Recognition of tRNAs with a long variable arm by aminoacyl-tRNA synthetases

In prokaryotic cells three tRNA species, tRNASer, tRNALeu and tRNATyr, possess a long variable arm of 11–20 nucleotides (type 2 tRNA) rather than usual 4 or 5 nucleotides (type 1 tRNA). In this review we have summarized the results of our research on the structural basis for recognition and discrimi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Tukalo, M.A., Yaremchuk, G.D., Kovalenko, O.P., Kriklivyi, I.A., Gudzera, O.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут молекулярної біології і генетики НАН України 2013
Назва видання:Вiopolymers and Cell
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/152997
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Recognition of tRNAs with a long variable arm by aminoacyl-tRNA synthetases / M.A. Tukalo, G.D. Yaremchuk, O.P. Kovalenko, I.A. Kriklivyi, O.I. Gudzera // Вiopolymers and Cell. — 2013. — Т. 29, №. 4. — С. 311-323. — Бібліогр.: 81 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-152997
record_format dspace
spelling irk-123456789-1529972019-06-14T01:28:35Z Recognition of tRNAs with a long variable arm by aminoacyl-tRNA synthetases Tukalo, M.A. Yaremchuk, G.D. Kovalenko, O.P. Kriklivyi, I.A. Gudzera, O.I. Reviews In prokaryotic cells three tRNA species, tRNASer, tRNALeu and tRNATyr, possess a long variable arm of 11–20 nucleotides (type 2 tRNA) rather than usual 4 or 5 nucleotides (type 1 tRNA). In this review we have summarized the results of our research on the structural basis for recognition and discrimination of type 2 tRNAs by Thermus thermophilus seryl-, tyrosyl- and leucyl-tRNA synthetases (SerRS, TyrRS and LeuRS) obtained by X-ray crystallography and chemical probing tRNA in solution. Crystal structures are now known of all three aminoacyl-tRNA synthetases complexed with type 2 tRNAs and the different modes of tRNA recognition represented by these structures will be discussed. In particular, emphasis will be given to the results on recognition of characteristic shape of type 2 tRNAs by cognate synthetases. In tRNASer, tRNATyr and tRNALeu the orientation of the long variable arm with respect to the body of the tRNA is different and is controlled by different packing of the core. In the case of SerRS the N-terminal domain and in the case of TyrRS, the C-terminal domain, bind to the characteristic long variable arm of the cognate RNA, thus recognizing the unique shape of the tRNA. The core of T. thermophilus tRNALeu has several layers of unusual base-pairs, which are revealed by the crystal structure of tRNALeu complexed with T. thermophilus LeuRS and by probing a ligand-free tRNA by specific chemical reagents in solution. In the crystal structure of the LeuRS-tRNALeu complex the unique D-stem structure is recognized by the C-terminal domain of LeuRS and these data are in good agreement with those obtained in solution. LeuRS has canonical class I mode of tRNA recognition, approaching the tRNA acceptor stem from the D-stem and minor groove of the acceptor stem side. SerRS also has canonical class II mode of tRNA recognition and approaches tRNASer from opposite, variable stem and major groove of acceptor stem site. And finally, TyrRS in strong contrast to canonical class I system has class II mode of tRNA recognition. У клітинах евкаріотів тРНК трьох специфічностей – тРНКSer, тРНКLeu і тРНКTyr – мають довгу варіабельну гілку довжиною 11–20 нуклеотидів (2-га група тРНК) на відміну від чотирьох або п’яти нуклеотидів 1-ї групи тРНК. Підсумовано результати наших досліджень структурних основ упізнавання і дискримінації тРНК 2-ї групи серил-, тирозил- і лейцил-тРНК синтетазами з Thermus thermophilus (СерРС, ТирРС і ЛейРС), отриманих методами рентгенівської кристалографії і хімічної модифікації тРНК у розчині. На сьогодні кристалічна структура відома для всіх трьох комплексів аміноацил-тРНК синтетаз з відповідними тРНК 2-ї групи, різні типи впізнавання яких обговорюються в огляді. Зокрема, особливу увагу приділено результатам аналізу впізнавання гомологічними синтетазами характерних рис просторової структури тРНК 2-ї групи. У тРНКSer, тРНКLeu і тРНКTyr орієнтація довгої варіабельної гілки відносно основного тіла тРНК відрізняється і контролюється різною упаковкою корової частини молекули. У разі СерРС N-кінцевий, а в разі ТирРС – C-кінцевий домени зв’язуються з певними структурами довгих варіабельних гілок гомологічних РНК, упізнаючи таким чином унікальну структурну форму тРНК. Корова частина тРНКLeu має кілька шарів незвичайних пар основ, виявлених при вивченні кристалографічної структури комплексу тРНКLeu з ЛейРС із T. thermophilus та при дослідженні вільної тРНК у розчині методом хімічної модифікації з використанням специфічних реагентів. У кристалографічній структурі комплексу ЛейРС-тРНКLeu унікальна будова D-стебла впізнається С-кінцевим доменом ЛейРС і ці дані добре узгоджуються з результатами, отриманими в розчині. ЛейРС притаманний канонічний для синтетаз І структурного класу тип упізнавання тРНК – з боку D-стебла і малої борозенки акцепторного стебла. Для СерРС також характерний канонічний для синтетаз ІІ структурного класу тип упізнавання тРНК – з протилежного боку, тобто з боку варіабельного стебла і великої борозенки акцепторного стебла. І, нарешті, ТирРС на відміну від канонічного для ферментів І класу типу має тип упізнавання тРНК, властивий синтетазам ІІ класу. В клетках эукариотов тРНК трех специфичностей – тРНКSer, тРНКLeu и тРНКTyr – имеют длинную вариабельную ветку длиной 11–20 нуклеотидов (2-я группа тРНК) в отличие от четырех или пяти нуклеотидов 1-й группы тРНК. Суммированы результаты наших исследований структурных основ узнавания и дискриминации тРНК 2-й группы серил-, тирозил- и лейцил-тРНК синтетазами из Thermus thermophilus (СерРС, ТирРС и ЛейРС), полученные методами рентгеновской кристаллографии и химической модификации тРНК в растворе. На сегодня кристаллическая структура известна для всех трех комплексов аминоацил-тРНК синтетаз с соответствующими тРНК 2-й группы, разные типы узнавания которых обсуждаются в обзоре. В частности, особенное внимание уделено результатам анализа узнавания гомологичными синтетазами характерных черт пространственной структуры тРНК 2-й группы. У тРНКSer, тРНКLeu и тРНКTyr ориентация длинной вариабельной ветви относительно основного тела тРНК отличается и контролируется разной упаковкой коровой части молекулы. В случае СерРС N-концевой, а в случае ТирРС – C-концевой домены связываются с определенными структурами длинных вариабельных веток гомологичных РНК, узнавая тем самым уникальную структурную форму тРНК. Коровая часть тРНКLeu имеет несколько слоев необычных пар оснований, выявленных при изучении кристаллографической структуры комплекса тРНКLeu с ЛейРС из T. thermophilus и при исследовании свободной тРНК в растворе методом химической модификации с использованием специфических реагентов. В кристаллографической структуре комплекса ЛейРС–тРНКLeu уникальное строение D-стебля узнается С-концевым доменом ЛейРС и эти данные хорошо согласуются с результатами, полученными в растворе. ЛейРС свойствен канонический для синтетаз І структурного класса тип узнавания тРНК – со стороны D-стебля и малой бороздки акцепторного стебля. Для СерРС также характерный канонический для синтетаз ІІ структурного класса тип узнавания тРНК – с противоположной стороны, т. е. со стороны вариабельного стебля и большой бороздки акцепторного стебля. И, наконец, ТирРС в отличие от канонического для ферментов І класса типа имеет тип узнавания тРНК, присущий синтетазам ІІ класса. 2013 Article Recognition of tRNAs with a long variable arm by aminoacyl-tRNA synthetases / M.A. Tukalo, G.D. Yaremchuk, O.P. Kovalenko, I.A. Kriklivyi, O.I. Gudzera // Вiopolymers and Cell. — 2013. — Т. 29, №. 4. — С. 311-323. — Бібліогр.: 81 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.000825 http://dspace.nbuv.gov.ua/handle/123456789/152997 577.217 en Вiopolymers and Cell Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Reviews
Reviews
spellingShingle Reviews
Reviews
Tukalo, M.A.
Yaremchuk, G.D.
Kovalenko, O.P.
Kriklivyi, I.A.
Gudzera, O.I.
Recognition of tRNAs with a long variable arm by aminoacyl-tRNA synthetases
Вiopolymers and Cell
description In prokaryotic cells three tRNA species, tRNASer, tRNALeu and tRNATyr, possess a long variable arm of 11–20 nucleotides (type 2 tRNA) rather than usual 4 or 5 nucleotides (type 1 tRNA). In this review we have summarized the results of our research on the structural basis for recognition and discrimination of type 2 tRNAs by Thermus thermophilus seryl-, tyrosyl- and leucyl-tRNA synthetases (SerRS, TyrRS and LeuRS) obtained by X-ray crystallography and chemical probing tRNA in solution. Crystal structures are now known of all three aminoacyl-tRNA synthetases complexed with type 2 tRNAs and the different modes of tRNA recognition represented by these structures will be discussed. In particular, emphasis will be given to the results on recognition of characteristic shape of type 2 tRNAs by cognate synthetases. In tRNASer, tRNATyr and tRNALeu the orientation of the long variable arm with respect to the body of the tRNA is different and is controlled by different packing of the core. In the case of SerRS the N-terminal domain and in the case of TyrRS, the C-terminal domain, bind to the characteristic long variable arm of the cognate RNA, thus recognizing the unique shape of the tRNA. The core of T. thermophilus tRNALeu has several layers of unusual base-pairs, which are revealed by the crystal structure of tRNALeu complexed with T. thermophilus LeuRS and by probing a ligand-free tRNA by specific chemical reagents in solution. In the crystal structure of the LeuRS-tRNALeu complex the unique D-stem structure is recognized by the C-terminal domain of LeuRS and these data are in good agreement with those obtained in solution. LeuRS has canonical class I mode of tRNA recognition, approaching the tRNA acceptor stem from the D-stem and minor groove of the acceptor stem side. SerRS also has canonical class II mode of tRNA recognition and approaches tRNASer from opposite, variable stem and major groove of acceptor stem site. And finally, TyrRS in strong contrast to canonical class I system has class II mode of tRNA recognition.
format Article
author Tukalo, M.A.
Yaremchuk, G.D.
Kovalenko, O.P.
Kriklivyi, I.A.
Gudzera, O.I.
author_facet Tukalo, M.A.
Yaremchuk, G.D.
Kovalenko, O.P.
Kriklivyi, I.A.
Gudzera, O.I.
author_sort Tukalo, M.A.
title Recognition of tRNAs with a long variable arm by aminoacyl-tRNA synthetases
title_short Recognition of tRNAs with a long variable arm by aminoacyl-tRNA synthetases
title_full Recognition of tRNAs with a long variable arm by aminoacyl-tRNA synthetases
title_fullStr Recognition of tRNAs with a long variable arm by aminoacyl-tRNA synthetases
title_full_unstemmed Recognition of tRNAs with a long variable arm by aminoacyl-tRNA synthetases
title_sort recognition of trnas with a long variable arm by aminoacyl-trna synthetases
publisher Інститут молекулярної біології і генетики НАН України
publishDate 2013
topic_facet Reviews
url http://dspace.nbuv.gov.ua/handle/123456789/152997
citation_txt Recognition of tRNAs with a long variable arm by aminoacyl-tRNA synthetases / M.A. Tukalo, G.D. Yaremchuk, O.P. Kovalenko, I.A. Kriklivyi, O.I. Gudzera // Вiopolymers and Cell. — 2013. — Т. 29, №. 4. — С. 311-323. — Бібліогр.: 81 назв. — англ.
series Вiopolymers and Cell
work_keys_str_mv AT tukaloma recognitionoftrnaswithalongvariablearmbyaminoacyltrnasynthetases
AT yaremchukgd recognitionoftrnaswithalongvariablearmbyaminoacyltrnasynthetases
AT kovalenkoop recognitionoftrnaswithalongvariablearmbyaminoacyltrnasynthetases
AT kriklivyiia recognitionoftrnaswithalongvariablearmbyaminoacyltrnasynthetases
AT gudzeraoi recognitionoftrnaswithalongvariablearmbyaminoacyltrnasynthetases
first_indexed 2025-07-14T04:42:54Z
last_indexed 2025-07-14T04:42:54Z
_version_ 1837596069193580544
fulltext UDC 577.217 Recognition of tRNAs with a long variable arm by aminoacyl-tRNA synthetases M. A.Tukalo, G. D. Yaremchuk, O. P. Kovalenko, I. A. Kriklivyi, O. I. Gudzera Institute of Molecular Biology and Genetics, NAS of Ukraine and State Key Laboratory of Molecular and Cellular Biology 150, Akademika Zabolotnogo Str., Kyiv, Ukraine, 03680 mtukalo@imbg.org.ua In prokaryotic cells three tRNA species, tRNASer, tRNALeu and tRNATyr, possess a long variable arm of 11–20 nuc- leotides (type 2 tRNA) rather than usual 4 or 5 nucleotides (type 1 tRNA). In this review we have summarized the results of our research on the structural basis for recognition and discrimination of type 2 tRNAs by Thermus thermophilus seryl-, tyrosyl- and leucyl-tRNA synthetases (SerRS, TyrRS and LeuRS) obtained by X-ray crystal- lography and chemical probing tRNA in solution. Crystal structures are now known of all three aminoacyl-tRNA synthetases complexed with type 2 tRNAs and the different modes of tRNA recognition represented by these struc- tures will be discussed. In particular, emphasis will be given to the results on recognition of characteristic shape of type 2 tRNAs by cognate synthetases. In tRNASer, tRNATyr and tRNALeu the orientation of the long variable arm with respect to the body of the tRNA is different and is controlled by different packing of the core. In the case of SerRS the N-terminal domain and in the case of TyrRS, the C-terminal domain, bind to the characteristic long variable arm of the cognate RNA, thus recognizing the unique shape of the tRNA. The core of T. thermophilus tRNALeu has several layers of unusual base-pairs, which are revealed by the crystal structure of tRNALeu complexed with T. thermo- philus LeuRS and by probing a ligand-free tRNA by specific chemical reagents in solution. In the crystal structure of the LeuRS-tRNALeu complex the unique D-stem structure is recognized by the C-terminal domain of LeuRS and these data are in good agreement with those obtained in solution. LeuRS has canonical class I mode of tRNA re- cognition, approaching the tRNA acceptor stem from the D-stem and minor groove of the acceptor stem side. SerRS also has canonical class II mode of tRNA recognition and approaches tRNASer from opposite, variable stem and major groove of acceptor stem site. And finally, TyrRS in strong contrast to canonical class I system has class II mode of tRNA recognition. Keywords: type 2 tRNA, long variable arm, aminoacyl-tRNA synthetase, tRNA recognition, aminoacyl-tRNA syn- thetase complexes. Introduction. The fidelity of translation of the informa- tion stored in nucleic acids into proteins is essential for all living cells. The algorithm of translation of the gene- tic code is established in the process of aminoacyl- tRNA formation. Therefore, the fidelity of protein syn- thesis depends to a large extent on a high specificity with which aminoacyl-tRNA synthetases (aaRSs) charge their cognate tRNAs with a correct amino acid. aaRSs cataly- se the aminoacylation reaction in two steps, firstly, the activation of amino acid using ATP to form the enzyme bound aminoacyl-adenylate, and secondly, the transfer of amino acid to the 2' or 3' hydroxyl of the 3' terminal tRNA ribose. The ester linkage of the aminoacyl-tRNA provides much of the energy required for peptide bond formation on the ribosome. The accuracy of the amino- acylation reaction is based on correct selection and recog- nition by aaRSs their cognate tRNAs. The selection of tRNA is a result of productive interaction between tRNA and its corresponding aaRS mediated by the recogni- tion-defined elements (identity determinants) and non- productive interaction between this tRNA and 19 other aaRS species mediated by the rejection-defined elements (anti-identity determinants). Sum of identity and anti- identity determinants forms the identity set of a given tRNA system [1]. Given that tRNAs apparently have si- milar secondary and tertiary structures, the question ari- 311 ISSN 0233–7657. Biopolymers and Cell. 2013. Vol. 29. N 4. P. 311–323 doi: 10.7124/bc.000825 Ó Institute of Molecular Biology and Genetics, NAS of Ukraine, 2013 312 ses about the structural basis for the specific recogni- tion between aaRSs and tRNAs. Evolution has resulted in two completely distinct structural solutions of the aminoacylation problem. The amino acid sequence analysis [2] and X-ray crystallo- graphy [3] have shown that the aaRSs are partitioned in- to two exclusive classes. The catalytic domain of class I enzymes contains the well-known Rossmann fold as a framework whereas that of class II enzymes is based around a different anti-parallel fold. The catalytic do- main of each class includes short sequence motifs, HIGH and KMSK in class I and motifs 1, 2 and 3 in class II [2, 4]. A functional distinction between the two classes is that class I synthetases charge the 2' hydroxyl and class II synthetases (except for phenylalanyl-tRNA syntheta- se) charge the 3' hydroxyl of the ribose of A76 [2, 5, 6]. Class II aaRSs are almost all functional dimers whereas most class I enzymes are monomers except for tyrosyl- tRNA synthetase and tryptophanyl-tRNA synthetase. Now the crystal structures are available for all 20 cano- nical aaRSs [4] as well as for the non-canonical pyrroly- syl-tRNA synthetase and phosphoseryl-tRNA synthe- tase [7, 8]. In both classes, the tRNA binding ability of aaRS is augmented by RNA-binding modules which, because of their greater structural variability, have pre- sumably been added to the catalytic domain at a later stage in evolution [9–11]. Classification of tRNAs ac- cording to the length of their extra (variable) arm, leads to dividing them into two classes: those with a short variable arm of 4–5 nucleotide (type 1) and those with a long variable arm, more than 10 nucleotides (type 2) [12]. Prokaryotic tRNASer, tRNALeu and tRNATyr, are clas- sified as the type 2 tRNAs. The long variable arm of tRNASer and tRNALeu shows variation in both length and sequence within the isoacceptor tRNAs. Thus, the long- standing question was how the discrimination between the type 2 tRNAs occurs and what is a role of the long variable arm in the process. In this article we would like to review what is known on the structural basis for re- cognition and discrimination of the type 2 tRNAs by Thermus thermophilus seryl-, leucyl- and tyrosyl- tRNA synthetases. The serine system. The serine system has a num- ber of interesting features. Firstly, the bacteria Escheri- chia coli and T. thermophilus possess five isoaccepting tRNASers in order to cope with the six codons for serine which correspond to distinct codon classes. In addition tRNASec, the selenocysteine-specific tRNA species, which has an opal stop anticodon, is also specifically charged by seryl-tRNA synthetase (SerRS). As a result, there is no consistency in the anticodon bases of tRNASers, and their anticodons are apparently not involved in re- cognition by SerRS. Another special feature is that pro- karyotic tRNASer, as indicated above, has a long variab- le arm and refers to type 2 tRNAs. In fact, the serine aminoacylation system is unique in the sense that it is the only system where class II aaRS recognizes type 2 tRNA. Therefore the main question has arisen in the study of this system: what are the common features of tRNASers that are recognized by synthetase? Clearly on- ly a crystal structure of the complex can give a compre- hensive picture of the recognition of SerRS by its cog- nate tRNAs, but of course one expects it to be consis- tent with the biochemical and mutagenesis results. The- refore, we have studied the recognition of tRNASer by the cognate synthetase using two approaches: X-ray crys- tallography and chemical and enzymatic footprinting of tRNA in solution. The extreme thermophilic bacterium T. thermophilus has been chosen as a source for the iso- lation of tRNA and SerRS to investigate their structures and functions by biochemical and structural methods. The proteins and nucleic acids from this organism are very stable and crystallized easier than those from the methophilic organisms. At the beginning the scheme of simultaneous isolation of ribosome, tRNA, three elon- gation factors, several aaRSs was developed, and purifi- cation of SerRS from T. thermophilus HB27 was descri- bed [13, 14]. To study the mechanism of amino acid ac- tivation and specific recognition of cognate tRNA by T. thermophilus SerRS (SerRSTT) we tried to crystallize this enzyme alone and in a complex with substrates. The crystals of SerRSTT, obtained using mixed solutions of ammonium sulphate and 2-methyl-2,4-pentanediol, we- re very stable and diffracted to at least 2 C [15]. The enzyme from two strains of T. thermophilus HB8 and HB27 has been cloned and sequenced (Tukalo et al. un- published results). SerRSTTs from both strains have 421 residues per subunit, but differ in six positions, and have an overall sequence identity with E. coli enzyme of 37 %. The three-dimension structure of the HB27 SerRSTT has been determined and refined at 2.5 C resolution [16]. The structures of T. thermophilus and TUKALO M. A. ET AL. E. coli SerRSs are very similar [3, 16] and made up a cen- tral globular domain with a long coiled-coil extension (Fig. 1, see inset). The globular, catalytical domain con- sists of eight-stranded b-sheet, of which seven strands are antiparallel, packed onto two a-helices. One of these a- helices interacts with the corresponding one in the other molecules of the dimer, forming the layer of four a- helices. The antiparallel-fold is characteristic of class II aaRSs and has been found in all synthetases from this class [4]. N-terminal domain as coiled-coil extension of the protein, a remarkable feature of SerRS, stretches about 60 C in the solution and its role in tRNA recog- nition will be discussed below. The first step of the overall aminoacylation reaction catalyzed by SerRS is activation of serine by Mg2+- ATP leading to a stable enzyme-bound intermediate, seryl-adenylate (Ser-AMP). The first information on ATP-binding mode in the active site of class II synthe- tase was obtained from the structure of SerRSTT in complex with ATP-analogue [17, 18]. In spite of the me- dium resolution of data, it was clear that ATP is bound in a part of the active site pocket formed by the class II conserved motifs 2 and 3. Later, a series of crystal struc- tures at 2.3–3 C resolution of complexes involving Ser RSTT, ATP, Mn2+ or Mg2+ and Ser-AMP (natural and analogues) have been determined, which provide the structural basis for explanation of the specificity and mechanism of serine activation [19, 20]. In the presen- ce of a divalent cation (Mg2+ or Mn2+) the ATP mole- cule is found in an unusual U-shaped conformation in which the b- and g-phosphates are bent back into an arginine-rich pocket (comprising Arg271, Arg344 and Arg386) towards the purine ring rather than extending away from it. A similar conformation of ATP has been observed in the yeast AspRS-tRNAAsp-ATP ternary complex [21] and later in other class II synthetases [22]. This compact conformation of ATP is unique for class II synthetases as in the active sites of class I enzymes ATP adopts an extended conformation [23]. The super- position of the enzyme-bound ATP and Ser-AMP struc- tures provides strong support for an in-line displace- ment mechanism of the serine activation [20]. The bent conformation of ATP and the position of serine are con- sistent with nucleophilic attack of the serine carboxyl group on the a-phosphate leading to the release of in- organic pyrophosphate. Structure of SerRSTT-tRNASer complex. Since the crystallization of the synthetase-tRNA complexes might require relatively large quantities of pure tRNA species we had to develop the method for preparative isolation of tRNA. Separation of biologically active pu- re and specific tRNAs is difficult due to the overall simi- larity in tertiary structure of different RNA molecules on the one hand and their heterogeneity on the other hand. This heterogeneity is conditioned by both degene- ration of the genetic code (6 anticodons for serine) and the degree of maturation (post-transcriptional modifica- tion of nucleotide bases and their transformation into minor components). Therefore, we have developed a method for tRNA isolation from T. thermophilus cells which combines different techniques: chromatography on benzoyl-DEAE-cellulose and HPLC on anion-ex- change and reverse phase columns [24]. This methodo- logical approach allowed us to obtain two highly purifi- ed isoaccepting tRNASers, sufficient for the study of their primary structures and for the crystallization trials of tRNASer complexes with cognate SerRSTT. The nuc- leotide sequence of two serine isoacceptor tRNAs from T. thermophilus, containing different anticodons has be- en studied by the ultramicrospectrophotometrical me- thod and rapid gel sequencing procedure [25]. Compa- rison of the sequences of tRNA1 Ser and tRNA2 Ser shows that the acceptor stem and T-stem are identical in both RNAs, and only three changes have been found in the structures of D-stems. The most significant differences were found in the anticodon stems and variable arms of two tRNASers. These data are in good agreement with the results of the study on the identity determinants in E. coli tRNASer [26, 27]. The authors have shown that the anticodon nucleotides are not involved in specific recognition of tRNASer. However, the elements of ter- tiary structure play a critical role. For example, it was established that the length and orientation of the variab- le arm of tRNASer are more important for aminoacy- lation by SerRS than its sequence. In view of the fact that SerRS selectively recognizes tRNASer on the basis of its characteristic tertiary structure rather than the spe- cific nucleotides, an important step in investigation of the recognition mechanism for serine system was to de- termine the characteristics of tRNASers spacial organi- zation and topography of the complex with cognate synthetase. The most direct and informative method for 313 RECOGNITION OF tRNAs WITH A LONG VARIABLE ARM BY AMINOACYL-tRNA SYNTHETASES ISSN 0233-7657. Biopolymers and Cell. 2013. Vol. 29. N 4 Figures to article by M. A. Tukalo et al. Le ucyl-tRNA synthetase Class I monomer with editi ng activity Se ryl-tR NA synthe tase C lass II dimer Tyrosyl-tRN A synthe tase Class I d imer Catalytic domain C-term inal dom ain N-terminal domain Editing domain Fig. 1. Structures of T. thermophilus aminoacyl-tRNA synthetases (SerRSTT, TyrRSTT and LeuRSTT), which recognize tRNAs with a long variable arm TyrRSTT-tRNA Tyr Se rRSTT-tRN A Ser LeuRSTT-tRNA Leu C-terminal dom ain N-terminal dom ain C-te rminal domain Fig. 2. Complexes of aminoacyl-tRNA synthetases recognizing long variable arm tRNAs achieving this goal is the X-ray analysis. However, it should be noted that the crystallization conditions, on the one hand, and the interaction with the enzyme, on the other, may lead to changes in the spatial organi- zation of tRNA. Therefore, extremely important is the study of tRNASer in the free state and in the complex with protein in solution under conditions close to phy- siological. In order to study the structure of tRNASer and the molecular basis of its recognition by the synthetase, we have obtained four crystal forms of the complex betwe- en SerRS and its cognate tRNA from the T. thermophi- lus [28, 29]. Of these, two (denoted by Form III and Form IV) have tetragonal crystal forms and both diffract to about 6 C resolution [28]. Form III crystals diffract to about 3.5 C and contain two synthetase dimmers with two tRNA molecules each. On the other hand, Form IV crystals, which diffract to 2.8 C resolution, contain on- ly one tRNA molecule bound to the synthetase dimer [28]. Using Form IV crystals the structure of T. thermo- philus SerRS complexed with tRNASer molecule was solved at 2.9 C resolution [18]. A ribbon diagram of the structure of SerRSTT-tRNASer complex is shown in Fig. 2 (see inset). The main conclusion can be summarized as follows: (1) the tRNA binds across the two subunits of the dimer; (2) the anticodon loop is not in contact with the synthetase; (3) upon tRNA binding the coiled-coil domain of the synthetase is stabilized in a particular ori- entation and curves between the TYC loop and the long variable arm of the tRNA; (4) the synthetase makes se- veral backbone contacts but few base-specific interac- tions; (5) the contacts with the tRNA long variable arm backbone extend out to the sixth base pair, explaining the need for a minimum length of the arm, but allowing lon- ger arms (as, for instance, in tRNASec) to be accommo- dated; and (6) the bases 20a and 20b inserted into the D loop in the tRNASer both play novel roles in the core for- mation of the tRNA. In particular, the base of G20b is stacked against the first base pair of the long variable arm and thus determines the orientation of the variable arm. These crystallographic results show that both dis- tinctive features of the serine system, the synthetase coi- led-coil N-terminal domain and the tRNASer long vari- able arm, play the major role in the mutual recognition of these two macromolecules. Furthermore, this recog- nition is based on the shape rather than on the specific nucleotide sequence, which fits well with the biochemi- cal data [26, 27]. These data are also in good agreement with those obtained by us in the solution, where SerRS TT protected from alkylation by ethylnitrosourea the phosphates residues located in three regions of tRNASer: at the variable arm (phosphates 46–47c, 47o, 47p), the T stem-loop (P50, P53, P54) and the acceptor stem (P67- P69) [30] (Fig. 3). The structure of complex provides also the first de- tailed description of the architecture of a type 2 tRNA. 314 TUKALO M. A. ET AL. tRNASer tRNALeu tRNATyr 19 G C C G A C C A C G G G G G C C C C U GA GCG G CGCA AU U Gm G U A G G C A U G A G U A C Y U U C A G m1G G U G C C C U G C G G CGC GCG C G C G U G m1A T Y C A G C A G A 1 15 20à 72 48 35 G G C C G C C A A G A G G U C U C C U GA CCCG GGGA GU Gm G C D G A A C A C G A G U G C Y C U G G A ms2i6A A U A G G G G G G C U C C C U C C CGC GCG C G C G U A m1A s2T Y C G C U A A A U 1 72 20b 15 19 48 35 19 G G C C A C C A G C A G G C G U C C s4U GA CCC G GGGA GC Gm G C C A A G A C G G U U G C C A C U G Y A A* A U G G C C U C C G U AGC UCG C G C G U A m1A T Y C G G U A U 1 15 20b 72 48 35 Fig. 3. Cleverleaf structures of T. thermophilus tRNASer, tRNALeu and tRNATyr with position of phosphates protected by cognate synthetase from alkylation with ethylnitrosourea The tertiary interactions in the core of the tRNASer dif- fer from those observed previously for a type 1 tRNAPhe. The core of the latter includes four parallel stacked pla- nes; three of them consist of a base triplet. The equiva- lent region in tRNASer (Fig. 4, A) is reorganized to ac- commodate the insertion of 20a-20b from the D loop and can be described by the notation D20a-[G15-C481, A21-[U8-A14], G9-[A22-G13], and [G23-C12]. In or- der to clarify the question, whether the resulting crystal structure of the tRNASer corresponds to that under phy- siological conditions, the elements of tertiary structure of tRNASer from T. thermophilus were studied by the methods of chemical modification in solution [31]. For this, ethylnitrosourea has been used to modify the phos- phate residues; guanosines and cytidines were modified by dimethylsulphate, and adenosines by diethylpyro- carbonate [32, 33]. Summarizing the results (which will also be discussed below), we can conclude that the same interactions, that define an architecture of the so- lution structure of tRNASer, exist in the crystal form. Thus, the crystal conformation of tRNASer in complex with the synthetase is very close to that for the free tRNA in solution. In the original binary SerRSTT-tRNASer complex crystal structure [18], the end of the acceptor stem of tRNA was not ordered in the active site. However the ternary complex of SerRSTT-tRNASer with a non-hyd- rolysable seryl-adenylate analogue [34] shows a much better ordering of the active site, and the interactions in- side the acceptor stem mainly made by the motif 2 loop of SerRS, are visible. Interestingly, in the absence of tRNA, but in the presence of ATP or Ser-AMP [20, 34] the motif 2 loop adapts a quite different conformation. Upon tRNA binding a number of motif 2 residues pre- viously found interacting with ATP or adenylate now switch to participate in tRNA recognition. These results combined with those, obtained previously [18], pro- vide strong evidence that the functional binding of tRNASer to SerRS occurs in at least two distinct steps: firstly the initial recognition and docking which depend largely on interaction of the N-terminal domain with a long variable arm and secondly, the correct positioning of the 3' end of the tRNA in the active site. The latter de- pends critically on a conformation switch of the motif 2 loop after the adenylate formation. The leucine system. A subfamily of class 1a aaRSs, leucyl-, isoleucyl- and valyl-tRNA synthetases (LeuRS, IleRS and ValRS, respectively) are particularly closely related and probably evolved from a common ancestor. The three enzymes are large monomers (» 100 kDa) and contain an unusually large insertion often, called CP1 (connective polypeptide 1), [35] into the class 1 Ros- smann-fold catalytic domain. Based on the structural data of IleRS and on the mutagenesis experiments, a putative hydrolytic editing active site was identified wi- thin the CP1 domain [36–38]. LeuRS was the least stu- 315 RECOGNITION OF tRNAs WITH A LONG VARIABLE ARM BY AMINOACYL-tRNA SYNTHETASES D-T stem-loop Acceptor stem Anticodon Variable arm 7 8 9 101112131415 20 a 20b 22 21 23 24 25 26 44 45 4647p 47q 4849 59 65 66 D-T stem-loop Acceptor stem Anticodon Variable arm 7 8 9 101112131415 20 a 47j 22 21 23 24 25 26 44 45 4647h 47i 4849 59 65 66 SertRNA T. thermophilus LeutRNA T. thermophilus A B Fig. 4. Comparison of the core structure of T. thermophilus tRNASer (A) and tRNALeu (B) died of this triad of editing enzymes. We have found that T. thermophilus LeuRS is capable of editing homo- cysteine, norvaline and norleucine, and have studied the structure of editing active site of enzyme which binds the distinct pre- and post-transfer editing substrates [39]. The second interesting feature of LeuRS is that this syn- thetase recognizes tRNA with a long variable arm. How- ever, unlike the other two such enzymes, SerRS and TyrRS, the bacterial LeuRS surprisingly does not gene- rally use the long variable arm of tRNALeu as an identity element [40]. Neither does LeuRS use the anticodon triplet [40]. Obviously, the complexity of LeuRS needs a deep on complexes of the enzyme with various subst- rates in combination with the mutagenesis and bioche- mical results for the understanding of the molecular me- chanisms of tRNA recognition and catalysis. For this, the gene of T. thermophilus HB27 LeuRS has been clo- ned and sequenced [41]. The open reading frame enco- des a polypeptide chain of 878 amino acid residues in length (molecular mass 101 kDa). Then the T. thermo- philus LeuRS (LeuRSTT) was expressed in E. coli cells by cloning the corresponding gene into pET29b vector [41]. LeuRS from T. thermophilus was the first crystal- lized LeuRS, for which the crystal structure was descri- bed [ 42–44]. A high quality crystal form of the native enzyme and its complexes with leucine and leucyl-ade- nylate analogue diffracts to 1.9 C resolution and con- tains one monomer in asymmetric unit [42]. The over- all architecture of LeuRSTT is similar to that of IleRS, except for the fact that the editing domain is inserted at the different position in the primary structure [43] (Fig. 1, see inset). This feature is unique to prokaryotic LeuRS, as well as the presence of novel additional flexibly in- serted domain (designated leucyl-specific domain). Comparison of the native enzyme and complexes with leucine and a leucyl-adenylate analogue shows that the binding of the adenosine moiety of leucyl-adenylate causes significant conformational changes in the active site required for amino acid activation and tight binding of the adenylate. These changes propagated to more distant regions of the enzyme, leading to a significantly more ordered structure ready for the subsequent amino- acylation and/or editing steps. Structure of LeuRSTT-tRNALeu complex. To ob- tain further insight into tRNA recognition by LeuRS and into mechanisms of aminoacylation and editing, we have determined the crystal structure of LeuRSTT com- plexed with the tRNALeu transcript and leucine [45]. LeuRSTT-tRNALeu co-crystals have been obtained only with the particular T7 transcript of T. thermophilus tRNALeu(CAG), which normally has 87 nucleotides, but in this work had a two base-pair deletion in the long va- riable arm stem. Such a truncation of the long variable arm does not affect the leucylation activity [40]. The crystal structure shows (Fig. 2, see inset) that the tRNA acceptor end enters the editing site in a fashion complete- ly compatible with our previous structure of LeuRSTT complexed with a post-transfer editing substrate analo- gue, 2'-(L-norvalyl)amino-2'-deoxyadenosine (Nva2AA) [39]. Furthermore, the structure at the improved resolu- tion of 2.9 C, obtained by soaking the co-crystals with Nva2AA, shows that this compound, bound in the editing active site, displaces the 3' end of the tRNA. The anti- codon stem of tRNALeu is packed against the helical do- main characteristic of class Ia. Neither the long variable arm, nor the anticodon loop, is in contact with the synthe- tase. The C-terminal domain of the synthetase, hitherto unseen in crystal structures of uncomplexed LeuRSTT, for the first time could be traced as a compact alpha- beta domain. To clarify the function of the C-terminal domain in LeuRSTT, a truncation mutant LeuRSTTdC with the C-terminal 60 residues deleted was expressed and purified. The C-terminal truncation mutant shows 152-fold reduction (the kcat value) of the aminoacyla- tion activity [46], indicating that the C-terminal domain is strictly required for the tRNA charging activity of Leu RSTT. This has also been demonstrated for the E. coli and Pyroccocus horikoshii LeuRSs (LeuRSHP) [47, 48]. Analysis of the tRNALeu interaction with LeuRSTT shows, that there are non-specific backbone contacts in the regions of nucleotides 12–13, 22–26, and 42, invol- ving residues in the regions 667–686 and 749–760. The C-terminal domain makes more extensive contacts to the base pair G19-C56 including some base specific in- teractions. All these contacts agree reasonably well with biochemical footprinting studies. The regions of the wild type tRNALeu (the long variable arm has four base pairs) protected by LeuRSTT against alkylation with ethylnit- rosourea are located at the 5' side of D-stem (phosphates P14 and P15), at the 3' side of the D-stem (phosphates P24 and P25), at the 3' side of the anticodon stem (P38- 40) and at the variable arm (P47i). The anticodon loop 316 TUKALO M. A. ET AL. ISSN 0233-7657. Biopolymers and Cell. 2013. Vol. 29. N 4 Figures to article by M. A. Tukalo et al. tRNATyr tRNASer tRNALeu Ac ceptor ste m Long variable arm 50 o D C B A tRNATyr(G YA) tRNALeu(CAG ) tRNASer(GG A) Fig. 6. Structural comparison of the long-variable arm tRNAs: T. thermophilus tRNASer (A), tRNATyr (B) and tRNALeu (C). The structural alignment of tRNATyr , tRNASer and tRNALeu (D) Ser RS Class II synthetase Class II mode l tRN A rec ognition Tyr RS Class I synthetase Class II mode l tRN A rec ognition GlnR S Class I synthe tase Class I model tRNA r ecognition Fig. 5. A different modes of tRNA recognition by aminoacyl-tRNA synthetases. Adopted from [60] and practically entire variable arm of tRNALeu are expo- sed for chemical modification [49], consistent with their not being in contact with the synthetase (Fig. 3). The fact of the protection of P47i in solution which is not in contact with the enzyme in the crystal may be explained by using truncated form of tRNALeu for crystallization of the complex. In the recently reported crystal structures of E. coli LeuRS-tRNALeu complexes in the aminoacyla- tion or edititing conformations, the long variable arm is the same as in the wild type tRNALeu and contacts the C- terminal domain via the variable arm phosphates P47i (in the aminoacylation conformation) or P47f-P47i (in the editing conformation) [50]. Regardless of the details of the interaction with the long variable arm, LeuRSTT has a canonical class I mode of tRNA recognition approa- ching the tRNA acceptor stem from the D-stem and mi- nor groove of the acceptor stem side. Ser RSTT also has a canonical class II mode of tRNA recognition and ap- proaches tRNASer from opposite, i. e. the variable stem and major groove of the acceptor stem side. For the first time, the study on the structure of the LeuRS-tRNALeu complex has shown a unique spatial structure of bacterial tRNALeu. There are two related as- pects: firstly, the structure of the tRNA core and, second- ly, the orientation of the long variable arm. The core structure of T. thermophilus tRNALeu has several layers of unusual base-pairs, which are revealed by both the crystal structure and probing a ligand-free tRNALeu with the specific chemical reagents in solution [45, 51] (Fig. 4, B). The orientation of the long variable arm in tRNALeu is determined by the single unpaired base G48.1 which stacks against the first base-pair of the variable arm stem, G45:C48.2 (Fig. 6, C, see inset). Unfortunately we failed to crystallize the LeuRSTT- tRNALeu complex in aminoacylation conformation. But this complex was obtained for archaea LeuRSHP [52]. Due to the high homology of key amino acid residues in the catalytic domain of LeuRS, including LeuRSTT and LeuRSPH, we proposed a model aminoacylation con- formation of the 3'-end of tRNALeu, which is located in the center of the catalytical domain of T. thermopilus LeuRS [45]. A key observation from this modelling is that the zinc-containing ZN-1 domain (residues 154– 189 in LeuRSTT) must be mobile during the amino- acylation reaction. This model also shows a crucial role of the conserved motif 418-RLRDWLISRQRYW-431 in positioning the 3' end of the tRNA, in particular, by making specific main-chain hydrogen bonds to the dis- criminator base A73. Basic residues Arg418, Arg420 and Arg426 are also probably important for tRNA bin- ding. Interestingly that recently solved crystal structure of E. coli LeuRS-tRNALeu complex in the aminoacyla- tion conformation has confirmed the basic assumptions for aminoacylation model of LeuRSTT [50]. Our study on the ternary complex LeuRSTT with tRNALeu and boron derivative AN2690, which is a selective inhibi- tor to the editing active center of LeuRS, made it possib- le to understand the initial binding conformation of tRNA to the enzyme [53]. In the crystal it was obtained stable adduct of AN2690-tRNALeu in the editing domain of LeuRSTT, by chemical cross-linking the boron atom of AN2690 with oxygen atoms of 2'- and 3'-OH end groups of adenosine tRNA. In addition, we showed such cross-linking in the solution. This indicates that the ori- ginal, the most thermodynamically stable binding con- formation of tRNALeu to LeuRSTT is the conformation in which the 3'-end of tRNA interacts with the editing active center of the enzyme. After the formation of ami- noacyl-adenylate in the synthetic active site, 3'-end of tRNA switches from the editing domain to the synthetic one. A superposition of the tRNA conformations from the various Pyroccocus and Thermus LeuRS-tRNALeu complexes gives an impression of the trajectory of the 3' end of the tRNA from aminoacylation to editing and exit conformations. How does LeuRSTT recognize tRNALeu and exclude noncognate tRNA? A biochemical insight into this problem has mainly come from the attempts to mutate tRNALeu in the E. coli system [40, 54–56]. The generalisation of these results shows that A73, the con- figuration of the D loop (notably the position of the G18- G19 dinucleotide), the Levitt base pair A15-U48 and the single unpaired nucleotide at 3' end of the long va- riable arm are the crucial elements for effective leucyla- tion. Examination of the crystal structures explained this finding to some extent but failed to provide complete understanding of the specificity of LeuRS for tRNALeu in comparison to tRNATyr, which has the same discrimina- tor nucleotide A73. We noted that for discrimination between tRNALeu and tRNATyr the LeuRS uses the diffe- rences in their tertiary structures, interacting simulta- neously in several positions of a ribose-phosphate back- bone of tRNA [45, 46]. 317 RECOGNITION OF tRNAs WITH A LONG VARIABLE ARM BY AMINOACYL-tRNA SYNTHETASES The tyrosine system. Tyrosyl-tRNA synthetase (TyrRS) is a homodimeric class I aaRS, but is unusual- ly a functional dimer, a feature only shared with trypto- phanyl-tRNA synthetase [57]. This system is also uni- que because of having two types of tRNATyr: with a long variable loop for prokaryotes and eukaryotic organelles and with a short variable loop for archaea and eukaryo- tes. Besides, the acceptor stems for tRNATyr of proka- ryotes, mitochondria and chloroplasts have the G1-C72 base pair found in most tRNAs while the first base pair of tRNATyr of eukaryotic cytoplasm and archaea is C1- G72 [12]. Eukaryote cytoplasmic and prokaryote TyrRS cannot cross-aminoacylate their respective tRNAsTyr. Although the crystallographic structure of the Bacillus stearothermophilus TyrRS has been determined [58] this structure comprises only the N-terminal 320 amino acids of the molecule as the C-terminal 99 amino acids are disordered in the crystal. A long time there were no crystallographic data on the complex with ATP or with tRNATyr. In order to fill up the gaps in structural infor- mation, we have begun the work on the tyrosine system from T. thermophilus. To obtain a sufficient amount of TyrRS for crystallization, the gene encoding TyrRS from the extreme thermophilic eubacterium T. thermo- philus HB27 has been cloned and sequenced [59]. The open reading frame encodes a polypeptide chain of 432 amino acid residues in length (molecular mass 48717 Da). Comparison of the amino acid sequence of the T. thermophilus TyrRS (TyrRSTT) with that of TyrRS from various organisms shows that the T. thermophilus enzyme shares a branch in the phylogenetic tree of eu- bacterial TyrRSs with the enzymes from Aquifex aeoli- cus, Deinococcus radiodurans, Haemophilus influenzae and Helicobacter pylori (40–57 % amino acid identity), distinct from the branch containing E. coli, Chlamydia trachomatis and Bacillus stearothermophilus, for example (24–28 % amino acid identity). Non-bacterial TyrRSs, which recognize type 1 tRNAs without a long variable arm, are quite different and either lack (archaeal) or have an alternative (eukaryotic) C-terminal domain. We have determined a series of structures of TyrRSTT complexed with various combinations of ATP and tyro- sine, which causes several questions relating to the me- chanism of tyrosine activation. Crystallization of Tyr RSTT with tyrosinol (Fig. 1, see inset) allowed us to vi- sualize for the first time the complete enzyme including the C-terminal domain at 2.0 C resolution [60]. The fold of C-terminal domain of TyrRSTT is similar to part of the C-terminal domain of ribosomal protein S4 and its role in tRNATyr recognition will be discussed below. Structure of TyrRSTT-tRNATyr complex. We ha- ve studied five different crystal forms of the complex between TyrRS and native or transcript tRNATyr and de- termined the structure of TyrRSTT-tRNATyr complex at 2.9 C resolution [60]. The structure of complex was no- vel for several reasons since it (i) confirmed the cross- subunit binding of the tRNA to TyrRS dimer, (ii) show- ed that class I synthetase TyRS had a class II mode of tRNA recognition, (iii) revealed the detailed interac- tions of the TyrRS C-terminal domain with the tRNA long variable arm and anticodon stem-loop, and (iiii) demonstrated tertiary structural features in tRNATyr which determine the orientation of the long variable arm (Fig. 2, see inset). The mode of binding tRNA to TyrRSTT is similar to the earlier model of the TyrRS-tRNATyr complex pro- posed by Bedouelle [61] on the basis of extensive muta- tional studies and very similar to one proposed by us on the basis of the study of phosphate protection upon tRNATyr binding to the synthetase [62]. Despite having an unambiguous class I catalytic domain, TyrRS in con- trast to the canonical class I systems has a class II mode of tRNA recognition [60]. This means that it interacts with tRNATyr from the variable loop and acceptor stem major groove side as, for instance, in the case of class II AspRS [63] and SerRS [34] (Fig. 2, 5, see inset). This is in strong contrast to the canonical class I systems such as those of subclass Ib GlnRS [64], which approach cogna- te tRNA from the acceptor stem minor groove side. Des- pite the class II mode of tRNA recognition, TyrRS pre- ferentially aminoacylates the 2' OH of A76 in accor- dance with other class I systems [65]. The evolutional scenario that led to those non-canonical features of TyrRS is not obvious. There is a suggestion that dimerization of synthetase and the class II mode of tRNA recognition may be evolutionary linked in TyrRS [60]. This hypo- thesis has been confirmed by the recent data on the structures of the complex Methanococcus jannaschii TyrRS with cognate tRNA [66] and the complex of hu- man tryptophanyl-tRNA synthetase with tRNATrp [67], where both homodimeric class I synthetases have the class II mode of tRNA recognition. 318 TUKALO M. A. ET AL. The C-terminal domain of TyrRSTT plays a critical role in the recognition of tRNATyr, first by recognizing the tRNA’s unique shape, and second by participating in specific interaction with one of the anticodon bases. These regions of contact agree very well with protec- tion studies on the T. thermophilus system by chemical modification and nuclease hydrolysis methods [62] (Fig. 3). The experiments showed that the tRNATyr interacts with the cognate enzyme with the anticodon stem (on the 5' side), the anticodon, the variable stem and loop (on the 5' side) and the acceptor stem (on the 3' side). In the complex, the anticodon triplet of tRNATyr (GYA) takes up a novel conformation, in which G34 and A36 are stacked on top of each other and Y35 bulges out in the opposite direction. There is base-specific recognition of Y35 by Asp423 and G34 by carboxyl group of Asp259. It was shown also by biochemical methods, that anticodon bases 34–35 are important recognition elements by TyrRS [26, 68]. The acceptor stem of the tRNATyr binds across the dimer interface onto the cata- lytic domain of the opposing subunit. G1 is not specifi- cally recognized by TyrRSTT; instead, C72 is recogni- zed by one hydrogen bond with Glu154. Specific re- cognition of the discriminator base A73 is made through a hydrogen bound between the N6 position and the main-chain carbonyl oxygen of Glu154 and a hydrogen bond between the N3 position to Arg198. Interestingly, the bacterial T. thermophilus TysRS and archaeal M. jannaschii TyrRS (TyrSMJ) recognize the acceptor stem of tRNA in a different manner [60, 66]. The ac- ceptor stem of the M. jannaschii tRNATyr is the most im- portant recognition element for TyrRSMJ, therefore archeael enzyme strictly recognizes the C1-G72 base pair, as it was shown by structural and biochemical me- thods [66, 70]. Conformation comparison of the long variable arm of the type 2 tRNAs. The structure of TyrRSTT- tRNATyr complex completes the trilogy of structures of long-variable-arm tRNAs with their cognate syntheta- ses, allowing comparative studies of the unique confor- mations of these tRNAs. The structures of three T. ther- mophilus type 2 tRNAs, tRNASer, tRNATyr and tRNALeu are compared in Fig. 6 (see inset). The crystal structures of all three type 2 tRNAs show that the orientation of the variable arm differs with the respect to the globular main body of tRNA, depending on differences in the D and variable arm regions [45]. As has been proposed, a key determinant in the orientation of the long variable arm of type 2 tRNA is the number of unpaired nucleotides at the 3'-end of the long variable arm. In the case of tRNATyr, this is of critical importance as a positive identity ele- ment for recognition by TyrRS and as a negative ele- ment which prevents the mischarging of tRNATyr by LeuRS and SerRS [36, 40]. In tRNASer and tRNATyr the D-loop has the same number of nucleotides and a simi- lar conformation to nucleotide 20a, forming a planar base-triple with the Levitt pair (G15-C48) and with the base 20b inserted into the tRNA core. This makes the backbone conformation of the two tRNAs, apart from the variable loop, rather similar. However, the details of the core packing are significantly different, resulting in an » 50o change in orientation of the long variable arm helix (Fig. 6, D, see inset), which clearly permits the shape discrimination between these two type 2 tRNAs by their respective synthetases [60]. In tRNASer, the signifi- cant tilt of bases A21 and G9 allows deep penetration of G20b into the core to stack against the first base pair of the long variable arm (A45-U48-1). In contrast, in tRNATyr, the first base pair of the long variable arm is formed by reverse Hoogsteen base pair between A20b and U48-2, against which the unpaired U48-1 stacks. In bacterial tRNALeu there are highly conserved features that distinguish it from the other two members of type 2 tRNAs (tRNASer and tRNATyr) as already discussed abo- ve. Among them we should mention the less common Levitt pair A15-U48; the a4-b3 configuration of the D loop owing to the insertion of an additional base (nuc- leotide 17) before the G18-G19 dinucleotide and to the presence of base 20a but absence of 20b; and the occur- rence of a single unpaired nucleotide (G48-1) at the base of the long variable arm. As the result of this unique configuration of tRNALeu core, G48-1 stacks against the first base-pair of the variable arm and leads to its orien- tation, different than that of tRNASer and tRNATyr (Fig. 6, see inset). The different orientations of the variable arm among the tRNAs thus depend on the identity of the in- teracting D loop nucleotide, the number of other inser- ted D loop nucleotides, and the number and identities of the unpaired variable loop nucleotides that flank the 5' and 3' sides of the stem-loop motif. Concluding remarks. Co-crystal structures of Ser RS, LeuRS, and TyrRS that aminoacylate the type 2 319 RECOGNITION OF tRNAs WITH A LONG VARIABLE ARM BY AMINOACYL-tRNA SYNTHETASES tRNAs together with the footprinting and biochemical data show that the enzymes recognize the unique core domain shape arising from the large stem-loop variable region. The structural description of three bacterial tRNAs with the long variable arms, tRNASer, tRNALeu and tRNATyr, has provided an explanation of how the systematic differences between them (correlate insertions in the D loop and the base of the long variable arm) lead to the unique core structure and long-variable-arm ori- entation in each case [18, 30, 45, 51, 60, 62]. The re- cognition by SerRS, LeuRS and TyRS of distinct glo- bular shape in these type 2 tRNAs as a mechanism for selectivity is related to so-called «indirect readout», be- cause usually most or all of the interactions are made with the sugar-phosphate backbone [45]. An example of indirect readout for the type 1 tRNA, is the recognition of the G15-G48 Levitt pair in E. coli tRNACys in its natural context by CysRS [71]. Similarly, in the type 2 tRNALeu the substitution of A14, which is not in direct contact with the enzyme in the crystal structure of the complexes [45, 50], by any of the other three nucleo- sides decreased the activity by 100-fold or more [40]. Since the mechanism of indirect readout is important in the context of RNA-protein interactions in general, it requires further studies using different mutant forms of tRNAs and aaRSs by X-ray methods together with footprinting analysis and kinetic techniques. Another important question, how the tRNA recogni- tion mode for the type 2 tRNAs has evolved in associa- tion with the evolution of synthetases? Eukaryotic cells have only two of type 2 tRNAs (tRNASer and tRNALeu) as the length of tRNATyr dramatically changed during evo- lution. This has resulted in the fact that the recognition style of eukaryotic tRNASer and tRNALeu varied in par- ralel with some changes in the structure of these tRNAs [72, 73]. There have also been changes in the structures of relevant synthetases [74, 75]. Though the footprin- ting studies have shown that in general the type of in- teraction of eukaryotic tRNASer and tRNALeu with cognate enzymes is similar to that for prokaryotic tRNAs [76– 78], the recognition elements of tRNAs are different [72, 73, 79]. X-ray structures of the complexes of euka- ryotic SerRS and LeuRS with cognate tRNAs should shed light on the details of their recognition. The impor- tance of information on tRNA selectivity by eukaryotic SerRS and LeuRS that would emerge from such studies is also related with a growing number of examples of their participation in a variety of cellular functions and pathological processes [80, 81]. Ì. À. Òó êà ëî, Ã. Ä. ßðåì ÷óê, Î. Ï. Êî âà ëåí êî, ². À. Êðèê ëè âèé, Î. É. Ãóä çå ðà Óï³çíà âàí íÿ òÐÍÊ, ÿê³ ìà þòü äîâ ãó âàð³àáåëü íó ã³ëêó, àì³íî à öèë-òÐÍÊ ñèí òå òà çà ìè Ðå çþ ìå Ó êë³òè íàõ åâ êàð³îò³â òÐÍÊ òðüîõ ñïå öèô³÷íîñ òåé – òÐÍÊSer, òÐÍÊLeu ³ òÐÍÊTyr – ìà þòü äîâ ãó âàð³àáåëü íó ã³ëêó äîâ æè íîþ 11–20 íóê ëå î òèä³â (2-ãà ãðó ïà òÐÍÊ) íà â³äì³íó â³ä ÷î òèðü îõ àáî ï’ÿ òè íóê ëå î òèä³â 1-¿ ãðó ïè òÐÍÊ. ϳäñó ìî âà íî ðå çóëü òà òè íà - øèõ äîñë³äæåíü ñòðóê òóð íèõ îñíîâ óï³çíà âàí íÿ ³ äèñ êðèì³íàö³¿ òÐÍÊ 2-¿ ãðó ïè ñå ðèë-, òè ðî çèë- ³ ëåé öèë-òÐÍÊ ñèí òå òà çà ìè ç Thermus thermophilus (ÑåðÐÑ, ÒèðÐÑ ³ ËåéÐÑ), îò ðè ìà íèõ ìå òî - äà ìè ðåí òãåí³âñüêî¿ êðèñ òà ëîã ðàô³¿ ³ õ³ì³÷íî¿ ìî äèô³êàö³¿ òÐÍÊ ó ðîç ÷èí³. Íà ñüî ãîäí³ êðèñ òàë³÷íà ñòðóê òó ðà â³äîìà äëÿ âñ³õ òðüîõ êîì ïëåêñ³â àì³íî à öèë-òÐÍÊ ñèí òå òàç ç â³äïîâ³äíè ìè òÐÍÊ 2-¿ ãðó ïè, ð³çí³ òèïè âï³çíà âàí íÿ ÿêèõ îá ãî âî ðþ þòü ñÿ â îãëÿä³. Çîê ðå - ìà, îñîá ëè âó óâà ãó ïðèä³ëåíî ðå çóëü òà òàì àíàë³çó âï³çíà âàí íÿ ãî - ìî ëîã³÷íè ìè ñèí òå òà çà ìè õà ðàê òåð íèõ ðèñ ïðî ñòî ðî âî¿ ñòðóê- òóðè òÐÍÊ 2-¿ ãðó ïè. Ó òÐÍÊSer, òÐÍÊLeu ³ òÐÍÊTyr îð³ºíòàö³ÿ äîâãî¿ âàð³àáåëü íî¿ ã³ëêè â³äíîñ íî îñíîâ íî ãî ò³ëà òÐÍÊ â³äð³çíÿ- ºòüñÿ ³ êîí òðî ëþºòüñÿ ð³çíîþ óïà êîâ êîþ êî ðî âî¿ ÷àñ òè íè ìî ëå - êó ëè. Ó ðàç³ ÑåðÐÑ N-ê³íöå âèé, à â ðàç³ ÒèðÐÑ – C-ê³íöå âèé äî ìå - íè çâ’ÿ çó þòü ñÿ ç ïåâ íè ìè ñòðóê òó ðà ìè äîâ ãèõ âàð³àáåëü íèõ ã³ëîê ãî ìî ëîã³÷íèõ ÐÍÊ, óï³çíà þ ÷è òà êèì ÷è íîì óí³êàëü íó ñòðóê òóð íó ôîð ìó òÐÍÊ. Êî ðî âà ÷àñ òè íà òÐÍÊLeu ìຠê³ëüêà øàð³â íå çâè- ÷àé íèõ ïàð îñíîâ, âè ÿâ ëå íèõ ïðè âèâ ÷åíí³ êðèñ òà ëîã ðàô³÷íî¿ ñòðóê òóðè êîì ïëåêñó òÐÍÊLeu ç ËåéÐÑ ³ç T. thermophiles òà ïðè äîñë³äæåíí³ â³ëüíî¿ òÐÍÊ ó ðîç ÷èí³ ìå òî äîì õ³ì³÷íî¿ ìî äèô³- êàö³¿ ç âè êî ðèñ òàí íÿì ñïå öèô³÷íèõ ðå à ãåíò³â. Ó êðèñ òà ëîã ðà- ô³÷í³é ñòðóê òóð³ êîì ïëåê ñó ËåéÐÑ-òÐÍÊLeu óí³êàëü íà áó äî âà D-ñòåá ëà âï³çíàºòüñÿ Ñ-ê³íöå âèì äî ìå íîì ËåéÐÑ ³ ö³ äàí³ äîá ðå óçãîä æó þòü ñÿ ç ðå çóëü òà òà ìè, îò ðè ìà íè ìè â ðîç ÷èí³. ËåéÐÑ ïðè òà ìàí íèé êà íîí³÷íèé äëÿ ñèí òå òàç ² ñòðóê òóð íî ãî êëà ñó òèï óï³çíà âàí íÿ òÐÍÊ – ç áîêó D-ñòåá ëà ³ ìà ëî¿ áî ðî çåí êè àê - öåï òîð íî ãî ñòåá ëà. Äëÿ ÑåðÐÑ òà êîæ õà ðàê òåð íèé êà íîí³÷íèé äëÿ ñèí òå òàç ²² ñòðóê òóð íî ãî êëà ñó òèï óï³çíà âàí íÿ òÐÍÊ – ç ïðî òè ëåæ íî ãî áîêó, òîá òî ç áîêó âàð³àáåëü íî ãî ñòåá ëà ³ âå ëè êî¿ áî ðî çåí êè àê öåï òîð íî ãî ñòåá ëà. ², íà ðåøò³, ÒèðÐÑ íà â³äì³íó â³ä êà íîí³÷íî ãî äëÿ ôåð ìåíò³â ² êëà ñó òèïó ìຠòèï óï³çíà âàí íÿ òÐÍÊ, âëàñ òè âèé ñèí òå òà çàì ²² êëà ñó. Êëþ ÷îâ³ ñëî âà: òÐÍÊ äðó ãî ãî òèïó, äîâ ãà âàð³àáåëü íà ã³ëêà, àì³íî à öèë-òÐÍÊ ñèí òå òà çà, óï³çíà âàí íÿ òÐÍÊ, êîì ïëåê ñè àì³íî à öèë-òÐÍÊ ñèí òå òà çè. Ì. À. Òó êà ëî, À. Ä. ßðåì ÷óê, Î. Ï. Êî âà ëåí êî, È. À. Êðèê ëè âûé, Î. È. Ãóä çå ðà Óçíà âà íèå òÐÍÊ ñ äëèí íîé âà ðè à áåëü íîé âåò êîé àìè íî à öèë-òÐÍÊ ñèí òå òà çà ìè Ðå çþ ìå  êëåò êàõ ýó êà ðè î òîâ òÐÍÊ òðåõ ñïå öè ôè÷ íîñ òåé – òÐÍÊSer, òÐÍÊLeu è òÐÍÊTyr – èìå þò äëèí íóþ âà ðè à áåëü íóþ âåò êó äëè íîé 320 TUKALO M. A. ET AL. 11–20 íóê ëå î òè äîâ (2-ÿ ãðóï ïà òÐÍÊ) â îò ëè ÷èå îò ÷å òû ðåõ èëè ïÿòè íóê ëå î òè äîâ 1-é ãðóï ïû òÐÍÊ. Ñóì ìè ðî âà íû ðå çóëü òà òû íà øèõ èñ ñëå äî âà íèé ñòðóê òóð íûõ îñíîâ óçíà âà íèÿ è äèñ êðè ìè íà - öèè òÐÍÊ 2-é ãðóï ïû ñå ðèë-, òè ðî çèë- è ëåé öèë-òÐÍÊ ñèí òå òà - çà ìè èç Thermus thermophiles (ÑåðÐÑ, ÒèðÐÑ è ËåéÐÑ), ïî ëó ÷åí- íûå ìå òî äà ìè ðåí òãå íîâ ñêîé êðèñ òàë ëîã ðà ôèè è õè ìè ÷åñ êîé ìî- äè ôè êà öèè òÐÍÊ â ðàñ òâî ðå. Íà ñå ãî äíÿ êðèñ òàë ëè ÷åñ êàÿ ñòðóê - òó ðà èç âåñ òíà äëÿ âñåõ òðåõ êîì ïëåê ñîâ àìè íî à öèë-òÐÍÊ ñèí - òå òàç ñ ñî îò âå òñòâó þ ùè ìè òÐÍÊ 2-é ãðóï ïû, ðàç íûå òèïû óç- íà âà íèÿ êî òî ðûõ îá ñóæ äà þò ñÿ â îá çî ðå.  ÷àñ òíîñ òè, îñî áåí íîå âíèìà íèå óäå ëå íî ðå çóëü òà òàì àíà ëè çà óçíà âà íèÿ ãî ìî ëî ãè÷ íûìè ñèí òå òà çà ìè õà ðàê òåð íûõ ÷åðò ïðî ñòðà íñòâåí íîé ñòðóê òó ðû òÐÍÊ 2-é ãðóï ïû. Ó òÐÍÊSer, òÐÍÊLeu è òÐÍÊTyr îðèåí òà öèÿ äëèí íîé âà ðè à áåëü íîé âåò âè îò íî ñè òåëü íî îñíîâ íî ãî òåëà òÐÍÊ îò ëè ÷à åò ñÿ è êîí òðî ëè ðó åò ñÿ ðàç íîé óïà êîâ êîé êî ðî âîé ÷àñòè ìî ëå êó ëû.  ñëó ÷àå ÑåðÐÑ N-êîí öå âîé, à â ñëó ÷àå ÒèðÐÑ – C-êîí - öåâîé äî ìå íû ñâÿ çû âà þò ñÿ ñ îïðå äå ëåí íû ìè ñòðóê òó ðà ìè äëèí íûõ âà ðè à áåëü íûõ âå òîê ãî ìî ëî ãè÷ íûõ ÐÍÊ, óçíà âàÿ òåì ñà ìûì óíè - êàëü íóþ ñòðóê òóð íóþ ôîð ìó òÐÍÊ. Êî ðî âàÿ ÷àñòü òÐÍÊLeu èìå- åò íå ñêîëü êî ñëî åâ íå î áû÷ íûõ ïàð îñíî âà íèé, âû ÿâ ëåí íûõ ïðè èçó- ÷å íèè êðèñ òàë ëîã ðà ôè ÷åñ êîé ñòðóê òó ðû êîì ïëåê ñà òÐÍÊLeu ñ ËåéÐÑ èç T. thermophiles è ïðè èñ ñëå äî âà íèè ñâî áîä íîé òÐÍÊ â ðàñ òâî ðå ìå òî äîì õè ìè ÷åñ êîé ìî äè ôè êà öèè ñ èñ ïîëü çî âà íè åì ñïå öè ôè ÷åñ êèõ ðå à ãåí òîâ.  êðèñ òàë ëîã ðà ôè ÷åñ êîé ñòðóê òó ðå êîì ïëåê ñà ËåéÐÑ–òÐÍÊLeu óíè êàëü íîå ñòðî å íèå D-ñòåá ëÿ óçíà - åò ñÿ Ñ-êîí öå âûì äî ìå íîì ËåéÐÑ è ýòè äàí íûå õî ðî øî ñî ãëà ñó - þò ñÿ ñ ðå çóëü òà òà ìè, ïî ëó ÷åí íû ìè â ðàñ òâî ðå. ËåéÐÑ ñâîéñò- âåí êà íî íè ÷åñ êèé äëÿ ñèí òå òàç ² ñòðóê òóð íî ãî êëàñ ñà òèï óçíà - âà íèÿ òÐÍÊ – ñî ñòî ðî íû D-ñòåá ëÿ è ìà ëîé áî ðîç äêè àê öåï òîð - íî ãî ñòåá ëÿ. Äëÿ ÑåðÐÑ òàê æå õà ðàê òåð íûé êà íî íè ÷åñ êèé äëÿ ñèí òå òàç ²² ñòðóê òóð íî ãî êëàñ ñà òèï óçíà âà íèÿ òÐÍÊ – ñ ïðî - òè âî ïî ëîæ íîé ñòî ðî íû, ò. å. ñî ñòî ðî íû âà ðè à áåëü íî ãî ñòåá ëÿ è áîëü øîé áî ðîç äêè àê öåï òîð íî ãî ñòåá ëÿ. È, íà êî íåö, ÒèðÐÑ â îò ëè ÷èå îò êà íî íè ÷åñ êî ãî äëÿ ôåð ìåí òîâ ² êëàñ ñà òèïà èìå åò òèï óçíà âà íèÿ òÐÍÊ, ïðè ñó ùèé ñèí òå òà çàì ²² êëàñ ñà. Êëþ ÷å âûå ñëî âà: òÐÍÊ âòî ðî ãî òèïà, äëèí íàÿ âà ðè à áåëü íàÿ âåò êà, àìè íî à öèë-òÐÍÊ ñèí òå òà çà, óçíà âà íèå òÐÍÊ, êîì ïëåê - ñû àìè íî à öèë-òÐÍÊ ñèí òå òà çû. REFERENCES 1. Giege R., Sissler M. Florentz C. Universal rules and idiosyncra- tic features in tRNA identity // Nucleic Acids Res.–1998.–26, N 22.–P. 5017–5035. 2. Eriani G., Delarue M., Poch O., Gangloff J., Moras D. Partition of tRNA synthetases into two classes based on mutually exclu- sive sets of sequence motifs // Nature.–1990.–347, N 6289.– P. 203–206. 3. Cusack S., Berthet-Colominas C., Hartlein M., Nassar N., Leber- man R. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 C // Nature.–1990.–347, N 6290.–P. 249–255. 4. Ibba M., Soll D. Aminoacyl-tRNA synthesis // Annu. Rev. Bio- chem.–2000.–69.–P. 617–650. 5. Fraser T. H., Rich A. Amino acids are not all initially attached to the same position on transfer RNA molecules // Proc. Natl Acad. Sci. USA.–1975.–72, N 8.–P. 3044–3048. 6. Sprinzl M., Cramer F. Site of aminoacylation of tRNAs from Es- cherichia coli with respect to the 2'- or 3'-hydroxyl group of the terminal adenosine // Proc. Natl Acad. Sci. USA.–1975.–72, N 8.–P. 3049–3053. 7. Kavran J. M., Gundllapalli S., O’Donoghue P., Englert M., Soll D., Steitz T. A. Structure of pyrrolysyl-tRNA synthetase, an ar- chaeal enzyme for genetic code innovation // Proc. Natl Acad. Sci. USA.–2007.–104, N 27.–P. 11268–11273. 8. Kamtekar S., Hohn M. J., Park H. S. et al. Toward understan- ding phosphoseryl-tRNACys formation: the crystal structure of Methanococcus maripaludis phosphoseryl-tRNA synthetase // Proc. Natl Acad. Sci. USA.–2007.–104, N 8.–P. 2620–2625. 9. Cusack S., Hartlein M., Leberman R. Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases // Nucleic Acids Res.–1991.–19, N 13.–P. 3489– 3498. 10. Delarue M., Moras D. The aminoacyl-tRNA synthetase family: modules at work // Bioessays.–1993.–15, N 10.–P. 675–687. 11. Cusack S., Yaremchuk A., Tukalo M. tRNA recognition by ami- noacyl-tRNA synthetases // The many faces of tRNA / Eds D. S. Eggleston, C. D. Prescott, N. D. Pearson.–London: Acad. Press, 1997.–P. 55–65. 12. Sprinzl M., Vassilenko K. S. Compilation of tRNA sequences and sequences of tRNA genes // Nucleic Acids Res.–2005.–33 (Data- base issue).–D139–140. 13. Yaremchuk A. D., Tukalo M. A., Konovalenko A. V., Egorova S. P., Matsuka G. Kh. Isolation of seryl-tRNA synthetase from Thermus thermophilus HB-27 // Biopolym. Cell.–1989.–5, N 5.– P. 83–86. 14. Garber M. B., Agalarov S. Ch., Eliseikina I. A. et al. Purifica- tion and crystallization of components of the protein-synthesi- zing system from Thermus thermophilus // J. Crystal Growth.– 1991.–110, N 1–2.–P. 228–236. 15. Garber M. B., Yaremchuk A. D., Tukalo M. A., Egorova S. P., Berthet-Colominas C., Leberman R. Crystals of seryl-tRNA syn- thetase from Thermus thermophilus. Preliminary crystallo- graphic data // J. Mol. Biol.–1990.–213, N 4.–P. 631–632. 16. Fujinaga M., Berthet-Colominas C., Yaremchuk A. D., Tukalo M. A., Cusack S. Refined crystal structure of seryl-tRNA synthetase from Thermus thermophilus at 2.5 C resolution // J. Mol. Biol.– 1993.–234, N 1.–P. 222–233. 17. Cusack S., Berthet-Colominas C., Biou V., Borel F., Fujinaga M., Hartlein M., Krikliviy I., Nassar N., Price S., Tukalo M. A., Yaremchuk A., Leberman R. The crystal structure of seryl-tRNA synthetase and its complexes with ATP and tRNASer // The trans- lation apparatus: structure, function, regulation, evolution.– New-York; London: Plenum Press, 1993.–P. 1–12. 18. Biou V., Yaremchuk A., Tukalo M., Cusack S. The 2.9 C crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNA(Ser) // Science.–1994.–263, N 5152.–P. 1404– 1410. 19. Belrhali H., Yaremchuk A., Tukalo M. et al. Crystal structures at 2.5 angstrom resolution of seryl-tRNA synthetase complexed with two analogs of seryl adenylate // Science.–1994.–263, N 5152.– P. 1432–1436. 20. Belrhali H., Yaremchuk A., Tukalo M., et al. The structural basis for seryl-adenylate and Ap4A synthesis by seryl-tRNA syntheta- se // Structure.–1995.–3, N 4.–P. 341–352. 21. Cavarelli J., Eriani G., Rees B. et al. The active site of yeast as- partyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction // EMBO J.–1994.–13, N 2.– P. 327–337. 22. Yaremchuk A., Tukalo M., Grotli M., Cusack S. A succession of substrate induced conformational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthe- tase: comparison with histidyl-tRNA synthetase // J. Mol. Biol.– 2001.–309, N 4.–P. 989–1002. 321 RECOGNITION OF tRNAs WITH A LONG VARIABLE ARM BY AMINOACYL-tRNA SYNTHETASES 23. Arnez J. G., Moras D. Structural and functional consideration of the aminoacylation reaction // Trends Biochem. Sci.–1998.– 22, N 6.– P. 211–216. 24. Krikliviy I. A., Kovalenko Î. P., Gudzera Î. Y., Yaremchuk A. D., Tukalo M. A. Isolation and purification isoaccepting tRNA1 Ser and tRNA2 Ser from Thermus thermophilus // Biopolym. Cell.– 2006.–22, N 6.–P. 425–432. 25. Petrushenko Z. M., Kovalenko O. P., Mal’chenko N. N., Krikli- viy I. A., Yaremchuk A. D., Tukalo M. A. The primary structure of tRNASer from Thermus thermophilus // Biopolym. cell.–1997.– 13, N 3.–P. 202–208. 26. Himeno H., Hasegawa T., Ueda T., Watanabe K., Shimizu M. Con- version of aminoacylation specificity from tRNATyr to tRNASer in vitro // Nucleic Acids Res.–1990.–18, N 23.–P. 6815– 6819. 27. Asahara H., Himeno H., Tamura K. et al. Escherichia coli seryl- tRNA synthetase recognizes tRNASer by its characteristic tertiary structure // J. Mol. Biol.– 1994.–236, N 3.–P. 738–748. 28. Yaremchuk A. D., Tukalo M. A., Krikliviy I. A. et al. Crystallization of the seryl-tRNA synthetase-tRNASer complex from Thermus thermophilus // J. Mol. Biol.–1992.–224, N 2.–519–522. 29. Yaremchuk A. D., Tukalo M. A., Krikliviy I. et al. A new crystal form of the complex between seryl-tRNA synthetase and tRNA (Ser) from Thermus thermophilus that diffracts to 2.8 C resolution // FEBS Lett.–1992.–310, N 2.–P. 157–161. 30. Kovalenko O. P., Petrushenko Z. M., Mal’chenko N. N., Krikli- viy I. A., Yaremchuk A. D., Tukalo M. A. Studies of interaction si- tes between tRNA2Ser from Thermus thermophilus and seryl- tRNA synlhetase by chemical modification // Biopolym. Cell.– 1997.–13, N 4.–P. 298–302. 31. Kovalenko O. P., Kriklivyi I. A., Tukalo M. A. Study of tertiary structure elements of tRNASer from Thermus thermophilus in solution // Biopolym. Cell.–2000.–16, N 2.–P. 115–123. 32. Vlassov V. V., Giege R., Ebel J. P. Tertiary structure of tRNA in solution monitored phosphodiester modification with ethylnitro- sourea // Eur. J. Biochem.–1981.–119, N 1.–P. 51–59. 33. Peattie D. A., Gilbert W. Chemical probes for higher-order struc- ture in RNA // Proc. Natl Acad. Sci. USA.–1980.–77, N 8.– P. 4679–4682. 34. Cusack S., Yaremchuk A., Tukalo M. The crystal structure of the ternary complex of T. thermophilus seryl-tRNA synthetase with tRNASer and seryl-adenylate analogue reveals a conformational switch in the active site // EMBO J.–1996.–15, N 11.–P. 2834– 2842. 35. Starzyk R. M., Webster T. A., Schimmel P. Evidence for dispen- sable sequences inserted into a nucleotide fold // Science.–1987.– 237, N 4822.–P. 1614–1618. 36. Nureki O., Vassylyev D. G., Tateno M. et al. Enzyme structure with two catalytic sites for double-sieve selection of substrate // Science.–1998.–280, N 5363.–P. 578–582. 37. Silvian L., Wang J., Steitz T. A. Insights into editing from an Ile- tRNA synthetase structure with tRNAIle and mupirocin // Scien- ce.–1999.–285, N 5430.–P. 1074–1077. 38. Schmidt E., Schimmel P. Mutational isolation of a sieve for editing in a transfer RNA synthetase // Science.–1994.–264, N 5156.–P. 265–267. 39. Lincecum T. L. Jr., Tukalo M., Yaremchuk A. et al. Structural and mechanistic basis of pre- and posttransfer editing by leucyl- tRNA synthetase // Mol. Cell.–2003.–11, 4.–P. 951–963. 40. Asahara H., Himeno H., Tamura K., Hasegawa T., Watanabe K., Shimizu M. Recognition nucleotides of Escherichia coli tRNALeu and its elements facilitating discrimination from tRNASer and tRNATyr // J. Mol. Biol.–1993.–231, N 2.– P. 219– 229. 41. Yaremchuk A. D., Kovalenko O. P., Gudzera Î. I., Tukalo M. A. Molecular cloning, sequencing and expression in Escherichia coli cells Thermus thermophilus leucyl-tRNA synthetase // Bio- polym. Cell.–2011.–27, N 6.–P. 436–441. 42. Yaremchuk A., Cusack S., Gudzera O., Grotli M., Tukalo M. Crystallization and preliminary crystallographic analysis of Ther- mus thermophilus leucyl-tRNA synthetase and its complexes with leucine and a non-hydrolysable leucyl-adenylate analogue // Acta Crystallogr. D Biol. Crystallogr–2000.–56, Pt 5.– P. 667–669. 43. Cusack S., Yaremchuk A., Tukalo M. The 2 C crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue // EMBO J.–2000.–19, N 10.–P. 2351–2361. 44. Yaremchuk A. D., Gudzera O. I., Egorova S. P., Rozhko D. I., Krikliviy I. A., Tukalo M. A. Leucyl-tRNA synthetase from Thermus thermophilus. Purification and some properties of the crystallizing enzyme // Biopolym. Cell.–2001.–17, N 3.– P. 216–220. 45. Tukalo M., Yaremchuk A., Fukunaga R., Yokoyama S., Cusack S. The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer-editing conformation // Nat. Struct. Mol. Biol.–2005.–12, N 10.–P. 923–930. 46. Gudzera O. I., Yaremchuk A. D., Tukalo M. A. Functional role of C-terminal domain of Thermus thermophilus leucyl-tRNA syn- thetase // Biopolym. Cell.–2010.–26, N 6.–P. 478–485. 47. Hsu J. L., Rho S. B., Vannella K. M., Martinis S. A. Functional divergence of a unique C-terminal domain of leucyl-tRNA syn- thetase to accommodate its splicing and aminoacylation roles // J. Biol. Chem.–2006.–281, N 32.–P. 23075–23082. 48. Fukunaga R., Yokoyama S. The C-terminal domain of the archaeal leucyl-tRNA synthetase prevents misediting of isoleucyl-tRNAIle // Biochemistry.–2007.–46, N 17.–P. 4985–4996. 49. Kovalenko O., Kriklivyi I., Yaremchuk A., Tukalo M. Compara- tive studies the tertiary structure of T. thermophilus tRNASer and tRNALeu and the sites of interaction with cognate aminoacyl- tRNA synthetases by chemical modification methods // 18th tRNA Workshop «tRNA 2000» (8th–12th April 2000, Cambridge).– Cambridge: BioDesign Publications, 2001.–P. 20. 50. Palencia A., Crepin T., Vu M. T., Lincecum T. L. Jr., Martinis S. A., Cusack S. Structural dynamics of the aminoacylation and proofeading functional cycle of bacterial leucyl-tRNA synthe- tase // Nat. Struct. Mol. Biol.–2012.–19, N 7.–P. 677–684. 51. Kovalenko O. P., Kriklivyi I. A., Tukalo M. A. Participation of nitrogen bases in the tertiary folding of tRNALeu from Thermus thermophilus // Biopolym. Cell.–2003.–19, N 2.–P. 151–156. 52. Fukunaga R., Ishitani R., Nureki O., Yokoyama S. Crystalliza- tion of leucyl-tRNA synthetase complexed with tRNALeu from the archaeon Pyrococcus horikoshii // Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun.–2005.–61, Pt 1.–P. 30–32. 53. Rock F. L., Mao W., Yaremchuk A. et al. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site // Science.–2007.–316, N 5832.–P. 1759–1761. 54. Asahara H., Nameki N., Hasegawa T. In vitro selection of RNAs aminoacylated by Escherichia coli leucyl-tRNA synthetase // J. Mol. Biol.–1998.–283, N 3.–P. 605–618. 55. Tocchini-Valentini G., Saks M. E., Abelson J. tRNA leucine identi- ty and recognition sets // J. Mol. Biol.–2000.–298, N 5.–P. 779–793. 56. Larkin D. C., Williams A. M., Martinis S. A., Fox G. E. Identifi- cation of essential domains for Escherichia coli tRNALeu amino- acylation and amino acid editing using minimalist RNA molecu- les // Nucleic Acids Res.–2002.–30, N 10.–P. 2103–2113. 57. Cusack S. Eleven down and nine to go // Nat. Struct. Biol.– 1995.–2, N 10.–P. 824–831. 322 TUKALO M. A. ET AL. 58. Brick P., Blow D. M. Crystal structure of a deletion mutant of a tyrosyl-tRNA synthetase complexed with tyrosine // J. Mol. Biol.– 1987.–194, N 2.–P. 287–294. 59. Yaremchuk A. D., Kovalenko O. P., Gudzera O. I., Tukalo M. A. Molecular cloning, sequencing and sequence analysis of Ther- mus thermophilus tyrosyl-tRNA synthetase // Biopolym. Cell.– 2004.–20, N 1–2.–P. 144–149. 60. Yaremchuk A., Kriklivyi I., Tukalo M., Cusack S. Class I tyrosyl- tRNA synthetase has a class II mode of cognate tRNA recogni- tion // EMBO J.–2002.–21, N 14.–P. 3829–3240. 61. Bedouelle H., Guez-Ivanier V., Nageotte R. Discrimination bet- ween transfer-RNAs by tyrosyl-tRNA synthetase // Biochimie.– 1993.–75, N 12.–P. 1099–1108. 62. Egorova S. P., Yaremchuk A. D., Krikliviy I. A., Tukalo M. A. Com- parative analysis of interaction sites of tRNA from Thermus ther- mophilus and Escherichia coli with cognate aminoacyl tRNA syn- thetases by the chemical modification and nuclease hydrolysis methods // // Bioor. Khimiya.–1998.–24, N 8.–P. 593–600. 63. Ruff M., Krishnaswamy S., Boeglin M. et al. Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl- tRNA synthetase complexed with tRNAAsp // Science.–1991.– 252, N 5013.–P. 1682–1689. 64. Rould M. A., Perona J. J., Soll D., Steitz T. A. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNAGln and ATP t 2.8 C resolution // Science.–1989.–246, N 4934.–P. 1135–1142. 65.Cramer F., Faulhammer H., von der Haar F., Sprinzl M., Stern- bach H. Aminoacyl-tRNA synthetases from baker’s yeast: reacting site of aminoacylation is not uniform for all tRNAs // FEBS Lett.– 1975.–56, N 2.–P. 212–214. 66. Kobayashi T., Nureki O., Ishitani R. et al. Structural basis for ortho- gonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion // Nat. Struct. Biol.–2003.–10, N 6.–P. 425–432. 67. Yang X. L., Otero F. J., Ewalt K. L. et al. Two conformations of a crystalline human tRNA synthetase-tRNA complex: implications for protein synthesis // EMBO J.–2006.–25, N 12.–P. 2919–2929. 68. Hou Y. M., Schimmel P. Modeling with in vitro kinetic parame- ters for the elaboration of transfer RNA identity in vivo // Bio- chemistry.–1989.–28, N 12.–P. 4942–4947. 69. Himeno H., Hasegawa T., Ueda T., Watanabe K., Shimizu M. Con- version of aminoacylation specificity from tRNATyr to tRNASer in vitro // Nucleic Acids Res.–1990.–18, N 23.–P. 6815–6819. 70. Fechter P., Rudinger-Thirion J., Tukalo M., Giege R. Major ty- rosine identity determinants in Methanococcus jannaschii and Saccharomyces cerevisiae tRNATyr are conserved but expressed differently // Eur. J. Biochem.–2001.–268, N 3.–P. 761–767. 71. Hauenstein S., Zhang C. M., Hou Y. M., Perona J. J. Shape-se- lective RNA recognition by cysteinyl-tRNA synthetase // Nat. Struct. Mol. Biol.–2004.–11, N 11.–P. 1134–1141. 72. Soma A., Himeno H. Cross-species aminoacylation of tRNA with a long variable arm between Escherichia coli and Saccharomyces cerevisiae // Nucleic Acids Res.–1998.–26, N 19.–P. 4374–4381. 73. Lenhard B., Orellana O., Ibba M., Weygand-Durasevic I. tRNA recognition and evolution of determinants in seryl-tRNA synthe- sis // Nucleic Acids Res.–1999.–27, N 3.–P. 721–729. 74. Sidorik L. L., Gudzera O. I., Dragovoz V. A., Tukalo M. A., Bere- sten S. F. Immuno-chemical non-cross-reactivity between euka- ryotic and prokaryotic seryl-tRNA synthetase // FEBS Let.– 1991.–292, N 1, 2.–P. 76–78. 75. Xu X., Shi Y., Zhang H. M. et al. Unique domain appended to ver- tebrate tRNA synthetase is essential for vascular development // Nat.Commun.–2012.–3, N 2.–P. 1–9. 76. Petrushenko Z. M., Tukalo M. A., Gudzera O. I et al. Iden- tification of interaction sites of tRNALeu from cow mammary gland with the cognate aminoacyl-tRNA synthetase by the che- mical modification method // Rus. J. Bioorg. Chem.–1990.–16, N 12.–P. 1647–1652. 77. Dock-Bregeon A. C., Garsia A., Giege R., Moras D. The con- tacts of yeast tRNASer with seryl-tRNA synthetase studied by footprinting experiments // Eur. J. Biochem.–1990.–188, N 2.– P. 283–290. 78. Kalachnyuk L. G., Tukalo M. A., Matsuka G. Kh. Identification of interaction sites of tRNAGCU Ser from the bovine liver with cog- nate aminoacyl-tRNA synthetase by the chemical modification method // Ukr. Biochem. J.–1992.–64, N 6.–P. 38–43. 79. Wu X. Q., Gross H. J. The long extra arms of human tRNA (Ser(Sec)) and tRNASer function as major identity elements for serylation in an orientation-dependent, but not sequence-spe- cific manner // Nucl. Acids Res.–1993.–21, N 24.–P.5589–5594. 80. Bonfils G., Jaquenoud M., Bontron S. et al. Leucyl-tRNA syn- thetase controls TORC1 via the EGO complex // Mol. Cell.– 2012.–46, N 1.–P. 105–110. 81. Han J. M., Jeong S. J., Park M. C.et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway // Cell.–2012.–149, N 2.–P. 410–424. Received 23.05.13 323 RECOGNITION OF tRNAs WITH A LONG VARIABLE ARM BY AMINOACYL-tRNA SYNTHETASES