Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety

Aim. To study anticancer activity of a series of new thiopyrano[2,3-d]thiazoles with a norbornane fragment in the molecules. The search for trypanocidal properties of target compounds. Methods. Organic synthesis, analytical and spectral methods, pharmacological screening, COMPARE and SAR analysis. R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Kryshchyshyn, A.P., Atamanyuk, D.V., Kaminskyy, D.V., Grellier, Ph., Lesyk, R.B.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут молекулярної біології і генетики НАН України 2017
Schriftenreihe:Вiopolymers and Cell
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/152926
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety / A.P. Kryshchyshyn, D.V. Atamanyuk, D.V. Kaminskyy, Ph. Grellier, R.B. Lesyk // Вiopolymers and Cell. — 2017. — Т. 33, № 3. — С. 183-205. — Бібліогр.: 40 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152926
record_format dspace
spelling irk-123456789-1529262019-06-14T01:26:09Z Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety Kryshchyshyn, A.P. Atamanyuk, D.V. Kaminskyy, D.V. Grellier, Ph. Lesyk, R.B. Bioorganic Chemistry Aim. To study anticancer activity of a series of new thiopyrano[2,3-d]thiazoles with a norbornane fragment in the molecules. The search for trypanocidal properties of target compounds. Methods. Organic synthesis, analytical and spectral methods, pharmacological screening, COMPARE and SAR analysis. Results. Fused thiopyrano[2,3-d]thiazoles bearing the norbornane moiety were synthesized and modified at the C9 and N5 positions of the main core in order to obtain the compounds with a satisfactory pharmacological profile. A number of compounds with significant level of cancer cells growth inhibition were identified; they include a hit-compound N1-(4-chlorophenyl)-2-{2-[6-oxo-5,9-dithia-7-azatetracyclo [9.2.1.02,10.04,8]tetradec-4(8)-en-3-yl]phenoxy}acetamide IId that selectively inhibited Leukemia cell lines at submicromolar concentrations. Moreover, a series of thiopyrano[2,3-d]thiazoles showed a moderate antitrypanosomal activity. Conclusions. New thiopyrano[2,3-d]thiazoles with the norbornane fragment as well as their analogues with different substituents at the N5 and C9 position were designed and synthesized. The compounds showed significant levels of anticancer activity towards the selected cancer cell lines and may be used for further optimization. The compounds with a high antitumor activity inhibited the growth of Trypanosoma brucei brucei in in vitro tests. The combined anticancer and antitrypanosomal effect of compounds is the basis for further modification and search for a possible mode of action of the target compounds. Мета. Вивчення протипухлинної та трипаноцидної активності серії нових тіопірано[2,3-d]тіазолів з норборнановим фрагментом у молекулах. Методи. органічний синтез, аналітичні та спектральні методи, фармакологічний скринінг, COMPARE та SAR аналізи. Результати. Для одержання сполук з відповідним фармакологічним профілем синтезовано нові конденсовані похідні тіопірано[2,3-d]тіазолу з норборнановим фрагментом у молекулах, які модифіковані за положеннями С9 та N5 базового гетероциклу. Ідентифіковано ряд сполук з суттєвим рівнем інгібування росту ракових клітин, серед яких сполука-хіт N1-(4-хлорофеніл)-2-{2-[6-оксо-5,9-дитіа-7-азатетрацикло[9.2.1.02,10.04,8]тетрадец-4(8)-ен-3-іл]фенокси}ацетамід IId, що селективно інгібує лінії клітин лейкемії в субмікромолярних концентраціях. Крім того, ряд тіопірано[2,3-d]тіазолів також проявляють перспекти-вну протитрипаносомну активність. Висновки. Синтезовано нові тіопірано[2,3-d]тіазоли з норборнановим фрагментом у молекулах а також їх похідні з різноманітними субституентами в положеннях N5 та C9 базової гетероцик-лічної системи. Сполуки проявили суттєвий рівень протипухлинної активності і можуть бути використані для по-дальшої оптимізації структури як потенційні протиракові агенти. Окрім того, сполуки з високим рівнем протипух-линного ефекту in vitro інгібують ріст Trypanosoma brucei brucei. Поєднання протиракової та протитрипаносомної активності синтезованих сполук є основою для наступної структурної модифікації та пошуку імовірних механізмів реалізації їх біологічної активності. Цель. Изучение антиопухолевой и трипаноцидной активности серии новых тиопирано[2,3-d]тиазолов из нор-борнановым фрагментом в молекулах. Методы. органический синтез, аналитические и спектральные методы, фармакологический скрининг, COMPARE и SAR анализы. Результаты. Для получения соединений с соответствующим фармакологическим профилем синтезированы новые производные тиопирано[2,3-d]тиазола с норборнановым фрагментом в молекулах, которые модифицированы по положениям С9 и N5 базового гетероцикла. Идентифицирован ряд соединений с существенным уровнем ингибирования роста раковых клеток, среди которых соединение-хит N1-(4-хлорфенил)-2-{2-[6-оксо-5,9-дитиа-7-азатетрацикло[9.2.1.02,10.04,8]тетрадец-4(8)-ен-3-ил]фенокси}ацетамид IId, который селективно ингибирует линии клеток лейкемии в субмикромолярных концентрациях. Кроме того, некоторые тіопірано[2,3-d]тіазолы также проявляют перспективную протитрипаносомную активность. Выводы. Синтезированы новые тиопирано[2,3-d]тиазолы с норборнановым фрагментом у молекулах, а также их производные с различными заместителями в положениях N5 и C9 базовой гетероциклической системы. Соединения проявили существенный уровень противоопухолевой активности и могут быть использованы для дальнейшей структурной оптимизации как потенциальные противораковые агенты. Кроме того, соединения с высоким уровнем противоопухолевого эффекта in vitro ингибируют рост Trypanosoma brucei brucei. Сочетание антираковой и противотрипаносомной активности синтезированных соединений может быть основой для дальнейшей оптимизации структуры и поиска возможных механизмов реализации их биологической активности. 2017 Article Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety / A.P. Kryshchyshyn, D.V. Atamanyuk, D.V. Kaminskyy, Ph. Grellier, R.B. Lesyk // Вiopolymers and Cell. — 2017. — Т. 33, № 3. — С. 183-205. — Бібліогр.: 40 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.00094F http://dspace.nbuv.gov.ua/handle/123456789/152926 615.012.1.076:547.789.6 en Вiopolymers and Cell Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Bioorganic Chemistry
Bioorganic Chemistry
spellingShingle Bioorganic Chemistry
Bioorganic Chemistry
Kryshchyshyn, A.P.
Atamanyuk, D.V.
Kaminskyy, D.V.
Grellier, Ph.
Lesyk, R.B.
Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety
Вiopolymers and Cell
description Aim. To study anticancer activity of a series of new thiopyrano[2,3-d]thiazoles with a norbornane fragment in the molecules. The search for trypanocidal properties of target compounds. Methods. Organic synthesis, analytical and spectral methods, pharmacological screening, COMPARE and SAR analysis. Results. Fused thiopyrano[2,3-d]thiazoles bearing the norbornane moiety were synthesized and modified at the C9 and N5 positions of the main core in order to obtain the compounds with a satisfactory pharmacological profile. A number of compounds with significant level of cancer cells growth inhibition were identified; they include a hit-compound N1-(4-chlorophenyl)-2-{2-[6-oxo-5,9-dithia-7-azatetracyclo [9.2.1.02,10.04,8]tetradec-4(8)-en-3-yl]phenoxy}acetamide IId that selectively inhibited Leukemia cell lines at submicromolar concentrations. Moreover, a series of thiopyrano[2,3-d]thiazoles showed a moderate antitrypanosomal activity. Conclusions. New thiopyrano[2,3-d]thiazoles with the norbornane fragment as well as their analogues with different substituents at the N5 and C9 position were designed and synthesized. The compounds showed significant levels of anticancer activity towards the selected cancer cell lines and may be used for further optimization. The compounds with a high antitumor activity inhibited the growth of Trypanosoma brucei brucei in in vitro tests. The combined anticancer and antitrypanosomal effect of compounds is the basis for further modification and search for a possible mode of action of the target compounds.
format Article
author Kryshchyshyn, A.P.
Atamanyuk, D.V.
Kaminskyy, D.V.
Grellier, Ph.
Lesyk, R.B.
author_facet Kryshchyshyn, A.P.
Atamanyuk, D.V.
Kaminskyy, D.V.
Grellier, Ph.
Lesyk, R.B.
author_sort Kryshchyshyn, A.P.
title Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety
title_short Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety
title_full Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety
title_fullStr Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety
title_full_unstemmed Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety
title_sort investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety
publisher Інститут молекулярної біології і генетики НАН України
publishDate 2017
topic_facet Bioorganic Chemistry
url http://dspace.nbuv.gov.ua/handle/123456789/152926
citation_txt Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety / A.P. Kryshchyshyn, D.V. Atamanyuk, D.V. Kaminskyy, Ph. Grellier, R.B. Lesyk // Вiopolymers and Cell. — 2017. — Т. 33, № 3. — С. 183-205. — Бібліогр.: 40 назв. — англ.
series Вiopolymers and Cell
work_keys_str_mv AT kryshchyshynap investigationofanticancerandantiparasiticactivityofthiopyrano23dthiazolesbearingnorbornanemoiety
AT atamanyukdv investigationofanticancerandantiparasiticactivityofthiopyrano23dthiazolesbearingnorbornanemoiety
AT kaminskyydv investigationofanticancerandantiparasiticactivityofthiopyrano23dthiazolesbearingnorbornanemoiety
AT grellierph investigationofanticancerandantiparasiticactivityofthiopyrano23dthiazolesbearingnorbornanemoiety
AT lesykrb investigationofanticancerandantiparasiticactivityofthiopyrano23dthiazolesbearingnorbornanemoiety
first_indexed 2025-07-14T04:41:31Z
last_indexed 2025-07-14T04:41:31Z
_version_ 1837595982573862912
fulltext 183 A. P. Kryshchyshyn, D. V. Atamanyuk, D. V. Kaminskyy © 2017 A. P. Kryshchyshyn et al.; Published by the Institute of Molecular Biology and Genetics, NAS of Ukraine on behalf of Biopolymers and Cell. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited UDC 615.012.1.076:547.789.6 Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety A. P. Kryshchyshyn1, D. V. Atamanyuk1,2, D. V. Kaminskyy1, Ph. Grellier3, R. B. Lesyk1 1 Danylo Halytsky Lviv National Medical University 69, Pekarska Str., Lviv, Ukraine, 79010 2 Emanine Ltd 23, A. Matrosova Str., Kyiv, Ukraine, 01103 3 National Museum of Natural History, UMR 7245 CNRS MCAM, Sorbonne Universités CP 52, 57 Rue Cuvier, Paris 75005, France dr_r_lesyk@org.lviv.net Aim. To study anticancer activity of a series of new thiopyrano[2,3-d]thiazoles with a norbornane fragment in the molecules. The search for trypanocidal properties of target compounds. Methods. Organic synthesis, analytical and spectral methods, pharmacological screening, COMPARE and SAR analysis. Results. Fused thiopyrano[2,3-d]thiazoles bearing the norbornane moiety were synthesized and modified at the C9 and N5 positions of the main core in order to obtain the compounds with a satisfactory pharmacological profile. A number of compounds with significant level of cancer cells growth inhibition were identified; they include a hit-compound N1-(4-chlorophenyl)-2-{2-[6-oxo- 5,9-dithia-7-azatetracyclo [9.2.1.02,10.04,8]tetradec-4(8)-en-3-yl]phenoxy}acetamide IId that selec- tively inhibited Leukemia cell lines at submicromolar concentrations. Moreover, a series of thiopyrano[2,3-d]thiazoles showed a moderate antitrypanosomal activity. Conclusions. New thiopyrano[2,3-d]thiazoles with the norbornane fragment as well as their analogues with different substituents at the N5 and C9 position were designed and synthesized. The compounds showed significant levels of anticancer acti vi ty towards the selected cancer cell lines and may be used for further optimization. The compounds with a high antitumor activity inhibited the growth of Trypanosoma brucei brucei in in vitro tests. The combined anticancer and antitrypanosomal effect of compounds is the basis for further modification and search for a possible mode of action of the target compounds. K e y w o r d s: Thiopyrano[2,3-d]thiazoles, norbornane, synthesis, anticancer activity, anti- trypanosomal activity, SAR. Introduction Thiopyranothiazole core is a good scaffold for design of new pharmacologically interesting molecules [1–6]. The most efficient method for their synthesis is based on hetero-Diels- Alder reaction of 5-ene-4-thioxo-2-thiazolidi- nones (5-eneisorhodanines). Thus, thiopyrano- Bioorganic Chemistry ISSN 1993-6842 (on-line); ISSN 0233-7657 (print) Biopolymers and Cell. 2017. Vol. 33. N 3. P 183–205 doi: http://dx.doi.org/10.7124/bc.00094F mailto:mail@mail.com 184 A. P. Kryshchyshyn, D. V. Atamanyuk, D. V. Kaminskyy et al. thiazoles are the derivatives of widely inves- tigated 4-thiazolidinones. There are a number of drug candidates and approved drugs based on 4-thiazolidinone core, such as hypoglyce- mic glytazones – PPARsγ agonists – Rosiglitazone, Pioglitazone (2,4-thiazolidinone derivatives) [7] and aldose reductase inhibi- tor – Epalrestat (rhodanine derivative) [8]; anti-inflammatory dual inhibitor of COX-2/5- LOX – Darbufelon (2-aminothiazolidinone derivative) [9]; diuretic Etozoline (2-ylidene- 4-thiazolidinone derivative) [10]; anticonvul- sant Ralitoline (2-ylidene-4-thiazolidinone derivative) etc. [11]. Despite this, modern me- dicinal chemistry is still interested in the 4-thi- azolidinone derivatives as a source of new drugs and a lot of research have been done in this area [12, 13]. Though, there are also com- ments of some scientists claiming the 4-thia- zolidinones, namely 5-ene-4-thiazolidinones (one of the most powerful subtypes of men- tioned heterocycles), as pan assay interference compounds (PAINS) due to their possible Michael acceptor functionality, wide spectrum of biological activities and low selectivity [14, 15]. The issues of PAINS remain controver- sial [12, 13]. Thiopyranothiazoles are hypoth- esized as biomimetics of the pharmacologi- cally active 5-ene-4-thiazolidinones (synthetic precursors of thiopyranothiazoles) without mentioned Michael acceptor functionality [1, 2, 6]. Taking into account the results of bio- logical activities study of thiopyranothiazoles one can conclude that these compounds might have good pharmacological profile but reveal different chemical and physical properties. The pharmacological activities associated with thiopyranothiazole core are antitumor [1, 2, 5, 6, 16, 17], antitrypanosomal [18–20], antioxi- dant and anti-inflammatory [21] etc. Moreover, our previous findings showed that introduction of norbornane fragment in thiopyranothiazole molecules contributed to their antitumor acti- vi ty with selectivity towards lung, renal, breast, leukemia and melanoma cancer types [1, 2]. A search for new anticancer agents among thiopyranothiazoles seems to be promising, and the target compounds of this work are shown in Fig. 1. A number of hypotheses has been put for- ward in order to explain possible modes of antitumor action of the thiazolidinone deriva- tives and speculatively thiopyranothiazoles. For example, a mitochondria-depended pro- apoptic mode of action related with G0/G1 arrest and an activation of ROS production; the caspase-depended and Bcl-depended path- ways are the most discussed [13, 22]. The present work is an extension of our ongoing efforts towards a search for new thi- azolidinone-based anticancer agents. Another objective of the study was to discover wheth- er there is any correlation between anticancer and antitrypanosomal activity as the latter was shown for a series of related thiopyranothia- zoles [20]. A repurposing approach is one of the currently used methods to discover new active antitrypanosomal agents [18, 23]. For example, anticancer drug Bortezomid showed excellent results in in vitro test against Trypanosome brucei inhibiting the parasites growth at nanomolar concentrations [24]. The DNA topoisomerase inhibitors (aclarubicin, doxorubicin and mitoxantrone) were also test- ed against bloodstream forms of Trypanosoma brucei and their trypanocidal activities were comparable with those of commercial antitry- panosomal drugs [25]. 185 Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety Here we addressed the screening of anti- cancer and antitrypanosomal effects in vitro of new thiopyrano[2,3-d]thiazoles with norbor- nane core and their N-3 derivatives. Materials and Methods Chemistry All chemicals were of the analytical grade and commercially available. All reagents and sol- vents were used without further purification and drying. The starting 5-eneisorhodanines (I) [1] and 2,4-thiazolidinedione-5-acetic acid [26] were synthesized as described previously. NMR spectra were determined with Varian Mercury 400 (400 MHz) spectrometer, in DMSO-d6 using tetramethylsilane as an inter- nal standard. Elemental analyses (C, H, N) were performed on a Perkin-Elmer 2400 CHN analyzer and were within ± 0.4% from the theoretical values. Mass spectra were obtained using electrospray ionization (ESI) techniques on an Agilent 1100 Series LCMS. The purity of the compounds was checked by thin-layer chromatography performed with Merck Silica Gel 60 F254 aluminum sheets. General procedure for the synthesis of 9-aryl(heteryl)-3,7-dithia-5-azatetracyc- lo[9.2.1.02,10.04,8]tetradecen-4(8)-ones-6 (II). A mixture of 5-ene-4-thioxo-2-thiazolidinone I (5 mmol), 2-norbornene (6 mmol), cata- lytic amounts of hydroquinone and acetic acid (15 mL) was heated under reflux during 1 hour and then cooled. Obtained solid prod- ucts were filtered off, dried and recrystallized from the mixture of DMF/EtOH (1:2) or acetic acid. 9 - ( 2 - P y r i d y l ) - 3 , 7 - d i t h i a - 5 - azatetracyclo[9.2.1.02,10.04,8]tetradec-4(8)-en- 6-one (IIa). Yield 68 %, mp 226–228 °C. 1H NMR (DMSO-d6) d: 1.14 m, 1.23 (d, J = 9.8 Hz), 1.35 m, 1.45 m, 1.62 m, 1.95 m, 2.10 m, 2.24 m (9H, norbornane fragment), 3.42–3.48 (m, 2H, ArCH, SCH), 7.67 (m, 1H, arom.), 7.86 (d, 1H, J = 6.8 Hz, arom.), 8.57 (s, 1H, arom.), 8.75 (d, 1H, J = 5.0 Hz, arom.), 11.05 (s, 1H, NH). LCMS (ESI) m/z 317 (97 %, (M+H+). Calcd. for C16H16N2OS2: C, S S NO O H H R1 R N H S S ON O O H R HHAr S S N H O O Ar O H S S N H Ar O S S N H Ar O S S N Ar O R Target compounds [2][6][5] Modification directions Anticancer agents Fig. 1. Structure of active thiopyra- no[2,3-d]thiazoles and target com- pounds 186 A. P. Kryshchyshyn, D. V. Atamanyuk, D. V. Kaminskyy et al. 60.73; H, 5.10; N, 8.85; Found: C, 60.00; H, 8.90; N, 9.00. 9-(4-Methyloxycarboxyphenyl)-3,7-dithia- 5-azatetracyclo[9.2.1.02,10.04,8]tetradec-4(8)- en-6-one (IIb). Yield 70 %, mp 243-245 °C. 1H NMR (DMSO-d6) d: 1.05 m, 1.18 (d, J = 10.2 Hz), 1.32 m, 1.38 m, 1.58 m, 1.89 m, 2.11(d, J = 10.1 Hz), 2.24 m (9H, norbornane fragment), 3.44 (d, 1H, J = 7.6 Hz, ArCH), 3.56 (d, 1H, J = 10.2 Hz, SCH), 3.85 (s, 3H, CH3), 7.54 (d, 2H, J = 8.0 Hz, arom.), 7.974 (d, 2H, J = 8.0 Hz, arom.), 11.53 (s, 1H, NH). LCMS (ESI) m/z 374 (98 %, (M+H+). Calcd. for C19H19NO3S2: C, 61.10; H, 5.13; N, 3.75; Found: C, 61.00; H, 5.00; N, 4.00 9-(3,5-Dimethoxy-4-hydroxyphenyl)-3,7- dithia-5-azatetracyclo-[9.2.1.02,10.04,8]tetra- dec-4(8)-en-6-one (IIc). Yield 75 %, mp >250 °C. 1H NMR (DMSO-d6) d: 1.11 m, 1.22 (d, J = 10.0 Hz), 1.33 m, 1.44 m, 1.64 m, 1.98 m, 2.16 m, 2.23 m (9H, norbornane frag- ment), 3.30 (d, 1H, J = 7.9 Hz, ArCH), 3.37 (d, 1H, J = 10.1 Hz, SCH), 3.84 (s, 6H, 2*CH3), 7.32 (brs, 2H, arom), 9.08 (s, 1H, OH), 11.26 (s, 1H, NH). Calcd. for C19H21NO4S2: C, 58.29; H, 5.41; N, 3.58; Found: C, 58.40; H, 5.60; N, 3.40. N1-(4-Chlorophenyl)-2-{2-[6-oxo-5,9- dithia-7-azatetracyclo [9.2.1.02,10.04,8]tetra- dec-4(8)-en-3-yl]phenoxy}acetamide (IId). Yield 78 %, mp 194-196°C. 1H NMR (DMSO-d6) d: 1.16 m, 1.31 m, 1.44 m, 1.63 m, 1.92 brs, 2.10 m, 2.21 m, 2,31 m (9H, norbor- nane fragment), 3.39 (d, 1H, J = 7.8 Hz, ArCH), 4.00 (d, 1H, J = 10.2 Hz, SCH), 4.68 (s, 2H, OCH2), 6.99 (m, 2H, arom.), 7.26–7.40 (m, 4H, arom.), 7.59 (d, 2H, J = 8.0 Hz, arom.), 10.02 (s, 1H, NH), 11.30 (s, 1H, NH). LCMS (ESI) m/z 499/501 (96 %, (M+H+). Calcd. for C25H23ClN2O3S2: C, 60.17; H, 4.65; N, 5.61; Found: C, 60.00; H, 4.60; N, 5.80. 9-(4-N-Dimethylaminophenyl)-3,7-dithia- 5-azatetracyclo[9.2.1.02,10.04,8]tetradec-4(8)- en-6-one (IIe). Yield 72 %, mp 246–248 °C. 1H NMR (DMSO-d6) d: 1.13 (m, 1H, norbor- nane fragment), 1,16 (t, 6H, J = 6.9 Hz, 2*CH3), 1.20 m, 1.31 m, 1.47 m, 1.64 m, 2.11 m, 2.12 (d, J = 10.0 Hz), 2.21 (d, J = 3,9 Hz) (8H, norbornane fragment), 3.17 (d, 1H, J = 7.8 Hz, ArCH), 3.34 (m, 4H, 2*CH2), 3.37 (m, 1H, SCH), 6.56 (d, 2H, J = 8.2 Hz, arom.), 7.01 (d, 2H, J = 8.2 Hz, arom.), 11.10 (s, 1H, NH). LCMS (ESI) m/z 387 (95.6 %, (M+H+). Calcd. for C21H26N2O2S2: C, 65.25; H, 6.78; N, 7.25; Found: C, 65.35; H, 6.85; N, 7.10. 9- (Th iophen-2 -y l ) -3 ,7 -d i th ia -5 - azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- one-6 (IIf). Analytical and spectral data are described [1]. 9-(4-Chlorophenyl)-3,7-di thia-5- azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- one-6 (IIg). Analytical and spectral data are described [1]. 9-(4-(3,5-Diphenyl-4,5-dihydro-pyrazol-1- yl)-phenyl)-3,7-dithia-5-azatetracyc- lo-[9.2.1.02,10.04,8]tetradecen-4(8)-one-6 (IIh). Yield 76 %, mp 133–135 °C. 1H NMR (DMSO-d6) d: 1.14 m, 1.28 m, 1.39 m, 1.62 m, 1.86 m, 2.10 m, 2.23 m, 2,32 m (9H, norbor- nane fragment), 3.39 (d, 1H, J = 7.8 Hz, ArCH), 3.48 (m, 1H, CH2CH), 3.85 (m, 1H, CH2CH), 3.94 (d, 1H, J = 10.2 Hz, SCH), 5.76 (m, 1H, CH2CH), 6.84–6.92 (m, 2H, arom.), 7.21–7.28 (m, 4H, arom.), 7.56–7.62 (m, 4H, arom.), 7.69–7.73 (brs, 4H, arom), 11.02 (s, 1H, NH). LCMS (ESI) m/z 536 (96.2 %, (M+H+). Calcd. for C32H29N3OS2: C, 71.74; H, 5.46; N, 7.84; Found: C, 72.00; H, 5.70; N, 7.60. 187 Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety 9-(4-Metoxyphenyl)-3,7-dithia-5- azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- one-6 (IIi). Analytical and spectral data are described [1]. 9-(4-Hydroxyphenyl)-3,7-dithia-5- azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- one-6 (IIj). Analytical and spectral data are described [1]. 9-(5-Nitro-2-(2-chlorobenzyloxyphenyl)- 3,7-dithia-5-azatetracyclo-[9.2.1.02,10.04,8] tetradecen-4(8)-one-6 (IIk). Yield 63 %, mp 232–233 °C. 1H NMR (DMSO-d6) d: 1.07 m, 1.21 (d, J = 9.6 Hz), 1.28 m, 1.39 m, 1.58 m, 1.92 m, 2.20 m, 2.38 m, (9H, norbornane frag- ment), 3.42 (m, 1H, ArCH), 3.99 (d, 1H, J = 9.7 Hz, SCH), 5.28 (s, 2H, OCH2), 7.22–7.24 (m, 2H,arom.), 7.30–7.40 (m, 2H, arom.), 7.90 (m, 2H, arom.), 8.22 (s, 1H, arom.), 11.54 (s, 1H, NH). LCMS (ESI) m/z 501/503 (95.6 %, (M+H+). Calcd. for C24H21ClN2O4S2: C, 57.54; H, 4.22; N, 5.59; Found: C, 57.80; H, 4.30; N, 5.40. 9-(2-Hydroxy-3-metoxyphenyl)-3,7-dithia- 5-azatetracyclo-[9.2.1.02,10.04,8]tetradecen- 4(8)-one-6 (IIl). Yield 75 %, mp 215-216 °C. 1H NMR (DMSO-d6) d: 1.05 m, 1.20 (d, J = 9.2 Hz), 1.31 m, 1.42 m, 1.60 m, 1.92 brs, 2.08 (d, J = 7.8 Hz), 2.20 brs, 2.27 m, (9H, norbor- nane fragment), 3.41 (d, 1H, J = 7.8 Hz, ArCH), 3.47 (d, 1H, J = 10.1 Hz, SCH), 3.82 (s, 3H, CH3), 6.80–6.84 (m, 1H, arom,) 6.86–6.93 (m, 2H, arom.), 8.78 (s, 1H, OH), 11.40 (s, 1H, NH). LCMS (ESI) m/z 362 (97.8 %, (M+H+). Calcd. for C18H19NO3S2: C, 59.81; H, 5.30; N, 3.87; Found: C, 60.00; H, 5.50; N, 3.70. 9 - ( 2 - N i t r o p h e n y l ) - 3 , 7 - d i t h i a - 5 - azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- one-6 (IIm). Yield 75 %, mp 236–238 °C. 1H NMR (DMSO-d6) d: 1.12m, 1.20 (d, J = 10.1 Hz), 1.32 m, 1.47 m, 1.65 m, 2.06 m, 2.12 m, 2.22 m (9H, norbornane fragment), 3.22 (d, 1H, J = 7.6 Hz, ArCH), 3.35 (d, 1H, J = 10.4 Hz, SCH), 7.22–7.28 (m, 3H, arom.),7.92 (brs, 1H, arom.), 11.12 (s, 1H, NH). LCMS (ESI) m/z 361 (96 %, (M+H+). Calcd. for C17H16N2O3S2: C, 56.65; H, 4.47; N, 7.77; Found: C, 56.85; H, 4.65; N, 7.50. 9-(3,4-Dimethoxyphenyl)-3,7-dithia-5- azatetracyclo[9.2.1.02,10.04,8]tetradecen-4(8)- one-6 (IIn). Yield 69 %, mp 242–243 °C. 1H NMR (DMSO-d6) d: 1.08m, 1.17 (d, J = 10.2 Hz), 1.35 m, 1.44 m, 1.60 m, 1.97 brs, 2.06 m, 2.22 m (9H, norbornane fragment), 3.40 (d, 1H, J = 7.9 Hz, ArCH), 3.47 (d, 1H, J = 10.1 Hz, SCH), 3.76 (s, 3H, CH3), 3.78 (s. 3H, CH3), 6,94 (d, 1H, J = 8.2 Hz, arom.), 6.96 (d, 1H, J = 8.3 Hz, arom.), 6.98 (s, 1H, arom.), 11.45 (s, 1H, NH). LCMS (ESI) m/z 376 (97 %, (M+H+). Calcd. for C19H21NO3S2: C, 60.77; H, 5.64; N, 3.73; Found: C, 60.50; H, 5.50; N, 5.80. 9-(3-Methoxy-4-hydroxyphenyl)-3,7- dithia-5-azatetracyclo[9.2.1.02,10.04,8]-tetra- decen-4(8)-one-6 (IIo). Analytical and spectral data are described [1]. General procedure for the synthesis of 2-(9-aryl(heteryl)-3,7-dythia-5-azatetracyc- lo-[9.2.1.02,10.04,8]tetradecen-4(8)-one-6-yl-5) acetic acid amides and ester (III). The mixture of appropriate compound II (3 mmol), pottasium hydroxide (3 mmol), ap- propriate N-substituted chloroacetamide or ethylchloroacetate (3.3 mmol) and catalytic amounts of KI in the medium of methanol / DMF (2:1) was heated under reflux for 3 hours and cooled. Formed precipitate was filtered and recrystallized from buthanol, acetic acid or mixture of DMF/methanol (1:1). 188 A. P. Kryshchyshyn, D. V. Atamanyuk, D. V. Kaminskyy et al. 2-(9-(4’-Chlorophenyl)-3,7-dithia-5- azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- one-6-yl-5)-N-phenyl-acetamide (IIIa). Yield 71 %, mp 105–107 °C. 1H NMR (DMSO-d6) d: 1.11 m, 1.16 (d, J = 10.0 Hz), 1.32 m, 1.41 m, 1.62 m, 2.07 m, 2.21 m, (9H, norbor- nane fragment), 3.38 (d, 1H, J = 7.8 Hz, ArCH), 3.52 (d, 1H, J = 10.1 Hz, SCH), 4.58 (brs, 2H, CH2CO), 6.72–6.78 (m, 4H, arom.), 6.94–7.05 (m, 3H, arom.), 7.12–7.15 (m, 2H, arom.), 10.98 (s, 1H, NH). LCMS (ESI) m/z 483/485 (95.6 %, (M+H+). Calcd. for C25H23ClN2O2S2: C, 62.16; H, 4.80; N, 5.80; Found: C, 62.40; H, 5.00; N, 4.60. 2-(9-(4-Chlorophenyl)-3,7-dithia-5- azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- one-6-yl-5)-N-3-methylphenyl-acetamide (IIIb). Yield 71 %, mp 164–166 °C. 1H NMR (DMSO-d6) d: 1.20 m, 1.31 m, 1.51 m, 1.62 m, 2.12 m, 2.24 m, (9H, norbornane fragment), 2.33 (s, 3H, CH3), 3.39 (d, 1H, J = 7.8 Hz, ArCH), 3.70 (d, 1H, J = 10.2 Hz, SCH), 4.58 (m, 2H, CH2CO), 7.35 (d, 2H, J = 8.2 Hz, arom.), 7.42 (d, 2H, J = 8.2 Hz, arom.), 7.50– 7.56 (m, 3H, arom), 7.68 (brs, 1H, arom.), 10.52 (s, 1H, NH). LCMS (ESI) m/z 497/498 (95.6 %, (M+H+). Calcd. for C26H25ClN2O2S2: C, 62.82; H, 5.07; N, 5.64; Found: C, 63.00; H, 5.20; N, 5.50. 2-(9-(4-Chlorophenyl)-3,7-dithia-5- azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- one-6-yl-5)-N-3-trifluoeromethylphenyl-acet- amide (IIIc). Yield 65 %, mp 176–178 °C. 1H NMR (DMSO-d6) d: 1.17 (t, J = 10.2 Hz), 1.23 (d, J = 9.8 Hz), 1.33 (t, J = 10.2 Hz), 1.49 (t, J = 10.0 Hz), 1.64 m, 2.06 m, 2.24 m, (9H, norbornane fragment), 3.32 (d, 1H, J = 7.8 Hz, ArCH), 3.55 (d, 1H, J = 10.1 Hz, SCH), 4.47 (d, 1H, J = 16.0, Hz, CH2CO), 4.60 (d, 1H, J = 16.0, Hz, CH2CO), 7.23 (d, 2H, J = 8.1 Hz, arom.), 7.61 (d, 2H, J = 8.1 Hz, arom.), 7.34– 7.37 (m, 3H, arom.), 10.16 (s, 1H, NH). LCMS (ESI) m/z 551/553 (97.2 %, (M+H+). Calcd. for C26H22ClF3N2O2S2: C, 56.67; H, 4.02; N, 5.08; Found: C, 56.50; H, 3.90; N, 5.30. 2-(9-(4-Chlorophenyl)-3,7-dithia-5- azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- one-6-yl-5)-N-4-chlorophenyl-acetamide (IIId). Yield 68 %, mp 138–140 °C. 1H NMR (DMSO-d6) d: 1.16 m, 1.22 m, 1.36 m, 1.52 m, 2.01 m, 2.14 m, 2.23 m (9H, norbornane frag- ment), 3.37–3.43 (m, 2H, ArCH, SCH), 4.94 (d, 1H, J = 16.0 Hz, CH2CO), 5.02 (d, 1H, J = 16.0 Hz, CH2CO), 7.30 (d, 2H, J = 8.6 Hz, arom.), 7.34 (d, 2H, J = 8.6 Hz, arom.), 7.52 (d, 2H, J = 8.6 Hz, arom.), 7.62 (d, 2H, J = 8.6 Hz, arom.), 10.67 (s, 1H, NH). LCMS (ESI) m/z 517/518/519 (95.6 %, (M+H+). Calcd. for C25H22Cl2N2O2S2: C, 58.02; H, 4.29; N, 5.41; Found: C, 58.20; H, 4.50; N, 5.30. 2-(9-(4-Chlorophenyl)-3,7-dithia-5- azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- one-6-yl-5)-N-4-methylphenyl-acetamide (IIIe). Yield 76 %, mp 189–191 °C. 1H NMR (DMSO-d6) d: 1.21 m, 1.27 m, 1.38 m, 1.52 m, 2.14 m, 2.23 m (9H, norbornane fragment), 2.31 (s, 3H, CH3), 3.34 (m, 1H, ArCH) 3.92 (d, 1H, J = 10.2 Hz, SCH), 4.92 (d, 1H, J = 16.2 Hz, CH2CO), 4.96 (d, 1H J = 16.2, Hz, CH2CO), 7.28 (d, 2H, J = 8.2 Hz, arom.), 7.32 (d, 2H, J = 8.0 Hz, arom.), 7.38 (d, 2H, J = 8.2 Hz, arom.), 7.54 (d, 2H, J = 8.0 Hz, arom.), 10.57 (s, 1H, NH). LCMS (ESI) m/z 497/498 (97.0 %, (M+H+). Calcd. for C26H25ClN2O2S2: C, 62.82; H, 5.07; N, 5.64; Found: C, 63.00; H, 5.20; N, 5.40. 2-(9-(4-Chlorophenyl)-3,7-dithia-5- azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- 189 Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety one-6-yl-5)-N-2-methylphenyl-acetamide (IIIf). Yield 74 %, mp 215–217 °C. 1H NMR (DMSO-d6) d: 1.22 m, 1.28 m, 1.34 m, 1.51 m, 2.14 m, 2.23 m (9H, norbornane fragment), 2.33 (s, 3H, CH3), 3.32 (d, 1H, J = 7.8 Hz, ArCH), 3.91 (d, 1H, J = 10.4 Hz, SCH), 4.87 (d, 1H, J = 16.0 Hz, CH2CO), 4.96 (d, 1H, J = 16.0 Hz, CH2CO), 7.32 (d, 2H, J = 8.4 Hz, arom.), 7.36 (d, 2H, J = 8.3 Hz, arom.), 7.42 (d, 1H, J = 8.3 Hz, arom.), 7.52–7.56 (m, 3H, arom.), 10.60 (s, 1H, NH). LCMS (ESI) m/z 497/499 (97.0 %, (M+H+). Calcd. for C26H25ClN2O2S2: C, 62.82; H, 5.07; N, 5.64; Found: C, 62.70; H, 5.00; N, 5.60. 2-(9-(4-Chlorophenyl)-3,7-dithia-5- azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- one-6-yl-5)-N-4-methoxyphenyl-acetamide (IIIg). Yield 78 %, mp 132–134 °C. 1H NMR (DMSO-d6) d: 1.18 m, 1.22 m, 1.33 m, 1.51 m, 2.12 m, 2.31 m (9H, norbornane fragment), 3.30 (d, 1H, J = 7.6 Hz, ArCH), 3.81 (s, 3H, CH3), 3.87 (d, 1H, J = 10.2 Hz, SCH), 4.52 (d, 1H, J = 16.0, Hz, CH2CO), 4.62 (d, 1H, J = 16.0, Hz, CH2CO), 7.30 (d, 2H, J = 8.4 Hz, arom.), 7.34 (d, 2H, J = 8.3 Hz, arom.), 7.52 (d, 2H, J = 8.3 Hz, arom.), 7.56 (d, 2H, J = 8.3 Hz, arom.), 10.57 (s, 1H, NH). LCMS (ESI) m/z 513/515 (97.0 %, (M+H+). Calcd. for C26H25ClN2O3S2: C, 60.87; H, 4.91; N, 5.46; Found: C, 61.00; H, 5.10; N, 4.70. 2-(9-(Thiophen-2-yl)-3,7-dithia-5- azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- one-6-yl-5)-N-4-methylphenyl-acetamide (IIIh). Yield 73 %, mp 230–232 °C. 1H NMR (DMSO-d6) d: 1.24 m, 1.30 (t, J = 9.2 Hz), 1.53 m, 1.64 m, 2.13m, 2.23 m (9H, norbor- nane fragment), 2.27 (s, 3H, CH3), 3.33 (d, 1H, J = 7.6 Hz, ArCH), 3.91 (d, 1H, J = 10.6 Hz, SCH), 4.46 (d, 1H, J = 16.0 Hz, CH2CO), 4.51 (d, 1H, J = 16.0, Hz, CH2CO), 7.10 (m, 4H, arom.), 7,41 (d, 2H, J = 8.2 arom.), 7.45 (d, 1H, J = 6.8 Hz, arom.), 10.16 (s, 1H, NH). LCMS (ESI) m/z 469 (97 %, (M+H+). Calcd. for C24H24N2O2S3: C, 61.51; H, 5.16; N, 5.98; Found: C, 61.70; H, 5.30; N, 6.10. 2-(9-(Thiophen-2-yl)-3,7-dithia-5- azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- one-6-yl-5)-N-2-trifluoriphenyl-acetamide (IIIi). Yield 69 %, mp 153–155 °C. 1H NMR (DMSO-d6) d: 1.24 m, 1.32 m, 1.54 m, 1.63 m, 2.18 m, 2.23 m (9H, norbornane fragment), 3.34 (d, 1H, J = 7.6 Hz, ArCH), 3.71 (d, 1H, J = 7.8 Hz, SCH), 4.52 (d, 1H, J = 16.0 Hz, CH2CO), 4.54 (d, 1H, J = 16.0, Hz, CH2CO), 7.05–7.10 (m, 2H, arom.), 7.25–7.30 (m, 2H, arom.), 7.36 (m, 2H, arom.), 7.40 (d, 1H, J = 7.5 Hz, arom.), 9.81 (s, 1H, NH). LCMS (ESI) m/z 523 (98.2 %, (M+H+). Calcd. for C24H21F3N2O2S3: C, 55.16; H, 4.05; N, 5.36; Found: C, 55.30; H, 4.30; N, 5.50. 2-(9-(Thiophen-2-yl)-3,7-dithia-5- azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- one-6-yl-5)-N-4-chlorophenyl-acetamide (IIIj). Yield 74 %, mp 232–234 °C. 1H NMR (DMSO-d6) d: 1.23 m, 1.28 m, 1.58 m, 1.64 m, 2.21 m, 2.24 m (9H, norbornane fragment), 3.34 (d, 1H, J = 7.2 Hz, ArCH), 3.93 (d, 1H, J = 8.8 Hz, SCH), 4.42 (d, 1H, J = 16.0 Hz, CH2CO), 4.46 (d, 1H, J = 16.0 Hz, CH2CO), 7.05 (brs, 1H, arom.), 7.12 (brs, 1H, arom.), 7.39 (d, 2H, J = 8.0 Hz, arom.), 7.60 (d, 1H, J = 4.0 Hz, arom.), 7.96 (d, 2H, J = 7.4 Hz, arom), 10.35 (s, 1H, NH). LCMS (ESI) m/z 489/491 (97.0 %, (M+H+). Calcd. for C23H21ClN2O2S3: C, 56.48; H, 4.33; N, 5.73; Found: C, 56.70; H, 4.50; N, 5.50. 2-(9-(Thiophen-2-yl)-3,7-dithia-5- azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- 190 A. P. Kryshchyshyn, D. V. Atamanyuk, D. V. Kaminskyy et al. one-6-yl-5)-N-4-metoxyphenyl-acetamide (IIIk). Yield 75 %, mp 264–266 °C. 1H NMR (DMSO-d6) d: 1.26 (d, J = 9.5 Hz) 1.35 m, 1.55 (t, J = 8.9 Hz), 1.68 m, 2.21 m, 2.38 m (9H, norbornane fragment), 3.10 (s, 3H, CH3), 3.37 (d, 1H, J = 7.7 Hz, ArCH), 3.92 (d, 1H, J = 10.7 Hz, SCH), 4.55 (d, 1H, J = 16.0 Hz, CH2CO), 4.57 (d, 1H, J = 16.0, Hz, CH2CO), 7.06 (t, 1H, J = 4.2 Hz, arom.), 7.13 (brs, 1H, arom.), 7.42 (d, 1H, J = 4.8 Hz, arom.), 7.73 (d, 2H, J = 8.2 Hz, arom.), 7.93 (d, 2H, J = 8.3 Hz, arom), 10.35 (s, 1H, NH). LCMS (ESI) m/z 485 (98.0 %, (M+H+). Calcd. for C24H24N2O3S3: C, 59.48; H, 4.99; N, 5.78; Found: C, 59.70; H, 5.10; N, 5.50. 2-(9-(Thiophen-2-yl)-3,7-dithia-5- azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- one-6-yl-5)-N-3-trifluorophenyl-acetamide (IIIl). Yield 68 %, mp 182–184 °C. 1H NMR (DMSO-d6) d: 1.26 m, 1.36 m, 1.56 m, 1.68 m, 2.21 m, 2.28 (9H, norbornane fragment), 3.38 (d, 1H, J = 7.7 Hz, ArCH), 3.92 (d, 1H, J = 10.6 Hz, SCH), 4.54 (d, 1H, J = 16.0 Hz, CH2CO), 4.57 (d, 1H, J = 16.0, Hz, CH2CO), 7.06 (m, 1H, arom.), 7,13 (brs, 1H, arom.), 7.35 (t, 1H, J = 8.3 Hz, arom.), 7.40 (d, 1H, J = 4.8 Hz, arom.), 7.51 (t, 1H, J = 7.9 Hz, arom), 7.76 (d, 1H, J = 7.9 Hz. arom.), 8.07 (s, 1H, arom), 10.57 (s, 1H, NH). LCMS (ESI) m/z 523 (97.0 %, (M+H+). Calcd. for C24H21F3N2O3S3: C, 55.16; H, 4.05; N, 5.36; Found: C, 55.00; H, 3.90; N, 5.50. 2-(9-(Thiophen-2-yl)-3,7-dithia-5- azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- one-6-yl-5)-N-3,4-dichlorophenyl-acetamide (IIIm). Yield 72 %, mp 219–221 °C. 1H NMR (DMSO-d6) d: 1.26 (d, J = 9.7 Hz), 1.38 (t, J = 9.3 Hz), 1.56 (t, J = 9.8 Hz), 1.68 m, 2.18 m, 2.28 (9H, norbornane fragment), 3.36 (d, 1H, J = 7.3 Hz, ArCH), 3.90 (d, 1H, J = 10.4 Hz, SCH), 4.52 (d, 1H, J = 16.7 Hz, CH2CO), 4.56 (d, 1H, J = 16.0 Hz, CH2CO), 7.06 (d, 1H, J = 4.7 Hz, arom.), 7.11 (brs, 1H, arom.), 7.40 (d, 1H, J = 4.73 Hz, arom.), 7.42 (m, 2H, arom.), 7.96 (s, 1H, arom), 10.51 (s, 1H, NH). LCMS (ESI) m/z 523/524/525 (96.0 %, (M+H+). Calcd. for C23H20Cl2N2O2S3: C, 52.77; H, 3.85; N, 5.35; Found: C, 52.90; H, 4.00; N, 5.20. 2-(9-(4’-Chlrophenyl)-3,7-dithia-5- azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- one-6-yl-5)-acetic acid ethyl ester (IIIn). Yield 78 %, mp 178–180 °C. 1H NMR (DMSO-d6) d: 1.16 m, 1.26 (d, J = 9.2 Hz), 1.32 m, 1.30 (t, 3H, J = 7.2 Hz, CH3),1.50 (t, J = 8.2 Hz), 1.67 (t, J = 9.0 Hz), 2.07 m, 2.21 m (9H, norbornane fragment), 3.31 (d, 1H, J = 17.6 Hz, SCH), 3.50 (d, 1H, J = 10.2 Hz, ArCH), 4.21 (q, 2H, J = 7.2 Hz, CH2CH3), 4.37 (s, 2H, CH2CO), 7.33–7.36 (m, 4H, arom.). LCMS (ESI) m/z 436/438 (96 %, (M+H+). Calcd. for C21H22ClNO3S2: C, 57.85; H, 5.09; N, 3.21; Found: C, 58.00; H, 5.20; N, 4.90. 2-(9-(4’-Chlorophenyl)-3,7-dithia-5- azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- one-6-yl-5)-acetic acid hydrazide (IIIo). A mixture of IIIn (3 mmol) and hydrazine hy- drate (4 mmol) in ethanol (20 mL) was heate under reflux for 5 h. The precipitate was fil- tered off and recrystallized from acetic acid. Yield 60 %, mp 219–221 °C. 1H NMR (400 MHz, DMSO-d6) d: 1.14 m, 1.23 (d, J = 10.3 Hz), 1.31 (t, J = 10.7 Hz), 1.48 m, 1.66 m, 2.02 m, 2.20 m, 2.26 m (9H, norbornane frag- ment), 3.32 (d, 1H, J = 7.9 Hz, ArCH), 3.52 (d, 1H, J = 9.7 Hz, SCH), 4.31 (d, 1H, J = 16.3 Hz, CH2CO), 4.41 (d, 1H, J = 16.0 Hz, CH2CO), 7.37 (m, 4H, arom.), 8.10 (brs, 1H, 191 Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety NH), 9.60 (brs, 2H, NH2). LCMS (ESI) m/z 422/424 (98%, (M+H+). Calcd for C19H20ClN3O2S2: C, 54.08; N, 9.96; S, 15.20. Found: C, 54.10; N, 9.98; S, 15.25. 4-[9-(4’-Chlorophenyl)-6-oxo-3,7-dithia- 5-azatetracyclo-[9.2.1.02,10.04,8]-tetradec-4(8)- ene-5-yl]-acetyl-1-phenyl-thiosemicarbazide (IIIt) The mixture of IIIo (3 mmol), pheny li- so thiacyanate (4 mmol) in ethanol (20 mL) was heated under reflux during 1 h and then cooled. Solid product was filtered off, washed with ethanol, diethyl eter and recrystallized from ethanol. Yield, 64 %, mp 188–190 ºC. 1H NMR (400 MHz, DMSO-d6): 1.18 m, 1.23 m, 1.37 m, 1.52 m, 2.12 m, 2.22 m, (9H, norbor- nane fragment), 3.31 (d, 1H, J = 7.8 Hz, ArCH), 3.62 (d, 1H, J = 10.7 Hz, SCH), 4.32 (d, 1H, J = 16.3 Hz, CH2CO), 4.36 (d, 1H, J = 16.3 Hz, CH2CO), 7.32 (d, 2H, J = 8.2 Hz, arom.), 7.38 (d, 2H, J = 8.2 Hz, arom.), 7.48– 7.52 (m, 5H, arom.), 8.11 (brs, 1H, NH), 9.62 (brs, 2H, NH2). LCMS (ESI) m/z 558/560 (96 %, (M+H+). Calcd for C26H25ClN4O2S3: C, 56.05; N, 10.06; S, 17.26. Found: C, 56.15; N, 10.10; S, 17.20. Dihydrazide of 2-(9-(4’-chlorophenyl)-3,7- dithia-5-azatetracyclo-[9.2.1.02,10.04,8]-tetra- decen-4(8)-one-6-yl-5)-acetic acid and 2,4-thiazolidinedione-5-acetic acid (IIIp). The solution of 2,4-thiazolidinedione-5-acetic acid chloride (3 mmol) in dioxane (3 mL) was added to the solution of IIIo (3 mmol) and triethylamine (3 mmol) in dioxane (12 mL). The mixture was heated at 80 °C during 15 min and cooled. The product of the reaction was precipitated with water. Solid precipitate was filtered off and recrystallized from ethanol. Yield 81 %, mp. 192–194 ºC (dec.). 1H NMR (400 MHz, DMSO-d6) d: 1.09 m, 1.21 m, 1.31 m, 1.45 m, 1.64 m, 1.97 m, 2.18 m, 2.25 m (9H, norbornane fragment), 3.33 (d, 1H, J = 7,7 Hz, ArCH), 3.54 (d, 1H, J = 10.5 Hz, SCH), 2.85 (dd, 1H, J = 16.5, 8.7 Hz, CH2CH), 3.06 (dd, 1H, J = 8.7, 4.0 Hz, CH2CH), 4.36 (m, 2H, CH2CO), 4.58 (dd, 1H, J = 3.6, 9.0 Hz, CHCH2), 7.38–7.43 (m, 4H, arom.), 10.26 (s, 1H, NH), 10.37 (s, 1H, NH). LCMS (ESI) m/z 580/582 (95 %, (M+H+). Calcd for C24H23ClN4O5S3: C, 49.78; N, 9.67; S, 16.61. Found: C, 49.85; N, 9.70; S, 16.60. 5-(1-Phenyl-2-mercapto-1,3,4-triazolil- methylene)-9-(4’-chlorophenyl)-3,7-dithia- 5-azatetracyclo-[9.2.1.02,10.04,8]tetradecen- 4(8)-one-6 (IIIu). The mixture of IIIt (2.5 mmol) and 10 mL of 2 % sodium hydro- xi de solution was heated under reflux during 2 h. After cooling the reaction mixture was acidified with the HCl, pH=5 and then the solid product was filtered off. The precipitate was recrystallized from the DMF : EtOH (1:2) mixture. Yield 72 %, mp > 250 ºC. 1H NMR (400 MHz, DMSO-d6) d: 1.11 m, 1.20 (d, J = 9.0 Hz), 1.30 m, 1.44 m, 1.63 m, 1.95 m, 2.15 m, 2.23 m, (9H, norbornane fragment), 3.25 (d, 1H, J = 7.6 Hz, ArCH), 3.49 (d, 1H, J = 10.5 Hz, SCH), 4,74 (d, 1H, J = 16.9 Hz, CH2CO), 4.78 (d, 1H, J = 16.9, Hz, CH2CO), 7.40–75 (m, 5H, arom), 7.56–7.60 (m, 4H, arom), 13.90 (s 1H, SH). LCMS (ESI) m/z 539/541 (96 %, (M+H+). Calcd for C26H23ClN4OS3: C, 57.92; N, 10.39; S, 17.84. Found: C, 58.03; N, 10.41; S, 17.80. General procedure for the synthesis of 2 - (9-ary l -3 ,7-di thia-5-azate tracyc - lo-[9.2.1.02,10.04,8]tetradecen-4(8)-one-6-yl-5)- acetic acid (2-oxo-1,2-dihydro-indol- 3-ylidene)-hydrazides (IIIq-s). A mixture of hydrazide IIIo (3 mmol), appropriate isatin 192 A. P. Kryshchyshyn, D. V. Atamanyuk, D. V. Kaminskyy et al. (3 mmol) in ethanol (20 mL) in the presence of acetic acid (2 mL) was heated under reflux during 5 h and then cooled. Obtained solid products were filtered off, dried and recrystal- lized from the mixture of DMF/EtOH (1:2) or acetic acid. 2-(9-(4’-Chlorophenyl)-3,7-dithia-5- azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- one-6-yl-5)-acetic acid (2-oxo-1,2-dihydroin- dol-3-ylidene)-hydrazide (IIIq). Yield 76 %, mp. 272–274 ºC. 1H NMR (400 MHz, DMSO-d6) d: 1.15 m, 1.23 (d, J = 9.7 Hz), 1.33 m, 1.47 m, 1.68 m, 2.02 m, 2.18 m, 2.25 m (9H, norbornane fragment), 3.34 (d, 1H, J = 6,7 Hz, ArCH), 3.56 (d, 1H, J = 9.9 Hz, SCH), 4.92 (d, 1H, J = 17.6 Hz, CH2CO), 5.02 (d, 1H, J = 17.6 Hz, CH2CO), 6.94 (d, 1H, J = 7.2 Hz, arom.), 7.06 (t, 1H, J = 7.7 Hz, arom.), 7.34 (t, 1H, J = 7.7 Hz, arom.), 7.41 (brs, 4H, arom.), 7.57 (d, 1H, J = 6.7 Hz, arom.), 11.26 (s, 1H, NH), 12.76 (s, 1H, NH). LCMS (ESI) m/z 552/554 (96 %, (M+H+). Calcd for C27H23ClN4O3S2: C, 58.85; H, 4.21; N, 10.17; Found: C, 59.00; H, 4.40; N, 10.00. 2-(9-(4’-Chlorophenyl)-3,7-dithia-5- azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- one-6-yl-5)-acetic acid (2-oxo-1,2-dihydro- 5-bromoindol-3-ylidene)-hydrazide (IIIr). Yield 78 %, mp. > 250 ºC. 1H NMR (400 MHz, DMSO-d6) d: 1.16 m, 1.24 m, 1.34 m, 1.48 m, 1.66 m, 2.03 m, 2.19 m, 2.23 m (9H, norbor- nane fragment), 3.34 (d, 1H, J = 7,1 Hz, ArCH), 3.54 (d, 1H, J = 10.3 Hz, SCH), 4.94 (d, 1H, J = 16.6 Hz, CH2CO), 5.02 (d, 1H, J = 16.9 Hz, CH2CO), 6.91 (d, 1H, J = 6.9 Hz, arom.), 7.41 (brs, 4H, arom.), 7.47 (d, 1H, J = 7.8 Hz, arom.), 7.72 (s, 1H, arom.), 11.47 (s, 1H, NH), 12.69 (s, 1H, NH). LCMS (ESI) m/z 629/631/632/633 (98 %, (M+H+). Calcd for C27H22BrClN4O3S2: C, 51.48; H, 3.52; N, 8.89; Found: C, 51.60; H, 3.70; N, 8.70. 2-(9-(4’-Chlorophenyl)-3,7-dithia-5- azatetracyclo-[9.2.1.02,10.04,8]tetradecen-4(8)- one-6-yl-5)-acetic acid (2-oxo-1,2-dihydro- 5-chloroindol-3-ylidene)-hydrazide (IIIs). Yield 72 %, mp. > 250 ºC. 1H NMR (400 MHz, DMSO-d6) d: 1.16 m, 1.24 (d, J = 9.7 Hz), 1.34 m, 1.48 m, 1.62 m, 2.03 m, 2.19 (d, J = 9.6 Hz), 2.25 m (9H, norbornane fragment), 3.33 (d, 1H, J = 7,3 Hz, ArCH), 3.56 (d, 1H, J = 10.3 Hz, SCH), 4.98 (m, 2H, CH2CO), 6.94 (d, 1H, J = 8.0 Hz, arom.), 7.33 (d, 1H, J = 7.6 Hz, arom.), 7.41 (brs, 4H, arom.), 7.58 (s, 1H, arom.), 11.38 (s, 1H, NH), 12.67 (s, 1H, NH). LCMS (ESI) m/z 586/588 (95%, (M+H+). Calcd for C27H22Cl2N4O3S2: C, 55.39; H, 3.79; N, 9.57; Found: C, 55.60; H, 4.00; N, 9.40. Pharmacology Anticancer activity screening. In vitro cell line screening of anticancer activity of the synthe- sized compounds was carried out at the National Cancer Institute within Developmental Therapeutic Program (www.dtp.nci.nih.gov). Anticancer assays were performed according to the US NCI protocol, which was described elsewhere [27–29]. Antitrypanosomal activity screening. Bloodstream forms of Trypanosoma brucei brucei (Tbb) strain 90-13 were cultured in HMI9 medium supplemented with 10 % FCS at 37 °C in an atmosphere of 5 % CO2 [30]. In all experiments, log-phase cell cultures were harvested by centrifugation at 3000×g and im- mediately used. Drug assays were based on the conversion of a redox-sensitive dye (resa- zurin) to a fluorescent product by viable cells [31]. Drug stock solutions were prepared 193 Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety in DMSO. Tbb bloodstream forms (105 cells/ mL) were cultured in 96-well plates either in the absence or in the presence of different concentrations of inhibitors in a final volume of 200 ml. After the 72 h incubation, resa- zurin solution was added in each well at the final concentration of 45 mM and fluorescence was measured at 530 nm and 590 nm absor- bance after further 4 h incubation. The percent- age of inhibition of parasite growth rate was calculated by comparing the fluorescence of parasites maintained in the presence of drug to that in the absence of drug. DMSO was used as a control. Concentration inhibiting 50% of parasite growth (IC50) value was given as the mean +/- the standard deviation of three inde- pendent experiments. Results and Discussion Chemistry An approach to the target compounds synthesis was based on the developed protocol utili zing 5-eneisorhodanines as heterodienes and nor- bornene as dienophile in the hetero-Diels-Alder reaction following our previous fin dings [1, 2]. This approach was proved to be an efficient regio- and stereoselective tool for the function- alized thiazolothiopyrane core formation [4, 32]. One of the promising directions of thia- zolothiopyrane optimization is modification of the C5-fragment of the starting 5-ene- isorhodanines [5]. For this purpose different 5-eneisorhodanines with bulky benzylidene fragment and heterocyclic fragments at C5 po- sition, including substances bearing substituted phenolic OH group [33, 34] (Scheme 1), have been used. Hetero-Diels-Alder reaction of start- ing 5-ene-4-thioxothiazolidin-2-ones (I) and norbonene led to the target 9-aryl(heteryl)-3,7- dithia-5-azatetracyclo[9.2.1.02,10.04,8]tetradecen- 4(8)-ones-6 (II) with high yields. Introduction of a variety of substituents at the N3 position of the thiazole ring is another efficient approach to the thiazolothiopyrane core modification in order to obtain new bio- S N HS Ar(Het) O S N HS O H Ar(Het) H H N N Ph Ph O N H O Cl O Cl O2N I Ar(Het) IIa pyridin-2-yl IIb 4-MeOOCC6H4 IIc 3,5-(MeO)2-4-OH-C6H2 IId A IIe 4-Et2N-C6H4 IIf Thiophen-2-yl IIg 4-Cl-C6H4 IIh B IIi 4-OMe-C6H4 IIj 4-OH-C6H4 IIk C IIl 3-(MeO)-2-OH-C6H3 IIm 3-NO2-C6H4 IIn 3,4-(MeO)2-C6H3 IIo 4-OH-3-OEt-C6H3 B II A C Scheme.1. General scheme of the target 9-aryl(heteryl)-3,7-dithia-5-azatetracyclo[9.2.1.02,10.04,8]tetradecen-4(8)- ones-6 (II) synthesis 194 A. P. Kryshchyshyn, D. V. Atamanyuk, D. V. Kaminskyy et al. logically active analogues [26, 35]. One more argument in favor of this approach is a de- creased toxicity of the N-substituted structur- ally related 4-thiazolidinones [36]. This goal was achieved via the alkylation reaction and further modification of the exocyclic func- tional groups. Synthetic protocol included in situ 9-aryl(heteryl)-3,7-dithia-5-azatetracyc- lo[9.2.1.02,10.04,8]tetradecen-4(8)-ones-6 N-potassium salts formation. A series of N-substituted chloroacetamides were used as alkylating agents. Modification of carboxylic group at N3 of thiazolidinone fragment yielded compounds IIIo, IIIp and IIIu. N-(4-Chlorophenyl)-2-(9- (4-chlorophenyl)-3,7-dythia-5-azatetracyc- lo-[9.2.1.02,10.04,8]tetradecen-4(8)-one-6-yl-5) acetic acid hydrazide IIIo was synthesized in the reaction of appropriate ester IIIn with hydrazine hydrate in the ethanol medium. IIIp S N HS O H Ar(Het) H H S NS O H Ar(Het) H H N H O Cl N H O R R Cl S Cl O S NH O O Cl O O S NS O H H H O O Cl S NS O H H H N H O NH2 Cl S N S OH H H N H O N Cl N HO R S NS O H H H N H O N H Cl O S NH O O S N S O H H H N H O N H Cl N H S Ph S NS O H H H Cl N N N SH KOH III A B KOH 2795 NH2-NH2 PhNCS NaOH IIIu Ar(Het) R IIIa A H IIIb A 3-Me IIIc A 3-CF3 IIId A 4-Cl IIIe A 4-Me IIIf A 2-Me IIIg A 4-MeO IIIh B 4-Me IIIi B 2-CF3 IIIj B 4-Cl IIIk B 4-OMe IIIl B 3-CF3 IIIm B 3,4-Cl2 IIIn R IIIq H IIIr Br IIIs Cl IIIo IIIp II IIIt Scheme.2. General scheme of the N-substituted 9-aryl(heteryl)-3,7-dithia-5-azatetracyclo[9.2.1.02,10.04,8]tetradecen- 4(8)-ones-6 synthesis 195 Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety was synthesized in acylation reaction of hy- drazide IIIo by 2,4-thiazolidinedione-5-acetic acid chloride. Compound IIIu was obtained based on hydrazide IIIo in the reaction with phenylisothiocyanate yielding 4-[9-(4’-chlo- ro phenyl)-6-oxo-3,7-dithia-5-azatetracyclo- [9.2.1.02,10.04,8]-tetradecen-4(8)-ene-5-yl]- acetyl-1-phenyl-thiosemicarbazide via known approach. Phenylthiosemicarbazide fragment in the basic medium was cyclized giving com- pound IIIu with 1,3,4-triazole fragment at N5 position of the thiopyranothiazole core. Compounds IIIq-IIIs were synthesized in the reaction of hydrazide IIIo with isatins in eth- anol medium. The purity and structure of synthesized compounds were confirmed by the analytical and spectral data. 1H NMR spectra of the syn- thesized compounds showed classic system of doublets, triplets and multiplets at δ 1.10– 3.30 ppm characteristic for norbornane frag- ment. A signal of the CH-group’s proton linked to the aromatic ring shows doublet at δ 3.36– 3.98 ppm and is often overlapped with the norbornane proton signals. In the most cases, signal of the N-CH2-CO group corresponds to two doublets of the diastereotopic methylene protons with the spin-spin coupling constant ~16.0 Hz that is caused by the diastereotopi- ci ty of the protons of methylene group. The AMX-system in the form of 3 doublets of doublets is characteristic for CH2-CH group (compounds IIIp and IIi). Anticancer activity Compounds IIb, IIh, IIIh were selected for primary screening on three tumor cell lines: NCI-H460 (Lung cancer), MCF7 (Breast can- cer), SF-268 (CNS cancer) at 10-4M concentra- tion. These compounds did not show signifi- cant growth inhibition of mentioned cancer cell lines. Moreover, the derivative with thio- phene ring in the molecule even increased tumor cell growth (data not shown). The compounds IIc, IIe, IIIn and IIIu were evaluated at one dose assay towards approxi- mately 60 cell lines (concentration 10-5 M). The human tumor cell lines represent all forms of cancer (such as, non-small cell lung cancer, colon cancer, breast cancer, ovarian cancer, leukemia, renal cancer, melanoma, prostate cancer). In the screening protocol, each cell line was inoculated and pre-incubated for 24– 48 h on a microtiter plate. Test agents were then added at a single concentration and the culture was incubated for further 48 h. The end point determinations were made with a protein binding dye, sulforhodamine B. The results for each test agent were reported as the percent growth (GP) of the treated cells compared to the untreated control cells. The screening re- sults are shown in Table 1. All the tested compounds showed rather good growth inhibition levels against Leukemia cell lines. The best growth inhibition results against Leukemia panel were observed for IIe: cell lines CCRF-CEM (GI = 8.12 %) and HL- 60(TB) (GI = –44.16 %) and for IIc cell lines CCRF-CEM (GI = 7.01 %). These data cohere with our previously findings about leukemia selective action of the related thiazolidi- nones [13]. The latter compound also inhib- ited Non-small cell lung cancer line NCI-H522 (GI = 8.12 %). Compound IIIn inhibited growth of Leukemia cell lines and showed cytostatic effect on HCT-15 line of Colon can- cer (GI = –100 %). Complication of the basic core with triazole cycle did not influence the 196 A. P. Kryshchyshyn, D. V. Atamanyuk, D. V. Kaminskyy et al. activity level, so IIIu showed only moderate anti-tumor activity with the best GI against renal cancer cell line UO-31 (GI = 29.35 %). Finally, the compounds IIIn and IIIu were selected for an advanced assay against a pa nel of approximately sixty tumor cell lines at 10- fold dilutions of five concentrations (0.01– 100 mM). Additionally, compounds IIa, IId, IIId, IIIg, were involved into the study with- out prescreening. The percentage of growth was evaluated spectrophotometrically versus controls not treated with test agents after 48-h exposure and using SRB protein assay to es- timate cell viability or growth. The dose-re- sponse parameters were calculated for each cell line: GI50 – molar concentration of the compound that inhibits 50 % net cell growth; TGI – molar concentration of the compound leading to the total inhibition; and LC50 – mo- lar concentration of the compound leading to 50 % net cell death. Furthermore, a mean graph midpoints (MG_MID) were calculated Table 1. Anticancer screening data (one dose assay, 10 μM). Comp. Mean growth. % Range of growth % The most sensitive cell lines GP% of the most sensitive cell lines Positive cytostatic effecta IIc 82.30 7.01 to 112.94 CCRF-CEM /L HL-60(TB) /L NCI-H522 /NscLC HOP-92 /NscLC HS 578T /BC 7.01 53.79 –5.03 40.77 53.61 3/56 IIe 89.71 -44.16 to 136.08 HL-60(TB) /L CCRF-CEM /L SR /L K-562 /L –44.16 8.12 37.85 52.77 3/57 IIIn 63.53 -100.00 to 92.68 CCRF-CEM /L K-562 /L HCT-116 /CC HCT-15 /CC HT-29 /CC SK-MEL-5 /M CAKI-1 /Rc UO-31 /Rc PC-3 /PC T-47D /BC 13.40 29.06 38.78 –100.00 50.49 41.34 22.75 50.33 42.85 38.85 8/59 IIIu 77.84 29.35 to 116.31 SF-295 /CNSC IGROV1 /OC UO-31 /Rc MCF7 /BC 33.33 50.21 29.35 46.73 3/59 a Ratio between number of cell lines with percent growth from 0 to 50 and total number of cell lines. L – Leukemia; NscLC- Non-Small Cell Lung Cancer; BC – Breast cancer; CC – Colon Cancer; OC – Ovarian Cancer; RC – Renal Cancer; M – Melanoma; CNSC – CNS Cancer 197 Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety for GI50, giving an average activity parameter over all cell lines for the tested compound. The meanings of the GI50 at the range of concentra- tions for the tested compounds are given in the table 2. Compound IIa with pyridine fragment at the C9 position and unsubstituted N5 posi- tion didn’t show significant levels of logGI50 (from –4.00 to –4.48) and was the less active compound among tested. Better results were observed for the compounds bearing p-Cl- phenyl fragment at the C9. Compound IIIg selectively inhibited growth of Leukemia cell lines with the best logGI50 level of –5.36 against SR line. Derivatives IIId and IIIu showed significant cytostatic effects towards all tested cell lines with the MID of –4.98 and –5.09 respectively. Though, the ester IIIn, in general, did not inhibit the cancer cell lines’ growth, except some Leukemia lines: HL- 60(TB) (logGI50 = –5,06) and RPMI-8226 (log GI50= –4,81). The highest cytostatic effect was observed for the compound IId, which selec- tively inhibited Leukemia cell lines at submi- cromolar concentrations: logGI50= –6.03 (HL- 60(TB) line), logGI50= –7.37 (SR line), log- GI50= < –8.00 (MOLT-4 line). Table 2. Total values of the in-depth in vitro anticancer activity screening in 5 concentrations (10−4– 10−8 M). Cancer cell Concentration of the compound that inhibits 50 % net cell growth, logGI50 lines IIa IId* IIIg IIId IIIu IIIn Leukemia CCRF-CEM HL-60(TB) K-562 MOLT- 4 RPMI-8226 SR ND -4.44 -4.43 -4.48 -4.19 -4.30 ND/-4.20 -6.03/-4.60 -4.57/-4.38 <-8.00/-4.55 -4.61/-4.24 -7.37/-4.72 -4.03 -4.26 -4.50 -4.46 -4.49 -5.36 -5.35 -5.23 -5.52 -5.23 -5.50 -5.72 -5.48 -4.86 -5.32 -5.25 -5.30 -5.48 -4.11 -5.06 >-4.00 >-4.00 -4.81 >-4.00 NSC lung cancer A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H23 NCI-H322M NCI-H522 NCI-H460 -4.18 >-4.00 ND -4.21 >-4.00 >-4.00 >-4.00 >-4.00 -4.12 -4.16/-4.26 -4.51/-4.10 ND>/-4.00 -4.76/-4.59 >-4.00/>-4.00 >-4.00>-4.00 >-4.00/-4.47 -4.29/-4.44 -4.18/-4.06 >-4.00 >-4.00 >-4.00 -4.99 >-4.00 >-4.00 >-4.00 >-4.00 ND -4.67 -4.75 -4.91 -5.36 -4.71 -5.35 -5.45 -5.45 -4.86 -5.04 -5.27 -4.70 -5.21 -5.02 -5.04 -4.92 ND -5.28 -4.08 >-4.00 >-4.00 -4.42 >-4.00 -4.20 >-4.00 -4.21 -4.21 Colon cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 -4.08 >-4.00 -4.24 -4.21 -4.34 >-4.00 >-4.00 >-4.00/-4.55 >-4.00/>-4.00 -4.43/-4.39 -4.21/-4.17 -4.04/-4.07 -4.07/-4.37 >-4.00/>-4.00 >-4.00 ND -4.78 >-4.00 -4.21 >-4.00 >-4.00 -5.22 ND -5.67 -4.83 -5.58 -5.29 -5.30 -4.83 -5.17 -5.05 -5.11 -4.91 -5.09 -4.86 -4.03 ND -4.42 >-4.00 -4.32 -4.14 >-4.00 198 A. P. Kryshchyshyn, D. V. Atamanyuk, D. V. Kaminskyy et al. CNS cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251 >-4.00 -4.08 >-4.00 >-4.00 -4.44 -4.05 >-4.00/-4.26 >-4.00/-4.16 >-4.00/>-4.00 >-4.00/>-4.00 -4.18/-4.53 -4.25/-4.15 >-4.00 >-4.00 >-4.00 >-4.00 -4.07 >-4.00 -4.56 -5.19 -5.33 -4.99 >-4.00 -4.84 -4.99 -5.47 -5.09 -4.87 -5.33 -5.26 >-4.00 -4.08 >-4.00 >-4.00 -4.27 >-4.00 Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62 -4.14 >-4.00 ND >-4.00 >-4.00 -4.37 -4.47 >-4.00 -4.28 -4.04/>-4.00 >-4.00/-4.33 ND/-4.07 >-4.00/-4.17 >-4.00/>-4.00 >-4.00/>-4.00 -4.37/>-4.00 >-4.00/>-4.00 -4.26/-4.27 >-4.00 >-4.00 -4.36 >-4.00 >-4.00 >-4.00 >-4.00 >-4.00 >-4.00 -5.28 >-4.00 -5.52 -5.40 -4.34 -4.89 -4.98 -4.32 -5.36 -4.98 -4.74 ND -5.24 -4.94 -4.99 -5.30 -4.92 -5.65 -4.18 -4.17 >-4.00 >-4.00 >-4.00 -4.77 -4.47 -4.13 >-4.00 Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3 >-4.00 -4.15 -4.34 >-4.00 >-4.00 >-4.00 >-4.00 >-4.00/-4.69 >-4.00/-4.35 >-4.00/-4.26 >-4.00/>-4.00 >-4.00/>-4.00 >-4.00/>-4.00 >-4.00/>-4.00 >-4.00 >-4.00 -4.33 -4.63 >-4.00 -4.20 >-4.00 -5.05 -4.47 -4.37 -5.91 -4.52 -4.99 >-4.00 -4.95 -4.92 -5.09 -4.66 -4.76 -4.94 -4.70 >-4.00 >-4.00 -4.40 >-4.00 >-4.00 -4.20 >-4.00 Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31 >-4.00 >-4.00 -4.10 -4.14 ND >-4.00 -4.12 -4.28 >-4.00/>-4.00 >-4.00/>-4.00 >-4.00/>-4.00 >-4.00/-4.32 -4.34/-4.13 >-4.00/-4.12 >-4.00/-4.23 -4.00/-4.35 >-4.00 >-4.00 >-4.00 >-4.00 >-4.00 >-4.00 >-4.00 >-4.00 -5.12 -4.01 -4.88 -4.72 -4.43 -4.99 -5.57 -4.63 -5.19 -5.03 -4.85 -5.42 -5.72 -5.32 -4.57 -5.13 >-4.00 >-4.00 >-4.00 >-4.00 -4.09 >-4.00 >-4.00 >-4.00 Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 -4.08 -4.07 -4.17 -4.25 -4.15 -4.09/>-4.00 -4.49/-4.53 >-4.00/>-4.00 >-4.00/>-4.00 -4.04/-5.10 >-4.00 -4.69 >-4.00 >-4.00 >-4.00 -4.93 -5.66 >-4.00 -4.72 -4.82 -5.30 -4.92 -4.96 -5.34 -5.16 -4.13 >-4.00 -4.24 -4.10 -4.42 Prostate Cancer PC-3 DU-145 -4.06 -4.03 -4.55/-4.56 -4.64/>-4.00 -4.71 ND -5.15 ND -5.43 -4.82 ND >-4.00 Quantity of the “sensitive lines”a 33/56 (59%) 25/56/36/59 (45%)/(61%) 16/57 (28%) 53/57 (93%) 57/57 (100%) 26/57 (46%) * data of two independent studies; ND – not investigated a s/t – ratio of sensitive lines (logGI50<−4.00) to the total number of tested lines. 199 Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety COMPARE analysis The obtained results of the tested compounds’ antitumor activity led us to establishing a pos- sible mode of their action. For this purpose COMPARE analysis was performed. NCI’s COMPARE algorithm [37, 38] allows estab- lishing possible biochemical mechanisms of action of the novel compounds on the basis of their in vitro activity profiles when comparing with those of standard agents. We performed COMPARE computations for the compounds IIa, IIc, IId, IIe, IIId, IIIg, IIIn, and IIIu against the NCI “Standard Agents” database at the GI50 level (Table 3). Unfortunately, the calculated Pearson cor- relation coefficients (PCC) did not indicate cytotoxicity mechanisms of the tested com- pounds with high probability. The highest cor- relation at the GI50 level was observed for the compound IId (PCC = 0.661) with alkylating agent fluorodopan. Interestingly, other 4-azolidinone derivatives also have significant value of correlation coefficients to the above- mentioned substance [26, 39–40]. Pearson correlation coefficients exceeding 0.6 were also calculated for the IIId (PCC = 0.631) with hydroquinone ansamycin antibiotic macbecin II, and for IIe (PCC = 0.603) with hydroxyurea which is the ribonucleotide reductase inhibitor and belongs to the class of antimetabolites. Probably, the PCC < 0.5 for the hit-compound IIIu indicates other molecular mechanisms underlying its anticancer effect. Antitrypanosomal activity Antitrypanosomal activity of a series of 9-aryl(heteryl)-3,7-dithia-5-azatetracyc- lo[9.2.1.02,10.04,8]tetradecen-4(8)-ones and N-substituted analogues was evaluated in the in vitro assay against Trypanosoma brucei brucei. All compounds were first tested at a range of concentrations. IC50 values were further derived from the dose-response curves. Most of the tested compounds showed mo- de ra te trypanocidal activity at micromolar range of concentrations. Though, some sub- stituents in the 9th position of the main scaffold increased the activity, e.g. ether moiety with the nitrophenyl fragment in IIk (IC50 = Table 3. COMPARE analysis results Comp. PCC Target Mode of actiona IIa 0.482 thalicarpine p-glycoprotein inhibitor, arrests cancer cells at the G2/M and G1 phase IIc 0.584 fluorodopan alkylating agent IId 0.661 fluorodopan alkylating agent IIe 0.603 hydroxyurea ribonucleotide reductase inhibitor IIId 0.631 macbecin II antitumor antibiotic IIIg 0.538 CCNU alkylating agent IIIn 0.45 trimethyltrimethylolmelamin - IIIu 0.499 methyl-CCNU alkylating agent a Putative mechanisms of action were identified with the use of literature sources; PCC – Pearson correlation coeffi- cients 200 A. P. Kryshchyshyn, D. V. Atamanyuk, D. V. Kaminskyy et al. Table 4. IC50 values against Trypanosoma brucei brucei Compound S S N O Ar R H IC50, µM Ar R IIi OMe H 21.99 IIj O H 20.52 IIk O Cl N+ O O H 4.17 IIl OH OMe H 22.68 IIm N+ O O H 23.45 IIn OMe OMe H 20.24 IIb O OMe H 14.46 IIo O OEt H 17.84 4.17 µM) or p-chlorophenyl substituent in IIg (IC50 = 3.72 µM). p-Oxomethyl- (IIf) and p-oxophenyl (IIj) substituents negatively influ- ence trypanocidal properties. Anticancer activity levels were also low for these compounds, but they were highly active towards selected cancer cell lines (IIf: log GI50 = –7.01 melanoma SK-MEL-2; IIj: log GI50 = <–8.00 renal cancer RXF-393). An interesting situation was observed for the compounds IIf with thiophene fragment, in- troduction of which led to the significant antitrypanosomal activity decrease; whilst its N-substituted derivatives inhibited the para- 201 Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety site growth at the concentrations 10 times lower. Comparing anticancer profile of the tested compounds, it is worth to mention that IIg selectively inhibited growth of the Leukemia cell lines (log GI50 = –5.16, –5.59) as well as its N-substituted derivative IIIg; and both have shown trypanocidal effects. Conclusions A series of novel thiopyranothiazole deriva- tives were synthesized and their anticancer activity was investigated. Being moderately active towards approximately 60 tumor cell lines, all tested compounds showed rather good growth inhibition against Leukemia cell lines. Chemical structures of the identified hit-com- IIf S H 53.81 IIIh O N H Me 7.47 IIIi O N H CF3 6.31 IIIj O N H Cl 7.16 IIIk O N H OMe 4.13 IIIl O N H CF3 7.65 IIIm O N H Cl Cl 7.64 IIg Cl H 3.72 IIIg O N H OMe 3.9 IIIs O N H N N HO Cl 13.32 202 A. P. Kryshchyshyn, D. V. Atamanyuk, D. V. Kaminskyy et al. pounds IId and IIIu indicate that the presence of the arylidene and heterocyclic fragments in the basic system enhances the antitumor effect of such compounds. To establish possible bio- chemical mechanisms of the action of novel compounds the COMPARE analysis was per- formed showing correlation at the GI50 level for IId (PCC = 0.661) with alkylating agent fluorodopan. A number of 9-aryl(heteryl)-3,7- dithia-5-azatetracyclo-[9.2.1.02,10.04,8]-tetra- decen-4(8)-ones were tested in vitro against Trypanosoma brucei brucei. Thiopyra no thi- azo les with different arylidene fragments in the N5 position showed higher inhibition le vel than their N-unsubstituted analogues. Inte res- ting is dual antitumor and antitrypanosomal effect observed for some compounds that may be used for establishing molecular modes of action for this class of compounds. Acknowledgement We thank Dr. V.L. Narayanan from the Drug Synthesis and Chemistry Branch, National Cancer Institute, Bethesda, MD, USA, for in vitro evaluation of anticancer activity. This work was partially supported by the Ministry of Education and Science of Ukraine (Ukrainian-France program “Dnipro” M/188- 2015; M/71-2016). REFERENCES 1. Lesyk R, Zimenkovsky B, Atamanyuk D, Jensen F, Kieć-Kononowicz K, Gzella A. Anticancer thio py- ra no[2,3-d][1,3]thiazol-2-ones with norbornane moiety. Synthesis, cytotoxicity, physico-chemical properties, and computational studies. Bioorg Med Chem. 2006; 14(15):5230–40. 2. Atamanyuk D, Zimenkovsky B, Lesyk R. Synthesis and anticancer activity of novel thiopyrano[2,3-d] thiazole-based compounds containing norbornane moiety. J Sulf Chem. 2008; 29(2):151–62. 3. Zelisko N, Atamanyuk D, Ostapiuk Y, Bryhas A, Matiychuk V, Gzella A, Lesyk R. Synthesis of fused thiopyrano[2,3-d][1,3]thiazoles via hetero-Diels- Alder reaction related tandem and domino pro- cesses. Tetrahedron. 2015; 71(50):9501–8. 4. Kaminskyy D, Vasylenko O, Atamanyuk D, Gzella A, Lesyk R. Isorhodanine and thiorhodanine motifs in the synthesis of fused thiopyrano[2,3-d][1,3]thia- zoles. Synlett. 2011; 10:1385–8. 5. Kryshchyshyn A, Atamanyuk D, Lesyk R. Fused thiopyrano[2,3-d]thiazole derivatives as potential anticancer agents. Sci Pharm. 2012; 80(3):509–529. 6. Atamanyuk D, Zimenkovsky B, Atamanyuk V, Nek- tegayev I, Lesyk R. Synthesis and biological acti vi ty of new thiopyrano[2,3-d]thiazoles containing a naph- thoquinone moiety. Sci Pharm. 2013; 81(2):423–36. 7. Reginato M, Bailey S, Krakow S, Minami C, Ishii S, Tanaka H, Lazar M. A potent antidiabetic thiazoli- dinedione with unique peroxisome proliferator-ac- tivated receptor gamma activating properties. J Biol Chem. 1998; 273(49):32679–84. 8. Kador P, Kinoshita J, Sharpless N. Aldose reductase inhibitors: a potential new class of agents for the pharmacological control of certain diabetic compli- cations. J Med Chem. 1985; 28(7):841–9. 9. Charlier C, Mishaux C. Dual inhibition of cyclo- oxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. Eur J Med Chem. 2003; 38(7–8):645–59. 10. Herrmann W, Satzinger G, Herrmann M, Steinbre- cher W, Bahrmann H. (+)-(3-Methyl-4-oxo-5N-piper- idinothiazolidin-2-ylidene)acetic acid esters, method of preparation and use, Patent No. 4,255,433, 1981. 11. Löscher W, Hodenberg A, Nolting B, Fassben der CP, Taylor C. Ralitoline: a reevaluation of anticonvulsant profile and determination of “active” plasma concen- trations in comparison with prototype antiepileptic drugs in mice. Epilepsia. 1991; 32(4):560–8. 12. Mendgen T, Steuer C, Klein C. Privileged scaffolds or promiscuous binders: a comparative study on rhodanines and related heterocycles in medicinal chemistry. J Med Chem. 2012; 55(2):743–53. 203 Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety 13. Senkiv J, Finiuk N, Kaminskyy D, Havrylyuk D, Wojtyra M, Kril I, Gzella A, Stoika R, Lesyk R. 5-Ene-4-thiazolidinones induce apoptosis in mam- malian leukemia cells. Eur J Med Chem. 2016; 117:33–46. 14. Baell J, Holloway G. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclu- sion in bioassays. J Med Chem. 2010; 53(7):2719–40. 15. Baell J, Walters MA. Chemical con artists foil drug discovery. Nature. 2014; 513(7519):481–3. 16. Atamanyuk D, Zimenkovsky B, Atamanyuk V, Le- syk R. 5-Ethoxymethylidene-4-thioxo-2-thiazolidi- none as versatile building block for novel biorele- vant small molecules with thiopyrano[2,3-d][1,3] thiazole core. Synth Commun. 2014; 44(2):237–44. 17. Kryshchyshyn A, Zimenkovsky B, Lesyk R. Synthesis and anticancer activity in vitro of isothio chro me- no[3,4-d]thiazole derivarives. Annales UMCS. 2008; XXI(1):247–51. 18. Kryshchyshyn A, Kaminskyy D, Grellier P, Lesyk R. Trends in research of antitrypanosomal agents among synthetic heterocycles. Eur J Med Chem. 2014; 85:51–64. 19. Kryshchyshyn A, Kaminskyy D, Zelisko N, Khyluk D, Grel lier Ph, Lesyk R. The study of the antityrpano- somal activity of thiazolidinones and related heterocy- clic systems. J Org Pharm Chem. 2013; 11(2):57–62. 20. Zelisko N, Atamanyuk D, Vasylenko O, Grellier P, Lesyk R. Synthesis and antitrypanosomal activity of new 6,6,7-trisubstituted thiopyrano[2,3-d][1,3]thia- zoles. Bioorg Med Chem Lett. 2012; 22(23):7071–4. 21. Lozynskyi A, Kaminskyy D, Romanchyshyn K, Se- menciv N, Ogurtsov V, Nektegayev I, Lesyk R. Screening of antioxidant and anti-inflammatory activities among thiopyrano[2,3-d]thiazoles. Bio- polym Cell. 2015; 31(2):131–7. 22. Lesyk R, Zimenkovsky B, Kaminskyy D, Krysh- chyshyn A, Havryluk D, Atamanyuk D, Subtel’na I, Khyluk D. Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group. Biopolym Cell. 2011; 27(2):107–17. 23. Kaminskyy D, Kryshchyshyn A, Nektegayev I, Vasy- len ko O, Grellier P, Lesyk R. Isothiocoumarin-3-car- boxylic acid derivatives: synthesis, anticancer and antitrypanosomal activity evaluation. Eur J Med Chem. 2014; 75:57–66. 24. Steverding D, Wang X. Trypanocidal activity of the proteasome inhibitor and anti-cancer drug bortezo- mib. Parasit Vectors. 2009; 2(1):29. 25. Deterding A, Dungey F, Thompson K, Steverding D. Anti-trypanosomal activities of DNA topoisomerase inhibitors. Acta Tropica. 2005; 93(3):311–6. 26. Kaminskyy D, Zimenkovsky B, Lesyk R. Synthesis and in vitro anticancer activity of 2,4-azolidinedi- one-acetic acids derivatives. Eur J Med Chem. 2009; 44(9):3627–36. 27. Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A, Gray-Goodrich M, Campbell H, Mayo J, Boyd M. Feasibility of a high-flux antican- cer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst. 1991; 83:757–66. 28. Boyd M, Paull K. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev Res. 1995; 34:91–109. 29. Boyd MR. The NCI In vitro anticancer drug disco- very screen. In: Teicher B.A. (Ed.), Cancer Drug Discovery and Development, Vol. 2, Humana Press, Totowa, New York, 1997:23–43. 30. Lethu S, Bosc D, Mouray E, Grellier P, Dubois J. New protein farnesyltransferase inhibitors in the 3-arylthiophene 2-carboxylic acid series: diversifica- tion of the aryl moiety by solid-phase synthesis. J Enzyme Inhib Med Chem. 2013; 1:163–71. 31. Pérez-Cruz F, Serra S, Delogu G, Lapier M, Diego Maya J, Olea-Azar C, Santana L, Uriarte E. Anti- trypanosomal and antioxidant properties of 4-hy- droxycoumarins derivatives. Bioorg Med Chem Lett. 2012; 22:5569–73. 32. Matiychuk V, Lesyk R, Obushak M, Gzella A, Ata- manyuk D, Ostapiuk Y, Kryshchyshyn A. A new domino-Knoevenagel–hetero-Diels–Alder reaction. Tetrahedron Lett. 2008; 49(31):4648–51. 33. Zhou H, Wu S, Zhai S, Liu A, Sun Y, Li R, Zhang Y, Ekins S, Swaan P, Fang B, Zhang B, Yan B. Design, synthesis, cytoselective toxicity, structure–activity 204 A. P. Kryshchyshyn, D. V. Atamanyuk, D. V. Kaminskyy et al. relationships, and pharmacophore of thiazolidinone derivatives targeting drug-resistant lung cancer cells. J Med Chem. 2008; 51(5):1242–51. 34. Wu S, Guo W, Teraishi F, Pang J, Kaluarachchi K, Zhang L, Davis J, Dong F, Yan B, Fang B. Antican- cer activity of 5-benzylidene-2-phenylimino-1,3- thiazolidin-4-one (BPT) analogs. Med Chem. 2006; 2(6):597–605. 35. Kaminskyy D, Bednarczyk-Cwynar B, Vasylenko O, Kazakova O, Zimenkovsky B, Zaprutko L, Lesyk R. Synthesis of new potential anticancer agents based on 4-thiazolidinone and oleanane scaffolds. Med Chem Res. 2012; 21(11):3568–80. 36. Bhat B, Ponnala S, Sahu D, Tiwari P, Tripathi B, Srivastava A. Synthesis and antihyperglycemic ac- tivity profiles of novel thiazolidinedione derivatives. Bioorg Med Chem. 2004; 12(22):5857–64. 37. Shoemaker R. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006; 6:813–23. 38. Zaharevitz DW, Holbeck SL, Bowerman C, Svetlik PA. COMPARE: a web accessible tool for investigat- ing mechanisms of cell growth inhibition. J Mol Graphics Model. 2002; 20:297–303. 39. Havrylyuk D, Zimenkovsky B, Vasylenko O, Za- prutko L, Gzella A, Lesyk R. Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity. Eur J Med Chem. 2009; 44:1396–404. 40. Subtel’na I, Atamanyuk D, Szyman´ska E, Kiec´- Kononowicz K, Zimenkovsky B, Vasylenko O, Gzel- la A, Lesyk R. Synthesis of 5-arylidene-2-amino- 4-azolones and evaluation of their anticancer activ- ity. Bioorg Med Chem. 2010; 18:5090–102. Вивчення протиракової та протипаразитарної активності тіопірано[2,3-d]тіазолів з норборнановим фрагментом А. П. Крищишин, Д. В. Атаманюк, Д. В. Камінський, Ф. Грельє, Р. Б. Лесик Мета. Вивчення протипухлинної та трипаноцидної активності серії нових тіопірано[2,3-d]тіазолів з нор- борнановим фрагментом у молекулах. Методи: орга- нічний синтез, аналітичні та спектральні методи, фар- макологічний скринінг, COMPARE та SAR аналізи. Результати. З метою одержання сполук з відповідним фармакологічним профілем синтезовано нові конден- совані похідні тіопірано[2,3-d]тіазолу з норборнановим фрагментом у молекулах, які модифіковані за поло- женнями С9 та N5 базового гетероциклу. Іденти фі ко- ва но ряд сполук з суттєвим рівнем інгібування росту ракових клітин, серед яких сполука-хіт N1-(4- х л о р о ф е н і л ) - 2 - { 2 - [ 6 - о кс о - 5 , 9 - д и т і а - 7 - азатетрацикло[9.2.1.02,10.04,8]тетрадец-4(8)-ен-3-іл] фенокси}ацетамід IId, що селективно інгібує лінії клітин лейкемії в субмікромолярних концентраціях. Крім того, ряд тіопірано[2,3-d]тіазолів також проявля- ють перспективну протитрипаносомну активність. Висновки. Синтезовано нові тіопірано[2,3-d]тіазоли з норборнановим фрагментом у молекулах а також їх похідні з різноманітними субституентами в положен- нях N5 та C9 базової гетероциклічної системи. Сполуки проявили суттєвий рівень протипухлинної активності і можуть бути використані для подальшої оптимізації структури як потенційні протиракові агенти. Окрім того, сполуки з високим рівнем протипухлинного ефекту in vitro інгібують ріст Trypanosoma brucei brucei. Поєднання протиракової та протитрипаносомної ак- тивності синтезованих сполук є основою для наступної структурної модифікації та пошуку імовірних механіз- мів реалізації їх біологічної активності. К л юч ов і с л ов а: тіопірано[2,3-d]тіазоли, норбор- нан, синтез, протиракова активність, протитрипано- сомна активність, SAR. Изучение противораковой и противо парази- таной активности тиопирано[2,3-d]тиазолов из норборнановым фрагментом А. П. Крищишин, Д. В. Атаманюк, Д. В. Каминский, Ф. Грэлье, Р. Б. Лесык Цель. Изучение противоопухолевой и трипаноцидной активности серии новых тиопирано[2,3-d]тиазолов из норборнановым фрагментом в молекулах. Методы: органический синтез, аналитические и спектральные методы, фармакологический скрининг, COMPARE и SAR анализы. Результаты. С целью получения сое- динений с соответстующим фармакологическим про- филем синтезированы новые производные тиопира- 205 Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety но[2,3-d]тиазола из норборнановым фрагментом в молекулах, которые модифицированы по положеннях С9 и N5 базового гетероцикла. Идентифицировано ряд соединений с существенным уровнем ингибирования роста раковых клеток, среди которых соединение-хит N1-(4-хлорфенил)-2-{2-[6-оксо-5,9-дитиа-7- азатетрацикло[9.2.1.02,10.04,8]тетрадец-4(8)-ен-3-ил] фенокси}ацетамид IId, который селективно інгиби- рует линии клеток лейкемии в субмикромолярных концентрациях. Кроме того, некоторые тіопірано[2,3-d] тіазолы также проявляют перспективную протитрипа- носомную активность. Выводы. Синтезорованы новые тиопирано[2,3-d]тиазолы из норборнановым фрагмен- том у молекулах, а также их производные из различ- ными заместителями в положениях N5 и C9 базовой гетероциклической системы. Соединения проявили существенный уровень противоопухолевой активности и могут быть использованы для дальнейшей структур- ной оптимизации как потенциальные противораковые агенты. Кроме того, соединения с високим уровнем противоопухолевого эффекта in vitro ингибируют рост Trypanosoma brucei brucei. Сочетание противораковой и противотрипаносомной активности синтезированых соединений может быть основой для дальнейшей оптимизации структуры и поиска возможных механиз- мов пеализации их биологической активности. К л юч е в ы е с л ов а: тиопирано[2,3-d]тиазолы, нор- борнан, синтез, противораковая активность, проти- вотрипаносомная активность, SAR. Received 02.04.2017