Identification of rye chromosomes by flow cytogenetics
The karyotype of the cultivated rye (Secale cereale) is one of the complex plant genomes whose chromosomes are difficult to discriminate because of their similar size. Aim. The purpose of this study is to reveal the chromosome variable sites using DNA repetitive sequences as probes and to define a p...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут молекулярної біології і генетики НАН України
2017
|
Schriftenreihe: | Вiopolymers and Cell |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/152915 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Identification of rye chromosomes by flow cytogenetics / O.G. Alkhimova, O.V. Zimina // Вiopolymers and Cell. — 2017. — Т. 33, № 2. — С. 116-123. — Бібліогр.: 17 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152915 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1529152019-06-14T01:24:54Z Identification of rye chromosomes by flow cytogenetics Alkhimova, O.G. Zimina, O.V. Genomics, Transcriptomics and Proteomics The karyotype of the cultivated rye (Secale cereale) is one of the complex plant genomes whose chromosomes are difficult to discriminate because of their similar size. Aim. The purpose of this study is to reveal the chromosome variable sites using DNA repetitive sequences as probes and to define a possibility of sorting rye chromosomes. Methods. Flow cytometry analysis and karyotyping, chromosome sorting, fluorescence in situ hybridization and microscopy. Results. Different distribution of repetitive DNA sites between two rye accessions was demonstrated and an ability to sort chromosome 1 in the ‘Zhyttedaine’ rye variety was shown. This is the second case when chromosome 1R was sorted by flow cytometry in S. cereale. Conclusions. The present study revealed chromosome polymorphisms of microsatellite sequence GAA in accessions and the potential of chromosome sorting in S. cereale varieties. We also identified sequence elements including microsatellites and classic satellites which can be utilized for future research and in rye breeding. Каріотип жита посівного (Secale cereale) розглядається як один із складних рослинних геномів, хромосоми якого важко відрізнити через однаковий розмір хромосом. Мета. Виявлення варіабельних ділянок хромосом з викорис-танням повторюваних послідовностей ДНК в якості зондів і визначення можливості сортування хромосом у сортів жита. Методи. Проточна цитометрія і каріотипування, сортинг хромосом, флуоресцентна гібридизація in situ та мікроскопія. Результа-ти. Показано різний розподіл повторюваних послідовностей ДНК між двома сортами жита і здатність до сортингу хромосоми 1 у жита ‘Життєдайне’. Вдруге продемонстровано можливість сортувати хромо-сому 1R методом проточної цитометрії у жита S. cereale. Висновки. Дослідження виявило хромосомний полімор-фізм микросателітної послідовності GAA у сортів жита і потенційну можливість сортингу хромосом у Secale, і показало, що мікросателіти і класичні сателіти можуть бути використані у подальших дослідженнях, а також в селекції жита. Кариотип ржи посевной (Secale cereale) рассматривается в качестве одного из самых сложных растительных геномов, хромосомы которого трудно различить ввиду одинакового размера. Цель. Выявление вариабельных участков хромосом с помощью повторяющихся последовательностей ДНК в качестве зондов и определение возможности сортинга хромосом у сортов ржи. Методы. Проточная цитометрия и кариотипирование, сортинг хромосом, флуоресцентная гибридизация in situ и микроскопия. Результаты. Различное распределение повторяющихся последовательностей ДНК продемонстрировано у двух сортов ржи и показана возможность сортинга хромосомы 1 у ржи ‘Життедайне’. Это второй случай, когда хромосома 1R была сортирована методом проточной цитометрии у ржи S. cereale. Выводы. Настоящее исследование выявило хромосомный полиморфизм микросателлитной последовательности GAA у сортов ржи и потенциальную возможность сортинга хромосом у Secale и показало возможность использования микросателлитов и классических сателлитов для дальнейших исследований, а также в селекции ржи. 2017 Article Identification of rye chromosomes by flow cytogenetics / O.G. Alkhimova, O.V. Zimina // Вiopolymers and Cell. — 2017. — Т. 33, № 2. — С. 116-123. — Бібліогр.: 17 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.000949 http://dspace.nbuv.gov.ua/handle/123456789/152915 576.316 + 575.11 en Вiopolymers and Cell Інститут молекулярної біології і генетики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Genomics, Transcriptomics and Proteomics Genomics, Transcriptomics and Proteomics |
spellingShingle |
Genomics, Transcriptomics and Proteomics Genomics, Transcriptomics and Proteomics Alkhimova, O.G. Zimina, O.V. Identification of rye chromosomes by flow cytogenetics Вiopolymers and Cell |
description |
The karyotype of the cultivated rye (Secale cereale) is one of the complex plant genomes whose chromosomes are difficult to discriminate because of their similar size. Aim. The purpose of this study is to reveal the chromosome variable sites using DNA repetitive sequences as probes and to define a possibility of sorting rye chromosomes. Methods. Flow cytometry analysis and karyotyping, chromosome sorting, fluorescence in situ hybridization and microscopy. Results. Different distribution of repetitive DNA sites between two rye accessions was demonstrated and an ability to sort chromosome 1 in the ‘Zhyttedaine’ rye variety was shown. This is the second case when chromosome 1R was sorted by flow cytometry in S. cereale. Conclusions. The present study revealed chromosome polymorphisms of microsatellite sequence GAA in accessions and the potential of chromosome sorting in S. cereale varieties. We also identified sequence elements including microsatellites and classic satellites which can be utilized for future research and in rye breeding. |
format |
Article |
author |
Alkhimova, O.G. Zimina, O.V. |
author_facet |
Alkhimova, O.G. Zimina, O.V. |
author_sort |
Alkhimova, O.G. |
title |
Identification of rye chromosomes by flow cytogenetics |
title_short |
Identification of rye chromosomes by flow cytogenetics |
title_full |
Identification of rye chromosomes by flow cytogenetics |
title_fullStr |
Identification of rye chromosomes by flow cytogenetics |
title_full_unstemmed |
Identification of rye chromosomes by flow cytogenetics |
title_sort |
identification of rye chromosomes by flow cytogenetics |
publisher |
Інститут молекулярної біології і генетики НАН України |
publishDate |
2017 |
topic_facet |
Genomics, Transcriptomics and Proteomics |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152915 |
citation_txt |
Identification of rye chromosomes by flow cytogenetics / O.G. Alkhimova, O.V. Zimina // Вiopolymers and Cell. — 2017. — Т. 33, № 2. — С. 116-123. — Бібліогр.: 17 назв. — англ. |
series |
Вiopolymers and Cell |
work_keys_str_mv |
AT alkhimovaog identificationofryechromosomesbyflowcytogenetics AT ziminaov identificationofryechromosomesbyflowcytogenetics |
first_indexed |
2025-07-14T04:22:43Z |
last_indexed |
2025-07-14T04:22:43Z |
_version_ |
1837594799718268928 |
fulltext |
116
O. G. Alkhimova, O. V. Zimina
© 2017 O. G. Alkhimova et al.; Published by the Institute of Molecular Biology and Genetics, NAS of Ukraine on behalf
of Biopolymers and Cell. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any
medium, provided the original work is properly cited
UDC 576.316 + 575.11
Identification of rye chromosomes by flow cytogenetics
O. G. Alkhimova, O. V. Zimina
Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
o.g.alkhimova@imbg.org.ua
‘The Catchers in the rye’
The karyotype of the cultivated rye (Secale cereale) is one of the complex plant genomes
whose chromosomes are difficult to discriminate because of their similar size. Aim. The pur-
pose of this study is to reveal the chromosome variable sites using DNA repetitive sequences
as probes and to define a possibility of sorting rye chromosomes. Methods. Flow cytometry
analysis and karyotyping, chromosome sorting, fluorescence in situ hybridization and micros-
copy. Results. Different distribution of repetitive DNA sites between two rye accessions was
demonstrated and an ability to sort chromosome 1 in the ‘Zhyttedaine’ rye variety was shown.
This is the second case when chromosome 1R was sorted by flow cytometry in S. cereale.
Conclusions. The present study revealed chromosome polymorphisms of microsatellite se-
quence GAA in accessions and the potential of chromosome sorting in S. cereale varieties. We
also identified sequence elements including microsatellites and classic satellites which can be
utilized for future research and in rye breeding.
K e y w o r d s: subtelomeric heterochromatin, satellite repeats, Secale cereale, chromosome
sorting, fluorescence in situ hybridization
Introduction
A distinctive feature of the rye (Secale cereale)
chromosomes is the presence of massive
blocks of subtelomeric heterochromatin, the
size of which correlates with the copy number
of tandem repeats [1, 2]. Subtelomeric, or
telomere-associated, rye heterochromatin is
enriched with a few multi-copy tandemly or-
ganized DNA families [3, 4]. Two of them,
pSc200 and pSc250, have monomer lengths of
379 and 571 bp, respectively, and belong to
classic tandem repeats, or satellite DNA [1].
We previously demonstrated by double target
fluorescence in situ hybridization (FISH) that
both sequences occur together and give most-
ly overlapping strong signals at the ends of
most arms of the metaphase chromosomes. We
also estimated the length, composition and
distribution of monomers within the individu-
al terminal DNA arrays on separate rye chro-
mosomes for S. cereale by performing dual-
Genomics, Transcriptomics
and Proteomics
ISSN 1993-6842 (on-line); ISSN 0233-7657 (print)
Biopolymers and Cell. 2017. Vol. 33. N 2. P 116–123
doi: http://dx.doi.org/10.7124/bc.000949
mailto:o.g.alkhimova@imbg.org.ua
117
Identification of rye chromosomes by flow cytogenetics
label FISH with authentic telomeric and two
subtelomeric probes, pSc200 and pSc250, to
extended DNA fibers [1].
In human, the identification of individual
chromosomes is facilitated by using GTG-
technique and/or bivariate analysis after stain-
ing with AT- and GC-binding fluorochromes.
Due to similar size of all 14 rye chromosomes
that cannot be resolved by flow sorting, the
use of microsatellite loci, with significant lev-
els of polymorphism, have been adopted to
produce detailed chromosome maps [5, 6].
Nevertheless, flow karyotyping and chromo-
some sorting would facilitate the analysis of
the complex rye genome including construc-
tion of chromosome-specific BAC libraries and
next-generation sequencing. Chromosome
sorting would allow determination of telomere
lengths for each particular chromosome sepa-
rately. One of the most promising applications
of flow-sorted chromosomes is the construc-
tion of chromosome-specific libraries, which
can be used for different purposes [7]. Here,
we compare the rye accessions chromosome
polymorphism using flow sorting and fluores-
cence in situ hybridization with probes for
chromosome identification.
Materials and Methods
Plant material
The material analysed consisted of three cul-
tivars of rye (Secale cereale), Selgo (IEB col-
lection), Imperial seeds were kindly provided
by S. M. Reader (John Innes Centre, Norwich,
UK) and Zhyttedaine (IMBG collection).
Root tips were pretreated in ice-cold water
for 24–28 h and fixed in ethanol-acetic acid
(3:1). After preparation the slides were checked
carefully by phase contrast. The karyotypes
were established by using at least 20 high qual-
ity metaphase chromosome spreads from at
least 5 slides made from 5–7 seeds of each
genotype.
DNA probes and labelling
Two non-homologous subtelomeric repetitive
sequences, pSc200 (accession number
Z50039.1) and pSc250 (accession number
Z50040.1), were cloned from S. cereale. For
in situ hybridization, the clones were labelled
with digoxigenin-11-dUTP (Roche) and biotin-
11-dUTP (Roche) by the polymerase chain
reaction (PCR). FISH probe for 45S rDNA was
obtained by labelling the pTa71 DNA clone
containing the 26S rRNA gene with digoxi-
genin-11-dUTP. 5S rDNA is contained in the
pTa794 probe prepared from 400 bp insert of
a part of the 5S rRNA gene and labelled with
biotin-16-dUTP (Roche). Both probes were
labelled by PCR using M13 direct and reverse
primers.
Preparation of chromosome suspensions
and flow cytometry
The chromosome suspension from synchro-
nized root tip meristems was prepared as de-
scribed by Vrana et al. [7, 8]. Briefly, the ma-
jor stages of procedure included cell cycle
synchronization and accumulation of meta-
phases in root tips using hydroxyurea treatment
solution (2.5 mM). Formaldehyde fixative of
final concentration 2 % was used. Duration of
hydroxyurea treatment (18 h), recovery time
(7 h for Selgo, 8 h for Imperial and 10 h for
Zhyttedaine) and treatment with ice water
(20 h on average) were estimated for each ac-
cession individually. Preparation of mitotic
118
O. G. Alkhimova, O. V. Zimina
chromosomes solution followed by flow cyto-
metric analysis and identification of sorted
chromosomes [8, 9]. Estimation of chromo-
some purity was carried out by FISH.
Chromosome content of the peaks was deter-
mined after double FISH on sorted chromo-
somes using various combinations of probes
for pSc200 and pSc250 repeats, GAA micro-
satellite, and 5S rDNA.
Fluorescence in situ hybridization and
microscopy
The methods for chromosome slide preparation
and in situ hybridization were adapted from
the protocols developed by Schwarzacher and
Heslop-Harrison [10]. Briefly, root tips of
seedlings were fixed, partially digested with
1 % cellulase and 1 % pectinase enzymes for
60 s at 37 °C, and cells were spread on slides.
The probes were labelled, denatured (70 °C
for 5 min), applied onto the slides, then probes
and slides were denatured together at 80 °C
for 2 min. The concentration of formamide in
the hybridization mixture, containing 2×SSC,
was 40 or 50 %. After the overnight hybridiza-
tion at 37 °C, the slides were washed, with the
most stringent wash at 42 °C in 20 % for-
mamide, 0.1×SSC. The hybridization signals
were detected using antidigoxigenin conju-
gated to fluorescein isothiocyanate (Roche).
Sites of probe hybridization to chromosomes
were detected with antidigoxigenin-FITC an-
tibodies (fluorescing green) or Cy3-conjugated
streptavidin (red). After detection, the slides
were washed, counterstained with 4’6-diamid-
ino-2-phenylindole (DAPI), and analysed with
appropriate filters on a Leica epifluorescence
microscope. The slides also were evaluated
using Olympus BX 60 microscope.
Results
Chromosome sorting
The flow cytometric analysis indicated that
the composite peak of ‘Selgo’ was comprised
of chromosomes 1R–7R (Fig. 1 A). Flow
karyotype of ‘Imperial’ contains two peaks
representing the chromosomes of rye 2R–7R
whereas the shoulder contains the chromosome
1R (Fig. 1 B). We have identified this chromo-
some after sorting procedure using FISH with
two probes, subtelomeric pSc250 and pTa71
for 45S rDNA locus which defined the NOR
(Nucleolus Organizing Region). To date, rye
‘Imperial’ was the only S. cereale variety, the
flow karyotype of which differed from this
typical pattern and the peak of chromosome
1R was clearly separated from the composite
peak, and the chromosome could be sorted [9].
The flow cytometric analysis of metaphase
chromosomes isolated from rye ‘Zhyttedaine’,
resulted in flow karyotype also consisting of
two composite peaks (Fig. 2 A). The chromo-
some 1R being the smallest from the ‘Imperial’
chromosome set was considered as the only
one, which can be sorted individually. We
showed for the first time the second accession
‘Zhyttedaine’, the chromosome of which could
be sorted allowing the discrimination of the
chromosome 1 in rye karyotype. The flow-
sorted chromosome 1R after double FISH with
a FITC-labelled probe for 45S rDNA (the
probe highlights NOR in yellow-green colour)
and Cy3-labelled probe for rye specific repeat
pSc250 (red colour) is shown on the Fig. 2.
The chromosomes were counterstained with
DAPI (blue colour) (Fig. 2 B).
Flow karyotypes obtained after analysis of
DAPI stained chromosomes in S. cereale easy
119
Identification of rye chromosomes by flow cytogenetics
A
B
Fig. 1. Histogram of relative fluorescence intensity (flow karyotype) obtained after flow cytometric analysis of DAPI
stained chromosome suspension of rye lines. Composite peak of ‘Selgo’ is comprised of chromosomes 1R–7R (A).
The karyotype of ‘Imperial’ contains two peaks representing the chromosomes of rye 2R–7R and a peak of the chro-
mosome 1R (B). The peak of chromosome 1R is clearly discernible and chromosomes can be easily sorted.
A
B
Fig. 2. Flow karyotyping of rye. (A) The flow karyotypes of ‘Imperial’ and ‘Zhyttedaine’ (2n = 2X = 14) comprise a
large composite peak representing the chromosomes 2R–7R, and a peak representing the chromosome 1R. X-axis:
relative DAPI fluorescence, Y-axis: number of events. (B) The figure shows an example of the sorted chromosome 1
after DAPI staining and after FISH with probes for the pSc250 repeat and pTa71 for 45S rDNA.
120
O. G. Alkhimova, O. V. Zimina
discriminate the 1R chromosomes and allow
the sorting of great amount with a high purity,
more than 90 %, that was confirmed by FISH.
In both accessions, the 1R chromosomes
formed a separate peak on the flow karyotype
which allowed their sorting.
Chromosome location of GAA and 5S
rDNA repeats
FISH with GAA microsatellite and 5S rDNA
probes revealed polymorphisms in distribution
of the GAA repeats on the long arm of chromo-
some 5 between two rye accessions, ‘Selgo’
and ‘Zhyttedaine’ (Fig. 3).
Three chromosomes, namely 1R, 3R and
5R possess clear 5S rDNA signals on short
chromosome arms in both accessions. By con-
trast, GAA repeat recognizes microsatellite
loci differences and enables the discrimination
of chromosome pairs in S. сereale.
Discussion
Chromosome localization of repeats and
intervarietal chromosome polymorphisms
Previously, refereeing the description of the
rye chromosome nomenclature of Sybenga [5],
we compared the karyotypes of three rye va-
rieties, Petkus, Imperial and Onohoiskaya [11].
The distribution of both tandem repeats,
pSc200 and pSc250, on the chromosomes of
S. cereale showed that in all three varieties,
the chromosomes 1R (carrying the nucleolus
organizing region), 3R, 5R and 6R yielded no
intervarietal differences in the location and
number of pSc200 sites. This probe gave
strong signals at the ends of both chromosome
arms with variable intensities corresponding
to the size of heterochromatic bands.
Intervarietal polymorphism in distribution of
pSc200 was revealed on the chromosomes 2R
and 4R. While Petkus was labelled with
pSc200 on all chromosome arms, a hybridiza-
tion signal was absent from the long arm of
both homologues of Imperial chromosome 4R.
The long-range organization of tandem arrays
Fig. 3. Fluorescence in situ hybridization of GAA repeat
and 5S ribosomal DNA on rye chromosomes, S. cereale.
Double FISH with a FITC-labelled probe for GAA mic-
rosatellite (the probe highlights ribosomal DNA in green
colour) and Cy3-labelled probe for 5S rDNA repeat (red
colour). The chromosomes were counterstained with
DAPI (blue colour).
121
Identification of rye chromosomes by flow cytogenetics
was reported by us previously [1]. The rye
varieties, Petkus, Imperial and Onohoiskaya,
showed polymorphism for the presence and
the size of the pSc200 in situ hybridization
signals on the chromosome pairs, 2R, 4R and
7R, and the pSc250 signals on chromosomes,
5R, 6R and 7R. Differences in the distribution
of chromosome polymorphism imply that in-
tervarietal changes in these highly repetitive
DNA families occurred independently, despite
their juxtaposition or even overlapping loca-
tions in subtelomeric heterochromatic re-
gions [3]. The organization of tandem repeats
in high-ordered tandem arrays, localization at
the ends of all rye chromosomes by FISH map-
ping on metaphase chromosomes and absence
in wheat genome made them the reliable mar-
kers for the physical mapping of the terminal
regions in varieties, closely related relatives of
S. cereale. The diverse patterns of site hybri-
di zation for these DNA families were demon-
strated in two Dasypyrum species that evi-
denced the independent origin and confirm
their status as separate evolution units [4]. The
results are an important evidence due to the
changes observed in karyotypes.
Identification of Secale cereale chromo-
somes and rye genome analysis
In situ hybridization with two non-homologous
highly repetitive DNA sequences, pSc200 and
pSc250, showed chromosome-specific loca li-
za tion allowing the identifcation of the majo-
ri ty of rye chromosome arms [1, 11]. The
additional sites for chromosome identification
were demonstrated using GAA microsatellite
repeat and pTa794 probe, the fragment of 5S
ribosomal DNA. Since the chromosomes 1R
and 3R have similar pattern of in situ hybri di-
za tion with pSc200, pSc250 and pSc119, alto-
gether these DNA sequences allow discrimina-
tion of all S. cereale chromosomes in Selgo
and Zhyttedaine accessions (Fig. 3). Unlike
Selgo chromosomes, newly derived accession
Zhyttedaine did not show polymorphism for
the presence and size of GAA signals on the
chromosome 5R (Fig. 3).
The rye genome analysis at molecular le vel
is impeded because of its large size (1С =
7900 Mbp), i.e. 1.4 times larger than that of the
diploid ancestors of hexaploid bread wheat.
Repeats may equal more than 90 % of the rye
genome. The analysis may be facilitated by the
availability of subgenomic (chromosome spe-
cific) DNA libraries. The chromosome 1R rep-
resents not only significant part of the rye ge-
nome, but also a range of economically impor-
tant accessions of the wheat genomes [12].
The repetitive DNA sequence evolution may
be accelerated when an organism is subjected
to some stress: different environmental factors,
wide hybridization, in vitro cultivation. The
suggested tendency of cereal genomes to ex-
pand in size over evolutionary time has been
attributed mainly to retrotransposons [3, 13].
However, it is likely that the expansion of high-
ly repetitive tandemly organized DNA sequenc-
es also contribute to this process, at least as
much as retrotransposons, because of their high
copy number [1, 2]. Basically, the array homog-
enization and DSB-related repair mechanisms
generate the increased structural heterogeneity
[2, 14]. When investigating the positioning of
chromosomes during the cell cycle in live mam-
malian cells, a combined experimental and com-
putational approach has shown a striking order
of chromosomes throughout mitosis [15, 16].
Based on the tracking of labelled chromosomes
122
O. G. Alkhimova, O. V. Zimina
during chromosome segregation, these results
demonstrate that the global chromosome posi-
tions were heritable, that is the sister chromatid
separation transmits the positions to the next
cell generation.
Conclusions
All chromosomes have definite basic features,
but each individual chromosome differs by the
size and molecular organization of separate
repetitive DNA arrays. The isolation of par-
ticular plant chromosomes by flow sorting was
developed and optimized in the laboratory of
Prof. Dolezel (Institute of Experimental
Botany, Olomouc, Czech Republic) [8]. The
procedure allows identification of the alien
rearranged chromosomes on the host back-
ground and even discrimination of the chro-
mosomes differed by telomere-associated DNA
due to fine tune lazar capacity. Intervarietal
chromosome polymorphisms allow the cre-
ation of plant models for investigation of sig-
nificant processes in plant genetics such as
chromosome segregation and recombination,
somatic chromosome reduction or assort-
ment [17]. The constructed by now the chro-
mosome-specific rye libraries facilitate deci-
phering and interpretation of the complex rye
genome. The use of various rye accessions
with a diverse homologous chromosomes
banding is an excellent system approach to
research the somatic segregation phenomenon.
Acknowledgements
We thank Dr S. M. Reader (John Innes Centre,
UK) for the seeds of Imperial and Dr Marie
Kubalakova (IEB, Czech Republic) for chro-
mosome sorting and FISH on Selgo chromo-
somes.
This work was partially supported by the
European Community’s Framework Prog ram-
me FP7/2007-2013 (FP7-212019).
REFERENCES
1. Alkhimova OG, Mazurok NA, Potapova TA, Zaki-
an SM, Heslop-Harrison JS, Vershinin AV. Diverse
patterns of the tandem repeats organization in rye
chromosomes. Chromosoma. 2004; 113(1): 42–52.
2. Evtushenko EV, Levitsky VG, Elisafenko EA, Gun-
bin KV, Belousov AI, Šafář J, Doležel J, Vershi
nin AV. The expan-sion of heterochromatin blocks
in rye reflects the co-amplification of tandem repeats
and adjacent transposable elements. BMC Genomics.
2016;17:337.
3. Vershinin AV, Alkhimova AG, Heslop-Harrison JS,
Potapova TA, Omelianchuk N. Different patterns in
molecular evolution of the Triticeae. Hereditas.
2001;135(2-3):153–60.
4. Vershinin AV, Alkhimova OG, Heslop-Harrison JS.
Molecular diversification of tandemly organized
DNA sequences and heterochromatic chromosome
regions in some triticeae speciess. Chromosome Res.
1996; 4(7):517–25.
5. Sybenga J. Cytogenetics in Plant Breeding. – Berlin:
Springer, 1992; 469 p.
6. de Santana Costa MG, Leite BSF, Loges V, Silva EBC,
da Costa AS, Guimaraes WNR, Brasileiro-Vidal AC.
Chromosome markers confirm origin of Heliconia
hybrids and triploids. Euphytica. 2016;212(3):501–14.
7. Vrána J, Kubaláková M, Simková H, Cíhalíková J,
Lysák MA, Dolezel J. Flow sorting of mitotic chro-
mosomes in common wheat (Triticum aestivum L.).
Genetics. 2000;156(4):2033–41.
8. Vrána J, Cápal P, Číhalíková J, Kubaláková M,
Doležel J. Flow Sorting Plant Chromosomes. Meth-
ods Mol Biol. 2016;1429:119–34.
9. Kubaláková M, Valárik M, Barto J, Vrána J,
Cíhalíková J, Molnár-Láng M, Dolezel J. Analysis
and sorting of rye (Secale cereale L.) chromosomes
using flow cytometry. Genome. 2003;46(5):893–905.
10. Schwarzacher T, HeslopHarrison JS. Practical in
situ Hybridization. Oxford: BIOS; 2000; 250 p.
123
Identification of rye chromosomes by flow cytogenetics
11. Alkhimova AG, Heslop-Harrison JS, Shchapova AI,
Vershinin AV. Rye chromosome variability in wheat-
rye addition and substitution lines. Chromosome
Res. 1999;7(3):205–12.
12. Bartos J, Paux E, Kofler R, Havránková M, Kopec
ký D, Suchánková P, Safár J, Simková H, Town CD,
Lelley T, Feuillet C, Dolezel J. A first survey of the
rye (Secale cereale) genome composition through
BAC end sequencing of the short arm of chromo-
some 1R. BMC Plant Biol. 2008;8:95.
13. Lelley T, Eder C, Grausgruber H. Influence of
1BL.1RS wheatrye chromosome translocation on
genotype by environment interaction. J Cereal Sci.
2004; 39(3):313–20.
14. Plohl M, Luchetti A, Mestrović N, Mantovani B.
Satellite DNAs between selfishness and functio na-
li ty: structure, genomics and evolution of tandem
repeats in centromeric (hetero)chromatin. Gene.
2008;409(1–2):72–82.
15. Gerlich D, Beaudouin J, Kalbfuss B, Daigle N,
Eils R, Ellenberg J. Global chromosome positions
are transmitted through mitosis in mammalian cells.
Cell. 2003;112(6):751–64.
16. Sharma A, Wolfgruber TK, Presting GG. Tandem
repeats derived from centromeric retrotransposons.
BMC Genomics. 2013;14:142.
17. Zimina OV, Parii MF, Alkhimova OG. Loss of he-
te rozygosity at individual loci in Arabidopsis thali-
ana regenerants cultured with para-fluoropheny la-
la nine. Cytol Genet. 2016; 50(5):278–84.
Ідентифікація хромосом жита методом
флуоресцентної проточної цитометрії
О. Г. Алхімова, О. В. Зіміна
Каріотип жита посівного (Secale cereale) розглядаєть-
ся як один із складних рослинних геномів, хромосоми
якого важко відрізнити через однаковий розмір хромо-
сом. Мета. Виявлення варіабельних ділянок хромосом
з використанням повторюваних послідовностей ДНК
в якості зондів і визначення можливості сортування
хромосом у сортів жита. Методи. Проточна цитометрія
і каріотипування, сортинг хромосом, флуоресцентна
гібридизація in situ та мікроскопія. Результа ти. По ка-
зано різний розподіл повторюваних послідовностей
ДНК між двома сортами жита і здатність до сортингу
хромосоми 1 у жита ‘Життєдайне’. Вдруге продемон-
стровано можливість сортувати хромосому 1R методом
проточної цитометрії у жита S. cereale. Висновки.
Дослідження виявило хромосомний поліморфізм мік-
росателітної послідовності GAA у сортів жита і по-
тенційну можливість сортингу хромосом у Secale, і
показало, що мікросателіти і класичні сателіти можуть
бути використані у подальших дослідженнях, а також
в селекції жита.
К л юч ов і с л ов а: субтеломерний гетерохроматин,
сателітні повтори, Secale cereale, сортинг хромосом,
флуоресцентна гібридизація in situ
Идентификация хромосом ржи методом
флуоресцентной проточной цитометрии
О. Г. Алхимова, О. В. Зимина
Кариотип ржи посевной (Secale cereale) рассматрива-
ется в качестве одного из самых сложных раститель-
ных геномов, хромосомы которого трудно различить
ввиду одинакового размера. Цель. Выявление вариа-
бельных участков хромосом с помощью повторяющих-
ся последовательностей ДНК в качестве зондов и
определение возможности сортинга хромосом у сортов
ржи. Методы. Проточная цитометрия и кариотипиро-
вание, сортинг хромосом, флуоресцентная гибридиза-
ция in situ и микроскопия. Результаты. Различное
распределение повторяющихся последовательностей
ДНК продемонстрировано у двух сортов ржи и пока-
зана возможность сортинга хромосомы 1 у ржи
‘Життедайне’. Это второй случай, когда хромосома 1R
была сортирована методом проточной цитометрии у
ржи S. cereale. Выводы. Настоящее исследование
выявило хромосомный полиморфизм микросателлит-
ной последовательности GAA у сортов ржи и потен-
циальную возможность сортинга хромосом у Secale и
показало возможность использования микросателлитов
и классических сателлитов для дальнейших исследо-
ваний, а также в селекции ржи.
К л юч е в ы е с л ов а: субтеломерный гетерохрома-
тин, сателлитные повторы, Secale cereale, сортинг
хромосом, флуоресцентная гибридизация in situ.
Received 05.01.2017
|