CoA Synthase influences adherence-independent growth and survival of mammalian cells in vitro
Aims. We aimed to study the influence of the expression level, activity and subcellular localization of CoA Synthase (CoASy) on anchoring independent growth and viability of in vitro cultured cells. Methods. Abilities of cells to form colonies in semisolid agarose and survive in growth factor deplet...
Saved in:
Date: | 2009 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Published: |
Інститут молекулярної біології і генетики НАН України
2009
|
Series: | Вiopolymers and Cell |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/152968 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | CoA Synthase influences adherence-independent growth and survival of mammalian cells in vitro / O.S. Breus, I.O. Nemazanyy, I.T. Gout, V.V. Filonenko, G.G. Panasyuk // Вiopolymers and Cell. — 2009. — Т. 25, № 5. — С. 384-389. — Бібліогр.: 30 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-152968 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1529682019-06-14T01:25:18Z CoA Synthase influences adherence-independent growth and survival of mammalian cells in vitro Breus, O.S. Nemazanyy, I.O. Gout, I.T. Filonenko, V.V. Panasyuk, G.G. Структура та функції біополімерів Aims. We aimed to study the influence of the expression level, activity and subcellular localization of CoA Synthase (CoASy) on anchoring independent growth and viability of in vitro cultured cells. Methods. Abilities of cells to form colonies in semisolid agarose and survive in growth factor depleted conditions were tested. A panel of HEK293 stable cell lines which over express wild type, catalytically inactive or mitochondria association mutants of CoASy were used in the study. Effects of CoASy down regulation by siRNA on malignant phenotype of HepG2 cells have been studied. Results. We report here that changes in CoASy expression level affect anchoring independent growth and viability of mammalian cells. Catalytic activity of CoASy and its association with mitochondria are crucial for mediating of the observed effects. Conclusions. Presented data indicate CoASy has positive impact on activity of signalling pathways in the cell and reveal unknown before functional link between signal transduction and metabolism. Мета. Оцінити вплив рівня експресії, каталітичної активності та субклітинної локалізації КоА синтази на незалежний від контактів із позаклітинним матриксом ріст та виживання клітин у культурі in vitro. Методи. Вивчали здатність клітин до формування колоній в напіврідкій агарозі та виживання за відсутності ростових факторів. Створено стабільні клітинні лінії на основі клітин HEK293, що надекспресують КоА синтазу дикого типу, а також мутантні – каталітично неактивну форму, або КоА синтазу із делетованою послідовністю, що відповідає за асоціацію з мітохондріями. Досліджували також ефекти опосередкованого міРНК зниження ендогенного рівня КоА синтази на раковий фенотип клітин HepG2. Результати. Зміни в експресії КоА синтази впливають на незалежний від прикріплення ріст і виживання клітин ссавців. Каталітична активність КоА синтази, а також асоціація її з мітохондріями виявилися необхідними для опосередкування спостережених ефектів. Висновки. Представлені дані вказують на те, що КоА синтаза чинить позитивний вплив на сигнальні шляхи клітини, та виявляють невідомий раніше функціональний зв’язок між передаванням сигналів в клітині та метаболізмом. Цель. Оценка влияния уровня экспрессии, каталитической активности и субклеточной локализации КоА синтазы на независимый от контактов с внеклеточным матриксом рост и выживание клеток в культуре in vitro. Методы. В работе оценивали способность клеток формировать колонии в полужидкой агарозе и выживать в отсутствии ростовых факторов. Были созданы стабильные клеточные линии на основе клеток HEK293, которые надэкспресировали КоА синтазу дикого типа, а также мутантные – каталитически неактивную форму, либо КоА синтазу с делетированой последовательностью, отвечающей за ассоциацию с митохондриями. Исследовались также эффекты миРНК опосредованного снижения эндогенного уровня КоА синтазы на раковый фенотип клеток HepG2. Результаты. Изменения в уровне экспрессии КоА синтазы влияли на независимый от прикрепления рост и выживание клеток млекопитающих. Каталитическая активность КоА синтазы, а также ассоциация ее с митохондриями оказались необходимыми для опосредования наблюдаемых эффектов. Выводы. Представленные данные указывают, что КоА синтаза позитивно влияет на активность сигнальных путей в клетках млекопитающих, а также вскрывают неизвестную ранее функциональную связь между передачей сигналов в клетке и метаболизмом. 2009 Article CoA Synthase influences adherence-independent growth and survival of mammalian cells in vitro / O.S. Breus, I.O. Nemazanyy, I.T. Gout, V.V. Filonenko, G.G. Panasyuk // Вiopolymers and Cell. — 2009. — Т. 25, № 5. — С. 384-389. — Бібліогр.: 30 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.0007F0 http://dspace.nbuv.gov.ua/handle/123456789/152968 577.2:577.27 en Вiopolymers and Cell Інститут молекулярної біології і генетики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Структура та функції біополімерів Структура та функції біополімерів |
spellingShingle |
Структура та функції біополімерів Структура та функції біополімерів Breus, O.S. Nemazanyy, I.O. Gout, I.T. Filonenko, V.V. Panasyuk, G.G. CoA Synthase influences adherence-independent growth and survival of mammalian cells in vitro Вiopolymers and Cell |
description |
Aims. We aimed to study the influence of the expression level, activity and subcellular localization of CoA Synthase (CoASy) on anchoring independent growth and viability of in vitro cultured cells. Methods. Abilities of cells to form colonies in semisolid agarose and survive in growth factor depleted conditions were tested. A panel of HEK293 stable cell lines which over express wild type, catalytically inactive or mitochondria association mutants of CoASy were used in the study. Effects of CoASy down regulation by siRNA on malignant phenotype of HepG2 cells have been studied. Results. We report here that changes in CoASy expression level affect anchoring independent growth and viability of mammalian cells. Catalytic activity of CoASy and its association with mitochondria are crucial for mediating of the observed effects. Conclusions. Presented data indicate CoASy has positive impact on activity of signalling pathways in the cell and reveal unknown before functional link between signal transduction and metabolism. |
format |
Article |
author |
Breus, O.S. Nemazanyy, I.O. Gout, I.T. Filonenko, V.V. Panasyuk, G.G. |
author_facet |
Breus, O.S. Nemazanyy, I.O. Gout, I.T. Filonenko, V.V. Panasyuk, G.G. |
author_sort |
Breus, O.S. |
title |
CoA Synthase influences adherence-independent growth and survival of mammalian cells in vitro |
title_short |
CoA Synthase influences adherence-independent growth and survival of mammalian cells in vitro |
title_full |
CoA Synthase influences adherence-independent growth and survival of mammalian cells in vitro |
title_fullStr |
CoA Synthase influences adherence-independent growth and survival of mammalian cells in vitro |
title_full_unstemmed |
CoA Synthase influences adherence-independent growth and survival of mammalian cells in vitro |
title_sort |
coa synthase influences adherence-independent growth and survival of mammalian cells in vitro |
publisher |
Інститут молекулярної біології і генетики НАН України |
publishDate |
2009 |
topic_facet |
Структура та функції біополімерів |
url |
http://dspace.nbuv.gov.ua/handle/123456789/152968 |
citation_txt |
CoA Synthase influences adherence-independent growth and survival of mammalian cells in vitro / O.S. Breus, I.O. Nemazanyy, I.T. Gout, V.V. Filonenko, G.G. Panasyuk // Вiopolymers and Cell. — 2009. — Т. 25, № 5. — С. 384-389. — Бібліогр.: 30 назв. — англ. |
series |
Вiopolymers and Cell |
work_keys_str_mv |
AT breusos coasynthaseinfluencesadherenceindependentgrowthandsurvivalofmammaliancellsinvitro AT nemazanyyio coasynthaseinfluencesadherenceindependentgrowthandsurvivalofmammaliancellsinvitro AT goutit coasynthaseinfluencesadherenceindependentgrowthandsurvivalofmammaliancellsinvitro AT filonenkovv coasynthaseinfluencesadherenceindependentgrowthandsurvivalofmammaliancellsinvitro AT panasyukgg coasynthaseinfluencesadherenceindependentgrowthandsurvivalofmammaliancellsinvitro |
first_indexed |
2025-07-14T04:24:55Z |
last_indexed |
2025-07-14T04:24:55Z |
_version_ |
1837594937230622720 |
fulltext |
ÑÒÐÓÊÒÓÐÀ ² ÔÓÍÊÖ²¯ Á²ÎÏÎ˲ÌÅвÂ
CoA Synthase influences adherence-independent growth
and survival of mammalian cells in vitro
O. S. Breus1, I. O. Nemazanyy1, I. T. Gout1, 2, V.V Filonenko1, G. G. Panasyuk1
1Institute of Molecular Biology and Genetics National Academy of Sciences of Ukraine
150, Zabolotnogo Str., Kyiv 03680, Ukraine
2Research Department of Structural and Molecular Biology, University College London
Gower Str., London WC1E 6BT, UK
v.v.filonenko@imbg.org.ua
Aims. We aimed to study the influence of the expression level, activity and subcellular localization of CoA
Synthase (CoASy) on anchoring independent growth and viability of in vitro cultured cells. Methods.
Abilities of cells to form colonies in semisolid agarose and survive in growth factor depleted conditions
were tested. A panel of HEK293 stable cell lines which over express wild type, catalytically inactive or
mitochondria association mutants of CoASy were used in the study. Effects of CoASy down regulation by
siRNA on malignant phenotype of HepG2 cells have been studied. Results. We report here that changes in
CoASy expression level affect anchoring independent growth and viability of mammalian cells. Catalytic
activity of CoASy and its association with mitochondria are crucial for mediating of the observed effects.
Conclusions. Presented data indicate CoASy has positive impact on activity of signalling pathways in the
cell and reveal unknown before functional link between signal transduction and metabolism.
Keywords: CoA Synthase, coenzyme A, anchoring independent growth, cells viability.
Introduction. CoA Synthase (CoASy) is mitochondria
associated enzyme which facilitates the last two
catalytic steps of de novo CoA biosynthesis in
mammalian cells [1, 2]. The final product of CoASy
enzymatic activity – CoA is ubiquitous carrier of
activated acyl moieties that is indispensable for the
metabolism of carbohydrates and lipids [3, 4].
Nevertheless, functions of coenzyme A and its
derivatives are not restricted by metabolism. They also
are involved in regulatory cellular processes [4]. Well
established example is acylation of proteins which is a
fundamental regulatory mechanism utilized by cells to
modulate variety of cellular processes including gene
transcription [5, 6], signal transduction [7, 8] and
membrane trafficking [9]. Genetic analysis of
Drosophila melanogaster with hypomorphic mutant
alleles corresponding to one of the three CoA
synthesizing enzymes (PANK; PPCS; PPAT/PPCK)
revealed that CoA plays important roles in lipid
biosynthesis, cell protection from oxidative stress,
maintenance of DNA integrity, cell proliferation and
organogenesis [10]. Recently, we found that CoASy
form complexes with a number of signaling proteins in
mammalian cells. Its interaction with kinase of S6
ribosomal protein (S6K) [11], p85a regulatory subunit
of PI3K [12], Shp2 protein tyrosine phosphatase
(unpublished observation) and signaling proteins Shc
(unpublished observation) were revealed. Moreover,
384
ISSN 0233-7657. Biopolymers and Cell. 2009. Ò. 25. N 5
Ó Institute of Molecular Biology and Genetics NAS of Ukraine, 2009
we found that siRNA mediated knock down of CoASy
level in HEK293 cells led to a decrease in activity of
Akt1, PDK Ser/Tre kinases and also tyrosine kinases in
a dose dependent manner [12].
In this study, we report that changes in expression
level of CoA Synthase influence the ability of adherent
cells to survive and proliferate without contacts with
extracellular matrix and also to survive in conditions of
growth factors deprivation. Catalytic activity and
subcellular localization of CoASy are essential for the
observed phenotype. Presented data together with
earlier observations [12] demonstrate positive impact
CoASy has on activity of signalling pathways in the
cell and reveal unknown before functional link
between signal transduction and metabolism.
Materials and Methods. Antibodies and reagents.
The production of anti-CoASy (C-terminus) antibody
was described previously [1]. Anti-Myc (9E10)
antibody was from Santa Cruz (Santa Cruz, USA).
Anti-tubulin antibody was purchased from Cell
Signalling (Cell Signalling, USA). The expressing
vectors pcDNA3.1 CoASy-Myc wt, pcDNA3.1
CoASy-Myc H203A/G400A and pcDNA3.1 CoASy-
Myc DTM were generated and described previously
[11, 13]. The CoASy and scrambled siRNAs were
obtained from MWG Biotech, Germany. siRNA
duplexes were transfected into HepG2 cells using
INTERFERinTM (Polyplus Transfection, France).
Cell lines and culture. Human embryonic kidney
293 and human hepatocellular carcinoma, HepG2 cells
were from the American Type Culture Collection
(Manassass, VA), and maintained in Dulbecco’s
modified Eagle’s medium supplemented with 10 %
fetal bovine serum, 100 U/ml of penicillin, and
100 mg/ml of streptomycin. HEK293 cell lines stably
overexpressing Myc-CoASy, Myc-H203A/G400A-
CoASy, DTMCoASy proteins were established by
transfection of linearized by MunI (Fermentas,
Lithuania) pcDNA3.1 based vectors or pEGFP-C1
plasmid. For transfections JetPEI (Polyplus Transfec-
tion, France) reagent was used according to manu-
facturer’s recommendations. Stably transformed cells
were selected on the standard growth medium supple-
mented with 800 mg/ml of G418 (Invitrogene, USA).
For CoASy knock down, HepG2 cells were transfected
with 200 pmol of CoASy siRNA or scrambled siRNA
with INTERFERinTM according to manufacturer’s
recommendations and 48 hrs after transfection
subjected to the analysis by immunoblotting and plated
in semisolid agarose as described further.
Extracts preparation and immunoblottings. Cells
were lysed with buffer containing 10 mM Tris, pH 7.5,
150 mM NaCl, 5 mM EDTA, 5 mM sodium fluoride,
1 % Triton X-100, 1 mM Na3VO4 and a mixture of
protease inhibitors (Roche Applied Science, France).
Whole extracts were centrifuged at 10000 g for 20 min
at 4 oC. Immunoblotting was performed as described
previously [1]. The antigen-antibody complexes were
detected with ECL system (Millipore, USA). When
membranes had to be re-probed, they were stripped, re-
blocked and re-probed with other primary antibodies.
Trypan blue exclusion and colonies-forming
assays. The viability of generated HEK293 stable cell
lines was analysed in trypan blue exclusion assay. Cells
were resuspended in PBS 48 hrs post the initiation of
serum starvation. The portion of cells was thereafter
diluted 1:5 with 0.4 % trypan blue (Sigma, USA) and
scored under light microscopy. Viable (unstained) and
nonviable (blue-stained) cells were counted. The ratio
of total/dead cells was calculated and folds over EGFP
overexpressing cell line were presented as a graph. The
results are presented as the mean ±s. d. of 5 inde-
pendent experiments, with p £ 0.05, a minimum of 200
cells being scored in each experiment.
To monitor the capacity of CoASy stable cell lines
to grow in semi-solid medium in vitro, cells were
transferred into 2 ml of complete DMEM containing
0.7 % low-melting agarose. 103 cells were seeded into
35 mm dishes containing a 2 ml layer of solidified
1.2 % low-melting agarose in complete medium.
Colonies were stained 3 weeks later with MTT and
counted using Quantity One Software (Bio-Rad, USA).
The folds over control (EGFP overexpressing cells) are
presented as the mean ±s. d. of 5 independent expe-
riments, with p £ 0.05.
Results and Discussion. CoASy promotes cell sur-
vival. Normal differentiated cells require growth fac-
tors, hormones and contacts with extracellular matrix
molecules to sustain their viability in vitro and in vivo
[14–17]. It was described in multiple studies that
PI3K-Akt and Ras-Raf-MAPK1/2 signalling pathways
are the key players in transduction of survival signals
385
CoASy INFLUENCES ADHERENCE-INDEPENDENT GROWTH AND SURVIVAL OF MAMMALIAN CELLS
386
BREUS O. S. ET AL.
from extracellular stimuli [18]. Appearance of inacti-
vating mutations in the genes of the pathway suppres-
sors (PTEN) or activating mutations in oncogenes
(Ras, PI3K, Akt) is known to lead to malignant trans-
formation of the cell [19]. We hypothesised that since
we detected effects of CoASy protein on phosphory-
lation state of downstream targets of PI3K pathway
[12], we could expect these changes to influence cells
behaviour. To test this we estimated ability of cells
with experimentally manipulated CoASy to survive
and proliferate in conditions of growth factors and
extracellular matrix anchorage deprivation.
To start with we have generated a set of stable cell
lines which stably expressed Myc tag fused wild type
CoA Synthase [1], DTM CoASy mutant with deleted
mitochondria association signal [13] or catalytically
inactive CoASy 203/400 mutant with His203Ala and
Gly400Ala substitutions [11, 20]. Analysis of estab-
lished stable cell lines with anti-Myc and anti-CoASy
antibody is presented on Fig. 1, Ñ.
We compared survival of HEK293 cells stably
overexpressing CoASy or control cells expressing
EGFP. To induce death, cells were cultured without
serum for 48 hrs and thereafter subjected to trypan blue
exclusion assay to assess cells viability. For the both
cell lines total and dead cells numbers were counted.
Viability was calculated as a ratio between these values
and presented as folds in comparison to EGFP
overexpressing cells (Fig. 1, A). As a result, cells
overexpressing CoASy were in average 1.7 folds more
viable in comparison with control cells. It prompted us
to conclude that increased level of CoASy protein has
protective effect on cells in these conditions. One of the
explanations of these results is up-regulation of
survival signaling in CoASy overexpressing cells.
CoASy protein level affects anchorage-inde-
pendent cell growth. As a further test, the semisolid
agarose colonies forming assays was performed using
the same stable cell lines. As a result we found that
CoASy overexpression lead to increase in colonies
number formed in agarose up to 2 folds in comparison
to control cells (Fig. 1, B). Notably, similar results were
obtained in other cell line (NIH3T3) (data not shown).
We also addressed the question whether observed
increase in colonies number is dependent on catalytic
activity of CoASy. Since CoA Synthase possesses two
catalytic domains – phosphopantetheine adenylyltrans-
ferase (PPAT) and dephospho-CoA kinase (dPCoAK),
we generated stable cell line expressing CoASy en-
zyme with amino acids substitutions H203A and
G400A which result in inactivation of both catalytic
activities of CoASy [1, 20]. As it is seen from Fig. 1, B,
expression of catalytically inactive CoASy has no ef-
fect on colonies formation. This result indicates impor-
tance of CoASy catalytic activity for the observed
GFP CoASy CoASy203/400 ? TMCoASy
B
0 0,5 1 1,5 2
A
GFP
CoASy *
Folds
C
GFP
Myc-tag
b-actin
1 2 3 4
1 ± 0.12 2 ± 0.14 1 ± 0.07 0.1± 0.03
CoASy
b-actin
1 2 3 4
Fig. 1. Overexpression of CoASy protein in HEK293 cells
promotes adherence independent proliferation and cell survival:
A – Overexpression of CoASy wt protein in HEK293 promotes
cells survival. HEK293 cells stably overexpressing CoASy-Myc or
EGFP proteins were serum starved for 48 hours. Cell viability was
estimated by trypan blue dye excision assay and ratio of total/dead
cells was calculated and plotted as fold change over EGFP
expressing cells. Data are means ± s. d. of 5 experiments; p £ 0.01
(*against EGFP); B – Overexpression of CoASy wt protein but not
mutants CoASy H203A/G400A or DTMCoASy promotes
adherence independent proliferation of HEK293. wtCoASy,
H203A/G400A CoASy, or DTMCoASy overxpressing cells were
plated in agarose containing DMEM medium in triplicates as
described in material and methods. Three weeks later, colonies
were stained with MTT and counted using Quantity One Software
(Bio-Rad), fold change over EGFP was calculated and data
presented as means ± s. d. of 5 experiments; C – Western blot
analysis of established stable cell lines for expression of
recombinant (top panel, anti-Myc) and overall, recombinant and
endogenous CoASy protein (low panel, anti-CoASy): 1 – GFP; 2 –
CoASy-Myc; 3 – CoASy-Myc 203/400; 4 – DTMCoASy-Myc
increase in cells ability to anchorage-independent
proliferation.
Then, we were interested whether CoASy targeting
to mitochondria is required for the colony forming
phenotype. To estimate this we created stable cell line
overexpressing CoASy containing mitochondria
targeting sequence deletion, DTMCoASy (29–563 aa).
A subcellular localization and biochemical properties
of this transiently expressed mutant protein was
previously studied and described [13]. Because of
deletion of the first 28 aa from the N-terminus CoASy
mitochondrial localization is disrupted and protein
accumulates in the cytoplasm. Surprisingly, we found
that cells expressing DTMCoASy protein formed
significantly less colonies in semisolid agarose than
cells expressing EGFP (Fig. 1, C). Consequently, exp-
ression of DTMCoASy protein prevents the increase in
colonies forming ability observed in wt CoASy over-
expressing cells and dramatically suppresses ability of
cells to adherence independent proliferation (Fig. 1, C).
We conclude that both – CoASy activity and mito-
chondria localization are essential for promotion of an-
chorage independent cell growth.
Together, pro-survival, in serum depleted conditi-
ons, and anchorage-independence promoting effects of
CoASy indicate this protein as a potential oncogene.
Next, we were interested to confirm observed
results using alternative approach. We knocked down
the expression of endogenous CoASy in HepG2 cell
line that expresses malignant phenotype. In this case
siRNA mediated selective knock down of CoASy led
to significant reduction of a number of colonies formed
in agarose medium in comparison to cells which were
transfected with scrambled siRNA (Fig. 2, left panel).
The effective knock down of CoASy expression was
confirmed by immunoblot with anti-CoASy antibody
(Fig. 2, right panel).
CoASy is not unique metabolic enzyme changes in
expression or activity of which have impact on cellular
signalling. Two recent studies demonstrate that an
embryonic- and cancer-cell-specific isoform of the
glycolitic enzyme pyruvate kinase M2 (PKM2) is
regulated by binding to phospho-tyrosine motifs of
signalling proteins and promotes increased cell growth
and tumour development [21, 22].
Up-regulation of expression and activity of
lipogenic enzymes which mediate de novo fatty acids
synthesis is a widely reported event in tumour cells in a
variety of human cancers [23]. Well characterized
examples include fatty acid synthase (FAS) [23, 24,
25], acetyl-CoA carboxylase a [23, 25, 26] and ATP
citrate lyase (ACL) [23, 27]. Interestingly, it was
demonstrated that pharmacological or siRNA mediated
inhibition of FAS blocks cell proliferation, induces
apoptosis of cancer cells cultured in vitro and retards
the growth of tumors in murine xenograft models.
These findings have confirmed the potential of FAS as
a major target for antineoplastic intervention [23].
Notably, targeting of other lipogenic enzymes led to
the similar effects demonstrating that lipid synthesis
per se is important for survival of cancer cell [23, 27,
28]. The reasons of why it is so remain poorly
understood. The simplest explanation is requirement of
actively proliferating cells in lipids as biosynthetic
material. In contrast to lipogenic enzymes, CoA
Synthase is ubiquitously expressed and we did not
detect significant changes in its expression on the
protein level in at least tested cancer cell lines (O. B.,
I. N. and G. P. unpublished observations). However,
elevated levels of CoASy mRNA were reported for
cancer cell lines in comparison to normal tissues [2].
Similar to our observations, several effects of FAS
on cellular signalling have been reported. One of them
describes requirement of FAS activity for Akt1
activation. Moreover, other report that FAS overexp-
ression leads to a dramatic increase in the number of
387
CoASy INFLUENCES ADHERENCE-INDEPENDENT GROWTH AND SURVIVAL OF MAMMALIAN CELLS
siRNA scrambled siRNA CoASy
1 ± 0.16 0.55 ± 0.12
siRNA Scrambled CoASy
CoASy
ß-actin
Fig. 2. siRNA mediated knockdown of endogenous CoASy level in
HepG2 cells suppresses their ability to adherence independent
proliferation. HepG2 cells were transfected with siRNA directed to
CoASy or scrambled control as described in materials and methods.
48 hrs posttransfection cells were plated in agarose as in Fig. 1, B,
and efficiency of knock down was controlled by immunoblotting
with anti-CoASy antibody (right panel). 17 days later colonies were
stained with MTT and counted using Quantity One Software
(Bio-Rad), fold change over scrambled control were calculated and
data presented as means ± s. d. of 4 experiments
phospho-tyrosine-containing proteins, including hy-
perphosphorylation of epidermal growth factor recep-
tors HER1/HER2 [29, 30]. The mechanisms under-
lying these effects are not known. Nevertheless there
are several hypothetical explanations. It is known that
activated de novo lipogenesis change lipid composition
of cell membranes, promotes protein acylation, affects
the redox status in cancer cells and also may affect gene
expression [23]. All these effects potentially can
influence signal transduction in different pathways and
in PI3K pathway in particular. Coenzyme A is an es-
sential cofactor for lipid and energetic metabolism and
its availability may directly influence de novo
lipogenesis, TCA turnover and glycolisis all of which
change dramatically in cancer cells.
Conclusions. The observed effects of CoASy
expression, activity and subcellular localization on
anchorage independent growth and viability of
mammalian cells cultured in vitro prompted us to do
following conclusions. Increased levels of CoASy
protein have protective effect on cells in conditions of
growth factors deprivation and also support anchorage
independent growth. We hypothesize that these effects
mediated by up-regulation of survival signaling in
these cells. CoASy activity and mitochondria loca-
lization are essential for promotion of anchorage inde-
pendent cell growth. Knock down of CoASy exp-
ression in cancer cell line (HepG2) lead to the dramatic
decrease in ability of these cells to form colonies in
semisolid agarose. Notably, this ability is one of the
hallmarks of cellular malignant transformation.
Acknowledgements. Dr. Ivan Nemazanyy was
supported by Wood-Whelan Research Fellowship;
Oksana Breus was supported by EMBO Short-Term
fellowship. We thank Nadeem Shaikh for critical
reading of the manuscript and helpful suggestions.
Î. Ñ. Áðå óñ, ². Î. Íå ìà çà íèé, ². Ò. Ãóò, Â. Â. Ô³ëî íåí êî,
Ã. Ã. Ïà íà ñþê
ÊîÀ ñèí òà çà âïëè âຠíà íå çà ëåæ íèé â³ä êîí òàêò³â ç
ïî çàêë³òèí íèì ìàò ðèê ñîì ð³ñò òà âè æè âàí íÿ êë³òèí ññàâö³â
çà óìîâ in vitro
Ðå çþ ìå
Ìåòà. Îö³íèòè âïëèâ ð³âíÿ åêñïðåñ³¿, êà òàë³òè÷ íî¿ àê òèâ íî-
ñò³ òà ñóá êë³òèí íî¿ ëî êàë³çàö³¿ ÊîÀ ñèí òà çè íà íå çà ëåæ íèé
â³ä êîí òàêò³â ³ç ïî çàêë³òèí íèì ìàò ðèê ñîì ð³ñò òà âè æè âàí -
íÿ êë³òèí ó êóëü òóð³ in vitro. Ìå òî äè. Âèâ ÷à ëè çäàòí³ñòü êë³-
òèí äî ôîð ìó âàí íÿ êî ëîí³é â íàï³âð³äê³é àãà ðîç³ òà âè æè âàí íÿ
çà â³äñóò íîñò³ ðîñ òî âèõ ôàê òîð³â. Ñòâî ðå íî ñòàá³ëüí³ êë³-
òèíí³ ë³í³¿ íà îñíîâ³ êë³òèí HEK293, ùî íàä å êñïðå ñó þòü ÊîÀ
ñèíòàçó äè êî ãî òèïó, à òà êîæ ìó òàíòí³ – êà òàë³òè÷ íî íåàê-
òèâ íó ôîð ìó, àáî ÊîÀ ñèí òà çó ³ç äå ëå òî âà íîþ ïîñë³äîâí³ñòþ,
ùî â³äïîâ³äຠçà àñîö³àö³þ ç ì³òî õîíäð³ÿìè. Äîñë³äæó âà ëè òà -
êîæ åôåê òè îïî ñå ðåä êî âà íî ãî ì³ÐÍÊ çíè æåí íÿ åí äî ãåí íî ãî
ð³âíÿ ÊîÀ ñèí òà çè íà ðà êî âèé ôå íî òèï êë³òèí HepG2. Ðå çóëü -
òàòè. Çì³íè â åêñïðåñ³¿ ÊîÀ ñèí òà çè âïëè âà þòü íà íå çà ëåæ -
íèé â³ä ïðè êð³ïëåí íÿ ð³ñò ³ âè æè âàí íÿ êë³òèí ññàâö³â. Êàòàë³-
òè÷ íà àê òèâí³ñòü ÊîÀ ñèí òà çè, à òà êîæ àñîö³àö³ÿ ¿¿ ç ì³òî -
õîíäð³ÿìè âè ÿ âè ëè ñÿ íå îáõ³äíè ìè äëÿ îïî ñå ðåä êó âàí íÿ ñïîñ òå -
ðåæå íèõ åôåêò³â. Âèñ íîâ êè. Ïðåä ñòàâ ëåí³ äàí³ âêà çó þòü íà
òå, ùî ÊîÀ ñèí òà çà ÷è íèòü ïî çè òèâ íèé âïëèâ íà ñèã íàëüí³
øëÿ õè êë³òèíè, òà âè ÿâ ëÿ þòü íåâ³äî ìèé ðàí³øå ôóíêö³îíàëü -
íèé çâ’ÿ çîê ì³æ ïå ðå äà âàí íÿì ñèã íàë³â â êë³òèí³ òà ìå òà -
áîë³çìîì.
Êëþ ÷îâ³ ñëî âà: ÊîÀ ñèí òà çà, êî åí çèì À, íå çà ëåæ íèé â³ä
ïðè êð³ïëåí íÿ ð³ñò, æèòòºçäàòí³ñòü êë³òèí.
Î. Ñ. Áðå óñ, È. À. Íå ìà çà íûé, È. Ò. Ãóò, Â. Â. Ôè ëî íåí êî,
Ã. Ã. Ïà íà ñþê
ÊîÀ ñèí òà çà âëè ÿ åò íà íå çà âè ñè ìûé îò êîí òàê òîâ ñ
âíåê ëå òî÷ íûì ìàò ðèê ñîì ðîñò è âû æè âàíèå êëå òîê
ìëå êî ïè òà þ ùèõ â óñëî âè ÿõ in vitro
Ðå çþ ìå
Öåëü. Îöåí êà âëè ÿ íèÿ óðîâ íÿ ýêñ ïðåñ ñèè, êà òà ëè òè ÷åñ êîé àê -
òèâ íîñ òè è ñóá êëå òî÷ íîé ëî êà ëè çà öèè ÊîÀ ñèí òà çû íà íå çà âè -
ñè ìûé îò êîí òàê òîâ ñ âíåê ëå òî÷ íûì ìàò ðèê ñîì ðîñò è
âû æè âà íèå êëå òîê â êóëü òó ðå in vitro. Ìå òî äû. Â ðà áî òå îöå -
íè âà ëè ñïî ñîá íîñòü êëå òîê ôîð ìè ðî âàòü êî ëî íèè â ïî ëó æèä -
êîé àãà ðî çå è âû æè âàòü â îò ñó òñòâèè ðîñ òî âûõ ôàê òî ðîâ.
Áûëè ñî çäà íû ñòà áèëü íûå êëå òî÷ íûå ëè íèè íà îñíî âå êëå òîê
HEK293, êî òî ðûå íàä ý êñïðå ñè ðî âà ëè ÊîÀ ñèí òà çó äè êî ãî
òèïà, à òàê æå ìó òàí òíûå – êà òà ëè òè ÷åñ êè íå àê òèâ íóþ ôîð -
ìó, ëèáî ÊîÀ ñèí òà çó ñ äå ëå òè ðî âà íîé ïî ñëå äî âà òåëü íîñ òüþ,
îò âå ÷à þ ùåé çà àñ ñî öè à öèþ ñ ìè òî õîí äðè ÿ ìè. Èññëå äî âà ëèñü
òàê æå ýô ôåê òû ìèÐÍÊ îïîñ ðå äî âàí íî ãî ñíè æå íèÿ ýí äî ãåí -
íî ãî óðîâ íÿ ÊîÀ ñèí òà çû íà ðà êî âûé ôå íî òèï êëå òîê HepG2.
Ðå çóëü òà òû. Èçìå íå íèÿ â óðîâ íå ýêñ ïðåñ ñèè ÊîÀ ñèí òà çû âëè -
ÿ ëè íà íå çà âè ñè ìûé îò ïðè êðåï ëå íèÿ ðîñò è âû æè âà íèå êëå -
òîê ìëå êî ïè òà þ ùèõ. Êà òà ëè òè ÷åñ êàÿ àê òèâ íîñòü ÊîÀ
ñèí òà çû, à òàê æå àñ ñî öè à öèÿ åå ñ ìè òî õîí äðè ÿ ìè îêà çà ëèñü
íå îá õî äè ìû ìè äëÿ îïîñ ðå äî âà íèÿ íà áëþ äà å ìûõ ýô ôåê òîâ.
Âû âî äû. Ïðåä ñòàâ ëåí íûå äàí íûå óêà çû âà þò, ÷òî ÊîÀ ñèí òà -
çà ïî çè òèâ íî âëè ÿ åò íà àê òèâ íîñòü ñèã íàëü íûõ ïó òåé â êëåò -
êàõ ìëå êî ïè òà þ ùèõ, à òàê æå âñêðû âà þò íå èç âåñ òíóþ ðà íåå
ôóíê öè î íàëü íóþ ñâÿçü ìåæ äó ïå ðå äà ÷åé ñèã íà ëîâ â êëåò êå è
ìå òà áî ëèç ìîì.
Êëþ ÷å âûå ñëî âà: ÊîÀ ñèí òà çà, êî ôåð ìåíò À, íå çà âè ñè ìûé
îò ïðè êðåï ëå íèÿ ðîñò, æèç íåñ ïî ñîá íîñòü êëå òîê.
REFERENCES
1. Zhyvoloup A., Nemazanyy I., Babich A., Panasyuk G., Pobi-
gailo N., Vudmaska M., Naidenov V., Kukharenko O., Pal-
chevskii S., Savinska L., Ovcharenko G., Verdier F., Valovka
388
BREUS O. S. ET AL.
T., Fenton T., Rebholz H., Wang M.L., Shepherd P., Matsuka
G., Filonenko V., Gout I. T. Molecular cloning of CoA Syn-
thase. The missing link in CoA biosynthesis // J. Biol. Chem.–
2002.–277, N 25.–P. 22107–22110.
2. Daugherty M., Polanuyer B., Farrell M., Scholle M., Lykidis
A., de Crecy-Lagard V., Osterman A. Complete reconstitu-
tion of the human coenzyme A biosynthetic pathway via com-
parative genomics // J. Biol. Chem.–2002.–2277, N 24.–
P. 21431–2139.
3. Abiko Y. Metabolism of coenzyme A // In metabolic pathways
/ Ed. D. Greenberg.–New York: Acad. press, 1975.–P. 25–50.
4. Leonardi R., Zhang Y. M., Rock C. O., Jackowski S. Coen-
zyme A: back in action // Progr. Lipid. Res.– 2005.–44, N 2–
3.–P. 125–153.
5. Black P. N., Faergeman N. J. , DiRusso C. C. Long-chain
acyl-CoA-dependent regulation of gene expression in bacte-
ria, yeast and mammals // J. Nutr.–2000.–130, N 2S suppl. –
P.305S–309S.
6. Takahashi H., McCaffery J. M., Irizarry R. A., Boeke J. D.
Nucleocytosolic acetyl-coenzyme a synthetase is required for
histone acetylation and global transcription // Mol. Cell.–
2006.–23, N 2.–P. 207–217.
7. Resh M. D. Regulation of cellular signalling by fatty acid acy-
lation and prenylation of signal transduction proteins // Cell.
Signal.–1996.–8, N 6.–P. 403–412.
8. Linder M. E., Deschenes, R. J. Palmitoylation: policing prote-
in stability and traffic // Nat. Rev. Mol. Cell. Biol.–2007.–8,
N 1.–P.874–884.
9. Pfanner N., Orci L., Glick B. S., Amherdt M., Arden S. R.,
Malhotra V., Rothman J. E. Fatty acyl-coenzyme A is re-
quired for budding of transport vesicles from Golgi cisternae
// Cell.–1989.–59, N 1.–P. 95–102.
10. Bosveld F., Rana A., van der Wouden P. E., Lemstra W., Rit-
sema M., Kampinga H. H., Sibon O. C. De novo CoA bio-
synthesis is required to maintain DNA integrity during deve-
lopment of the Drosophila nervous system // Hum. Mol.
Genet.–2008.–17, N 13.–P. 2058–2069.
11. Nemazanyy I., Panasyuk G., Zhyvoloup A., Panayotou G.,
Gout I. T., Filonenko V. V. Specific interaction between S6K1
and CoA Synthase: a potential link between the mTOR/S6K
pathway, CoA biosynthesis and energy metabolism // FEBS
Lett.–2004.–578, N 3.–P. 357–362.
12. Breus O., Panasyuk G., Gout I. T., Filonenko V., Nemazanyy
I. CoA Synthase is in complex with p85alphaPI3K and affects
PI3K signaling pathway // Biochem. and Biophys. Res. Com-
muns.–2009.–385, N 4.–P. 581–585.
13. Zhyvoloup A., Nemazanyy I., Panasyuk G., Valovka T., Fen-
ton T., Rebholz H., Wang M. L., Foxon R., Lyzogubov V.,
Usenko V., Kyyamova R., Gorbenko O., Matsuka G., Filonen-
ko V., Gout I. T. Subcellular localization and regulation of co-
enzyme A synthase // J. Biol. Chem.–2003.–278, N 50.–
P. 50316–50321.
14. Frisch S. M., Francis H. Disruption of epithelial cell-matrix
interactions induces apoptosis // J. Cell. Biol.–1994.–124,
N 4.–P. 619–626.
15. Chiarugi P. From anchorage dependent proliferation to sur-
vival: lessons from redox Signalling // IUBMB Life.–2008.–
60.–P. 301–307.
16. Nakamura K., Sakaue H., Nishizawa A., Matsuki Y., Gomi
H., Watanabe E., Hiramatsua R., Tamamori-Adachi M.,
Kitajima S., Noda T., Ogawa W. , Kasuga M. PDK1 regulates
cell proliferation and cell cycle progression through control
of cyclin D1 and p27Kip1 expression // J. Biol. Chem.–
2008.–283, N 25.–P. 17702–17711.
17. Vander Heiden M. G., Plas D. R., Rathmell J. C., Fox C. J.,
Harris M. H., Thompson C. B. Growth factors can influence
cell growth and survival through effects on glucose
metabolism // Mol. Cell. Biol.–2001.–21, N 17.–P. 5899–
5912.
18. Duronio V. The life of a cell: apoptosis regulation by the
PI3K/PKB pathway // Biochem. J.–2008.–415.–P. 333–344.
19. Yuan T. L., Cantley L. C. PI3K pathway alterations in cancer:
variations on a theme // Oncogene–2008.–27, N 41.–P. 5497–
5510.
20. Veitch D. P., Gilham D., Cornell R. B. The role of histidine
residues in the HXGH site of CTP: phosphocholine cytidylyl-
transferase in CTP binding and catalysis // Eur. J. Biochem.–
1998.–255, N 1.–P. 227–234.
21. Christofk H. R., Vander Heiden M. G., Wu N., Asara J. M.,
Cantley L. C. Pyruvate kinase M2 is a phosphotyrosine-
binding protein // Nature.–2008.–452, N 7184.–P. 181–186.
22. Christofk H. R., Vander Heiden M. G., Harris M. H., Rama-
nathan A., Gerszten R. E., Wei R., Fleming M. D., Schreiber
S. L., Cantley L. C. The M2 splice isoform of pyruvate kinase
is important for cancer metabolism and tumour growth //
Nature–2008.–452, N 7184.–P. 230–233.
23. Swinnen J. V., Brusselmans K., Verhoeven G. Increased lipo-
genesis in cancer cells: new players, novel targets // Curr.
Opin. Clin. Nutr. Metab. Care.–2006.–9, N 4.–P. 358–365.
24. Menendez J. A., Lupu R. Fatty acid synthase and the lipogenic
phenotype in cancer pathogenesis // Nat. Rev. Cancer.–
2007.–7, N 10.–P. 763–777.
25. Yoon S., Lee M. Y., Park S. W., Moon J. S., Koh Y. K., Ahn Y.
H., Park B. W., Kim K. S. Up-regulation of acetyl-CoA
carboxylase alpha and fatty acid synthase by human epi-
dermal growth factor receptor 2 at the translational level in
breast cancer cells // J. Biol. Chem.–2007.–282, N 36.–
P. 26122–26131.
26. Brunet J., Vazquez-Martin A., Colomer R., Graña-Suarez B.,
Martin-Castillo B., Menendez J. A. BRCA1 and acetyl-CoA
carboxylase: the metabolic syndrome of breast cancer // Mol.
Carcinog.–2008.–47, N 2.–P. 157–163.
27. De Schrijver E., Brusselmans K., Heyns W., Verhoeven, G.,
Swinnen J. V. RNA interference-mediated silencing of the
fatty acid synthase gene attenuates growth and induces mor-
phological changes and apoptosis of LNCaP prostate cancer
cells // Cancer Res.–2003.–63, N 13.–P. 3799–3804.
28. Brusselmans K., De Schrijver E., Verhoeven G., Swinnen J.
V. RNA interference-mediated silencing of the acetyl-CoA-
carboxylase-alpha gene induces growth inhibition and
apoptosis of prostate cancer cells // Cancer Res.–2005.–65,
N 15.–P. 6719–6725.
29. Wang H. Q., Altomare D. A., Skele K. L., Poulikakos P. I.,
Kuhajda F. P., Di Cristofano A., Testa J. R. Positive feedback
regulation between AKT activation and fatty acid synthase
expression in ovarian carcinoma cells // Oncogene.–2005.–
24.–P. 3574–3582.
30. Vazquez-Martin A., Colomer R., Brunet J., Lupu R., Menen-
dez J. A. Overexpression of fatty acid synthase gene activates
HER1/HER2 tyrosine kinase receptors in human breast
epithelial cells // Cell Prolif.–2008.–41, N 1.–P. 59–85.
ÓÄÊ 577.2:577.27
Íàä³éøëà äî ðå äàêö³¿ 15.05.09
389
CoASy INFLUENCES ADHERENCE-INDEPENDENT GROWTH AND SURVIVAL OF MAMMALIAN CELLS
|