых были носителями новых мута-
ций, наблюдали преобладание мужского пола (12:4) и
явление антиципации, а один пробанд был носителем
мутации, которая возникла de novo. Самую сильную
корреляцию по возрасту возникновения САП было
найдено в парах матери-потомки и родители-сыновья.
Статистически значимая разница между полученными
данными подтверждает большее сходство потомков,
особенно сыновей, с родителями. Выводы. Между
возрастом возникновения САП у пациентов, носителей
мутаций гена АРС (33.1 ± 2.1 года), и возрастом боль-
ных, у которых не подтверджено мутаций этого гена
с помощью традиционных методов (33.7 ± 1.6 года),
не было выявлено статистически значимой разницы.
Индекс антиципации у пациентов из САП равнялся
18,0 %. У потомков из САП уменьшение возраста
возникновения заболевания по сравнению с родителя-
ми не зависело от наличия мутаций гена АРС. Учет
антиципации позволяет оценить средний возраст на-
чала САП при генетическом консультировании, и,
следовательно, своевременно осуществлять целевую
профилактику.
К л юч е в ы е с л ов а: антиципация, мутации гена
APC, возраст начала САП у мужчин и женщин, семей-
ный аденоматозный полипоз.
Received 15.12.2016
|