The dynamics of actin filament polymerization in activated leukocytes under experimental diabetes mellitus against the background of agmatine administration

Aim. To research the impact of agmatine on the redistribution of actin fractions, which are repre-sented by cytoskeletal actin filaments, short actin filaments of the plasma membrane skeleton and actin monomers (G-actin) in rat leukocytes under experimental diabetes mellitus (EDM). Methods. Leukocyt...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Brodyak, I.V., Bila, I.I., Sybirna, N.O.
Формат: Стаття
Мова:English
Опубліковано: Інститут молекулярної біології і генетики НАН України 2017
Назва видання:Вiopolymers and Cell
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153095
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The dynamics of actin filament polymerization in activated leukocytes under experimental diabetes mellitus against the background of agmatine administration / I.V. Brodyak, I.I. Bila, N.O. Sybirna // Вiopolymers and Cell. — 2017. — Т. 33, № 6. — С. 403-414. — Бібліогр.: 36 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-153095
record_format dspace
spelling irk-123456789-1530952019-06-14T01:29:14Z The dynamics of actin filament polymerization in activated leukocytes under experimental diabetes mellitus against the background of agmatine administration Brodyak, I.V. Bila, I.I. Sybirna, N.O. Structure and Function of Biopolymers Aim. To research the impact of agmatine on the redistribution of actin fractions, which are repre-sented by cytoskeletal actin filaments, short actin filaments of the plasma membrane skeleton and actin monomers (G-actin) in rat leukocytes under experimental diabetes mellitus (EDM). Methods. Leukocytes were lyzed in Triton X-100 and subjected to centrifugation to obtain cytoskeletal actin filaments, short actin filaments and actin monomers, which were separated in SDS-PAAG, followed by the immunoblot analysis of anti-actin antibodies. Results. Under EDM, an intensifi-cation of the process of short actin filament depolymerization and an increase in the G-actin con-tent were observed in leukocytes activated by sialospecific wheat germ lectin (WGA). Against a background of agmatine administration, the response dynamics to the WGA-stimulating effect was characterized by an increase in actin polymerization in the fraction of cytoskeletal filaments already after 0.5 min exposure to lectin, an exceptionally rapid depolymerization process after 1 min of the lectin treatment, and return to the initial indices after 3 min exposure to lectin. Conclusions. In leukocytes of animals with EDM against a background of agmatine administration, the transduction of WGA-induced signal through sialoglycoconjugates causes the actin redistribution. It indicates that this polyamine helps to restore and maintain a functional response of leukocytes to the activation signals. Мета. Дослідити вплив агматину на перерозподіл фракцій актину, які представлені актиновими філаментами цито-скелету, короткими актиновими філаментами скелету плазматичної мембрани і мономерами актину (G-актин), у лейкоцитах щурів з експериментальним цукровим діабетом (ЕЦД) Методи. Лейкоцити лізували в Тритоні Х-100 і піддавали центрифугуванню, у результаті якого було отримано актинові філаменти цитоскелету, короткі актинові філаменти і мономери актину, які розділяли в SDS-ПААГ, після чого проводили імуноблот аналіз із використан-ням анти-актинових антитіл. Результати. За умов ЕЦД у лейкоцитах, активованих сіалоспецифічним лектином зародків пшениці (WGA), спостерігається інтенсифікування процесу деполімеризації коротких актинових філаме-нтів і збільшення вмісту G-актину, а на фоні введення агматину динаміка формування відповіді на WGA-стимулювальний вплив характеризувалася посиленням полімеризації актину у фракції філаментів цитоскелету вже на 0,5 хв впливу лектину, дуже стрімким процесом деполімеризації на 1 хв після дії лектину та поверненням пока-зників до рівня у вихідному стані у разі дії лектину впродовж 3 хв. Висновки. У лейкоцитах тварин з ЕЦД на фоні введення агматину трансдукція WGA-індукованого сигналу через сіалоглікокон’югати зумовлює перерозподіл вмісту актину, вказуючи на те, що даний поліамін сприяє відновленню і підтриманню функціональної відповіді лейкоцитів на активаційні сигнали. Цель. Исследовать влияние агматина на перераспределение фракций актина, которые представлены актиновыми филаментами цитоскелета, короткими актиновыми филаментами скелета плазматической мембраны и мономера-ми актина (G-актин), в лейкоцитах крыс с экспериментальным сахарным диабетом (ЭСД). Методы. Лейкоциты лизировали в Тритоне Х-100 и подвергали центрифугированию, в результате которого было получено актиновые филаменты цитоскелета, короткие актиновые филаменты и мономеры актина, которые разделяли в SDS-ПААГ, после чего проводили иммуноблот анализ с использованием антиактиновых антител. Результаты. В условиях ЭСД в лейкоцитах, активированных сиалоспецыфическим лектином зародышей пшеницы (WGA), наблюдается интен-сификация процесса деполимеризации коротких актиновых филаментов и увеличение содержания G-актина, а на фоне введения агматина динамика формирования ответа на WGA-стимулирующее влияние характеризировалась усилением полимеризации актина во фракции филаментов цитоскелета уже на 0,5 мин влияния лектина, очень стремительным процессом деполимеризации на 1 мин после действия лектина и возвращением показателей к уро-вню в исходном состоянии в случае действия лектина в течение 3 мин. Выводы. В лейкоцитах животных с ЭСД на фоне введения агматина трансдукция WGA-индуцированого сигнала через сиалогликоконьюгаты приводит к пе-рераспределению содержания актина, указывая на то, что данный полиамин способствует восстановлению и по-ддержанию функционального ответа лейкоцитов на активационные сигналы. 2017 Article The dynamics of actin filament polymerization in activated leukocytes under experimental diabetes mellitus against the background of agmatine administration / I.V. Brodyak, I.I. Bila, N.O. Sybirna // Вiopolymers and Cell. — 2017. — Т. 33, № 6. — С. 403-414. — Бібліогр.: 36 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.000964 http://dspace.nbuv.gov.ua/handle/123456789/153095 576.321.36 en Вiopolymers and Cell Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Structure and Function of Biopolymers
Structure and Function of Biopolymers
spellingShingle Structure and Function of Biopolymers
Structure and Function of Biopolymers
Brodyak, I.V.
Bila, I.I.
Sybirna, N.O.
The dynamics of actin filament polymerization in activated leukocytes under experimental diabetes mellitus against the background of agmatine administration
Вiopolymers and Cell
description Aim. To research the impact of agmatine on the redistribution of actin fractions, which are repre-sented by cytoskeletal actin filaments, short actin filaments of the plasma membrane skeleton and actin monomers (G-actin) in rat leukocytes under experimental diabetes mellitus (EDM). Methods. Leukocytes were lyzed in Triton X-100 and subjected to centrifugation to obtain cytoskeletal actin filaments, short actin filaments and actin monomers, which were separated in SDS-PAAG, followed by the immunoblot analysis of anti-actin antibodies. Results. Under EDM, an intensifi-cation of the process of short actin filament depolymerization and an increase in the G-actin con-tent were observed in leukocytes activated by sialospecific wheat germ lectin (WGA). Against a background of agmatine administration, the response dynamics to the WGA-stimulating effect was characterized by an increase in actin polymerization in the fraction of cytoskeletal filaments already after 0.5 min exposure to lectin, an exceptionally rapid depolymerization process after 1 min of the lectin treatment, and return to the initial indices after 3 min exposure to lectin. Conclusions. In leukocytes of animals with EDM against a background of agmatine administration, the transduction of WGA-induced signal through sialoglycoconjugates causes the actin redistribution. It indicates that this polyamine helps to restore and maintain a functional response of leukocytes to the activation signals.
format Article
author Brodyak, I.V.
Bila, I.I.
Sybirna, N.O.
author_facet Brodyak, I.V.
Bila, I.I.
Sybirna, N.O.
author_sort Brodyak, I.V.
title The dynamics of actin filament polymerization in activated leukocytes under experimental diabetes mellitus against the background of agmatine administration
title_short The dynamics of actin filament polymerization in activated leukocytes under experimental diabetes mellitus against the background of agmatine administration
title_full The dynamics of actin filament polymerization in activated leukocytes under experimental diabetes mellitus against the background of agmatine administration
title_fullStr The dynamics of actin filament polymerization in activated leukocytes under experimental diabetes mellitus against the background of agmatine administration
title_full_unstemmed The dynamics of actin filament polymerization in activated leukocytes under experimental diabetes mellitus against the background of agmatine administration
title_sort dynamics of actin filament polymerization in activated leukocytes under experimental diabetes mellitus against the background of agmatine administration
publisher Інститут молекулярної біології і генетики НАН України
publishDate 2017
topic_facet Structure and Function of Biopolymers
url http://dspace.nbuv.gov.ua/handle/123456789/153095
citation_txt The dynamics of actin filament polymerization in activated leukocytes under experimental diabetes mellitus against the background of agmatine administration / I.V. Brodyak, I.I. Bila, N.O. Sybirna // Вiopolymers and Cell. — 2017. — Т. 33, № 6. — С. 403-414. — Бібліогр.: 36 назв. — англ.
series Вiopolymers and Cell
work_keys_str_mv AT brodyakiv thedynamicsofactinfilamentpolymerizationinactivatedleukocytesunderexperimentaldiabetesmellitusagainstthebackgroundofagmatineadministration
AT bilaii thedynamicsofactinfilamentpolymerizationinactivatedleukocytesunderexperimentaldiabetesmellitusagainstthebackgroundofagmatineadministration
AT sybirnano thedynamicsofactinfilamentpolymerizationinactivatedleukocytesunderexperimentaldiabetesmellitusagainstthebackgroundofagmatineadministration
AT brodyakiv dynamicsofactinfilamentpolymerizationinactivatedleukocytesunderexperimentaldiabetesmellitusagainstthebackgroundofagmatineadministration
AT bilaii dynamicsofactinfilamentpolymerizationinactivatedleukocytesunderexperimentaldiabetesmellitusagainstthebackgroundofagmatineadministration
AT sybirnano dynamicsofactinfilamentpolymerizationinactivatedleukocytesunderexperimentaldiabetesmellitusagainstthebackgroundofagmatineadministration
first_indexed 2025-07-14T04:44:57Z
last_indexed 2025-07-14T04:44:57Z
_version_ 1837596198416941056
fulltext 403 I. V. Brodyak, I. I. Bila, N. O. Sybirna © 2017 I. V. Brodyak et al.; Published by the Institute of Molecular Biology and Genetics, NAS of Ukraine on behalf of Bio- polymers and Cell. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited UDC: 576.321.36 The dynamics of actin filament polymerization in activated leukocytes under experimental diabetes mellitus against the background of agmatine administration I. V. Brodyak, I. I. Bila, N. O. Sybirna Ivan Franko National University of Lviv 4, Hrushevskoho Str., Lviv, Ukraine, 79005 iryna_brodyak@yahoo.com Aim. To research the impact of agmatine on the redistribution of actin fractions, which are represented by cytoskeletal actin filaments, short actin filaments of the plasma membrane skeleton and actin monomers (G-actin) in rat leukocytes under experimental diabetes mellitus (EDM). Methods. Leukocytes were lyzed in Triton X-100 and subjected to centrifugation to obtain cytoskeletal actin filaments, short actin filaments and actin monomers, which were separated in SDS-PAАG, followed by the immunoblot analysis of anti-actin antibodies. Results. Under EDM, an intensification of the process of short actin filament depolymerization and an increase in the G-actin content were observed in leukocytes activated by sialospecific wheat germ lectin (WGA). Against a background of agmatine administration, the response dynamics to the WGA-stimulating effect was characterized by an increase in actin polymerization in the fraction of cytoskeletal filaments already after 0.5 min exposure to lectin, an exceptionally rapid depolymerization process after 1 min of the lectin treatment, and return to the initial indices after 3 min exposure to lectin. Conclusions. In leukocytes of animals with EDM against a background of agmatine administration, the transduction of WGA-induced signal through sialoglycoconjugates causes the actin redistribution. It indicates that this polyamine helps to restore and maintain a functional response of leukocytes to the activation signals. K e y w o r d s: actin, leukocytes, agmatine, experimental diabetes mellitus. Introduction The experimental studies on leukocytes in the case of diabetes mellitus demonstrate signifi- cant violations of the morphofunctional state of the blood cells. The reduction of chemo- taxis capacity, phagocytic activity of leuko- cytes, the dysfunction of adhesion, aggregation and migration abilities of these cells correlate with the level of hyperglycemia of peripheral blood. In turn, the morphofunctional state of leukocytes is addicted to the complex interac- Structure and Function of Biopolymers ISSN 1993-6842 (on-line); ISSN 0233-7657 (print) Biopolymers and Cell. 2017. Vol. 33. N 6. P 403–414 doi: http://dx.doi.org/10.7124/bc.000964 404 I. V. Brodyak, I. I. Bila, N. O. Sybirna tion among proteins of the membrane, the cytoskeleton and the network of intracellular signaling [1–3]. The actin cytoskeleton is a dynamic system involved in the adhesion and migration of leukocytes [4]. The process of leukocyte transfer from the peripheral blood into the subendotelium is triggered by the molecules of adhesion [5]. The formation of stable adhe- sion structures as a result of actin polymeriza- tion leads to the formation of actin сomet tails, which are associated with integrins at the front end of leukocytes and induce β1- integrin clustering, causing the formation an actin rafts on the cell surface in the area of lamelopodia and filopodia [6]. Lamelopodia contain a highly dense and extensive network of actin filaments, which are orientated from the sharp ends (positively charged) to the edge of the cell. The polymerization of actin generates the force that pushes the membrane forward, creating preconditions for new adhe- sion contacts of leukocytes with the endothe- lium involving filopodia [7]. Filopodia are made of densely staffed parallel filaments of actin (10 or more), the sharp ends of which are directed towards the membrane. The grouping of actin filaments is mediated by fascin, a binding protein. The polarized nature of actin filaments allows motor proteins to actively transport monomers of actin to the ends of filopodia, thus increasing the local actin polymerization [8]. The mechanism for increasing the level of polymerized actin (F-actin) involves an increase in the pool of actin monomers of globular actin (G-actin), which is required for the polymerization of new actin filaments, or may be caused by increased affinity of already existing filaments of F-actin to G-actin. Free negatively charged ends of actin filaments (where the lengthening of actin filaments occurs) are developed in several ways: by removing cap proteins, which in the attached position at growing ends of actin block the process of polymeriza- tion; by depolymerizing actin fragments ow- ing to the disconnection of non-covalent bonds between actin monomers within actin filaments, which leads to the formation of shorter filaments with negatively charged free ends; by producing actin oligomers de novo [9]. The reorganization of the cytoskeleton oc- curs when Ca2+-dependent signaling cascades, involving Src family kinases and low-molec- ular GTFases, are activated [10]. GTFases of Rap1 family perform the activation of PI-3'- kinase, which is required for the Rap1- dependent activation of Rac (a member of small GTFase of the Rho family), through Vav2, and it is Rac that directly affects the organization of actin cytoskeleton [11]. PI-3'- kinase enzyme plays a key role not only in the activation of adhesion molecules, but also in chemokine-induced cell adhesion and cell po- larization [12]. In contrast, the relationship between L-selectins, CD44, CD43, ICAM- 1–3 and the cytoskeleton is performed through ezrin / radixin / moesin (ERM) protein family. Proteins of ERM family have both membrane and actin-binding domains, which enable their function as linkers between membrane proteins and the actin cytoskeleton [13]. Leukocytic adhesion molecules (selectin, LFA-1, VLA-4, ICAM-1) also interact with cytoskeletal pro- teins using cytoplasmic actin-binding proteins (ABPS: actinin, paxillin, vinculin and tallinn), which activate Arp2/3 complex triggering the 405 The dynamics of actin filament polymerization in activated leukocytes under experimental diabetes mellitus actin polymerization [9]. Arp2/3 complex is a matrix where new actin filaments are formed, in addition, the complex joins in the middle of actin filaments and promotes their bran- ching [14]. Actin filaments in this case are formed at an angle of 70° to previously formed actin filaments. Those filaments push the mem- brane forward from the side of their growth (from leader (growing) ends). As a result of ATP hydrolysis, the macroergic phosphate necessary for the polymerization of new actin filaments and actin filaments at the lagging end, involving ADP/kofilin complex in the lamel region, experiences depolymeriza- tion [15]. Thus the transfer of leukocytes is dynamic and multistage cascade process re- quiring the activation of various adhesion mol- ecules and signalling pathways, as well as the restructuring of actin cytoskeleton [9]. Therefore, the study on mechanisms of the actin polymerization-depolymerization is es- sential for understanding the migratory abili- ties and functional activity of leukocytes under diabetes. It has been previously stated [16] that in animal leukocytes under experimental diabetes mellitus (EDM) the total content of actin is reduced, whereas actin polymerization is in- tensified in the membrane skeleton filaments. Agmatine administration to animals with EDM increases both the total content of actin and the level of polymerized actin in the fraction of cytoskeletal filaments, which are caused by the depolymerization of short actin filaments of the plasma membrane skeleton. This poly- amine either directly or indirectly affects the functional state of leukocytes. As an endoge- nous ligand for the imidazole receptors (I1 / I2), and with less affinity with α2-adrenergic receptors, N-methyl-D-aspartate and serotonin receptors, agmatine lowers the glucose levels in plasma under DM [17–19]. The hypoglyce- mic mechanism of agmatine is provided throught direct insulin-like effects on peri phe- ral organs, interaction with β-cells of the pan- creatic islets leading to an increased release of insulin, and increased secretions of endorphins by adrenals owing to the activation of imi da- zo le receptors, which cause the increased glu- cose uptake by the cells of the body [17, 20]. Therefore, agmatine can be used as a thera- peutic agent for the treatment of DM and re- lated metabolic disorders [21]. The aim of our study was to investigate the effects of agmatine on the redistribution of actin fractions represented by cytoskeletal ac- tin filaments, short actin filaments of the plas- ma membrane skeleton and actin monomers (G-actin) in leukocytes of the control group of animals and rats with EDM. Since there are adhesion molecules and receptors on the sur- face of leukocytes, which by their biochemical nature are glycoconjugates with a high level of sialization and interact with cytoskeletal proteins through the membrane structures and signalling proteins, the dynamics of actin re- organization was evaluated after 0.5 min, 1 min and 3 min of leukocyte preincubation with wheat germ lectin (WGA) under both normal and diabetic conditions. WGA lectin interacts with sialic acid residues that are pres- ent in terminal positions of N-linked glycopro- teins, as well as with the residues of sialic acids and N-acetyl-β,D-glucosamine as part of O-glycans of glycoproteins and glyco li- pids [22]. Incubating leukocytes with WGA lectin, we have modelled in vitro the activation state of leukocytes. 406 I. V. Brodyak, I. I. Bila, N. O. Sybirna Materials and Methods Animal preparation The experiments were based on white outbred male rats weighing 150–180 g. The animals had free access to food and water during their stay under standard vivarium conditions. The experiments were conducted in compliance with the General Ethical Principles for Conducting Experiments on Animals adopted at the First National Congress on Bioethics (Kyiv, 2001), which agree with the provisions of the European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes (Strasbourg, 1985). The animals were divided into four groups: (1) control, (2) control + agmatine, (3) experimental diabetes mellitus (EDM), and (4) EDM + agmatine. EDM was induced by the intraperitoneal administration of 6 mg strep- tozotocin (Sigma, United States) per 100 g of body mass, dissolved in 10 mM citrate buffer (pH 5.5). The development of diabetes was controlled by the blood glucose level deter- mined 72 h after administering streptozotocin. Animals with a glucose level above 14 mM were considered eligible for experiments. Starting from the third day from the moment of inducing diabetes, the animals from the second and fourth groups were intramuscu- larly administered agmatine (Sigma, United States) at a concentration of 20 g/kg body weight for 14 days, while the animals from the first and third groups were intramuscularly administered saline solution for 14 days. Blood collection Blood was collected after light anesthesia with diethylether. Heparin was added beforehand to prevent coagulation (the end point heparin: whole blood dilution = 1 : 100). Isolation of blood leukocytes Leukocytes were isolated from blood by cen- trifugation in gradient of ficolltriombrast den- sity (r = 1.076–1.078). Afterwards, the cells were washed twice in phosphate buffered sa- line (PBS: (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4 × 7H2O,1.8 mM KH2PO4, pH 7.4)). Cell viability was controlled by try- panblue (0.1 % w/v solution) exclusion test. Cell activation Cells (1.5 ∙ 106) were preincubated for 0.5, 1 or 3 min at 37 °C with WGA lectin (Lectinotest Laboratory, Lviv, Ukraine) in the final concen- tration of 32 mg/ml. Then cells were washed with PBS+ (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4 × 7H2O, 1.8 mM KH2PO4, 1 mM CaCl2, 0.5 mM MgCl2 × 6H2O, рН 7.5). Fractionation of actin cytoskeleton Cells (1.5 ∙ 106) were lysed in 250 ml of the buffer composed of 0.5% Triton X-100, 100 mM KCl, 5 mM MgCl2, 2 mM EGTA, 25 mM Tris, pH 7.5 and a protease inhibitor cocktail (“Sigma”, USA) to separate cytoske- le tal actin filaments from solubilized actin [23]. After 10 min (4 °C), cell lysates were centrifuged for 10 min at 10 000 g (Fig. 1). The yielded pallet contained long cytoskeletal actin filaments, whereas the supernatant con- tained short actin filaments and actin mono- mers. After withdrawing 10 ml samples of supernatant for SDS–PAGE analysis, the su- pernatants were subjected to high-speed cen- trifugation (1 h, 100 000 g, Fig. 1) to separate actin monomers (supernatant) and plasma 407 The dynamics of actin filament polymerization in activated leukocytes under experimental diabetes mellitus membrane skeleton (pellet). The pellet was dissolved in 30 ml of 8 M urea and analyzed by SDS–PAGE. To quantify actin in isolated fractions, equal volume of each fraction was applied onto a gel [23]. After immunoblotting with an anti-actin antibody, actin bands were Fig. 1. The immunoblot analysis of dif fe- rent actin fractions in leukocytes of heal thy rats, rats with experimental diabetes melli- tus (EDM) and after agmatine admi ni stra- tion. The scheme for frac tio nating lysates obtained after cell lysis through 0.5 % Tri- ton X-100 covers the process of separation of those fractions that contain cytoskeletal actin filaments, short actin filaments of the plasma membrane skeleton and actin mo- no mers. To determine the level of actin, we carried out the immunoblot analysis of frac- tions containing cytoskeletal actin fila- ments, short actin filaments and actin mo- no mers: А – fraction from leukocytes acti- vated for 0.5 min. with wheat germ lectin (WGA) and immunoblotted for actin ; B – fraction from leukocytes activated for 1 min. with WGA and immunoblotted for actin; С – fraction from leukocytes activa- ted for 3 min. with WGA and immunoblot- ted for actin. Equal volume of each fraction was applied onto the gel. Proteins from 1.5 × 106 cells were loaded per lane. 408 I. V. Brodyak, I. I. Bila, N. O. Sybirna analyzed densitometrically using Gelpro32. The actin content of each fraction at different time-points of WGA activation was expressed as a percentage of the total actin amount. Immunoblotting The lysates as well as cellular fractions were subjected to SDS–PAGE, transferred onto ni- trocellulose sheets and immunoblotted essen- tially as described [24]. The membranes were probed with mouse IgG anti-actin antibody (MP Biomedicals, OH) followed by anti-mouse IgG-peroxidase (Sheep anti-Mouse Ig Antibody, (H+L) HRP conjugate, Millipore, USA). The immunoreactive bands visualized by chemiluminescence (Pierce, IL) were ana- lyzed densitometrically using Gelpro32. Data analysis The significance of differences between groups was calculated using Student’s t-test. P < 0.05 was considered to be statistically significant. Results and Discussion The comparative analysis of actin fraction redistribution (represented by cytoskeletal filaments, short actin filaments of the plasma membrane skeleton and actin monomers (Fig. 1A–C)) was performed on the basis of immunoblot densitometric analysis using anti- actin antibodies. In the cells of the control group, those three actin forms amounted to 72 ± 7, 9 ± 2, and 20 ± 3 % respectively (Fig. 2). After 0.5 min of stimulation by WGA lectin, the percentage of polymerized actin repre- sented by cytoskeletal filaments decreased by 18%, whereas the content of the short actin filament increased by 20 % in leukocytes of the control group (Fig. 2). After 1 min of WGA lectin exposure, we observed exactly the op- posite effect: the fraction of cytoskeletal fila- ments increased up to 70 %, whereas short actin filaments accounted for only 9 % of po- lymerized actin. The level of actin monomers in leukocytes after 0.5 and 1 min exposure to lectin did not undergo any significant changes. In 3 min after WGA lectin exposure, F-actin fraction of short actin filaments of leukocytes increased from 9 % to 15 %, which correlated with a decrease in the content of G-actin against a background of unchanged levels of cytoskeletal actin filaments. The acquired data indicate that in the control group of animals the process of actin polymerization under leu- kocyte activation by preincubation with WGA lectin for 0.5 min is intensified in the fraction of short actin filaments, and in 1 min – in the cytoskeletal filaments (Fig. 2). Such dynamics of actin polymerization in leukocytes of the control group apparently corresponds to the activation of those blood cells under stimula- tory factors [25, 26]. Analyzing the redistribution of polymerized actin fractions, i.e. cytoskeletal actin filaments and short actin filaments in the initial state (Fig. 2, 0 min without WGA exposure), it was revealed that there is a decrease in the number of cytoskeletal actin filaments and an increase in short actin filaments of plasma membrane skeleton in leukocytes of diabetic animals compared with the control group in similar conditions (Fig. 2). In 0.5 min of the WGA lectin stimulation, the leukocytes of diabetic animals contained 66 ± 5 % of actin in the cytoskeletal filament fraction, 25 ± 2 % in short actin filaments, and 9 ± 1 % accounted for actin monomers (Fig. 2). 409 The dynamics of actin filament polymerization in activated leukocytes under experimental diabetes mellitus The obtained results indicate that under EDM the stimulation with WGA lectin leads to the intensification of actin polymerization process in the fraction of leukocyte cytoskeletal fila- ments due to the depolymerization of short actin filaments. The content of actin monomers Legends: cytoskeletal actin filaments, shot actin filaments, actin monomers Fig. 2. Redistribution dynamics of actin fractions in lysates of leukocytes containing cytoskeletal actin filaments, short actin filaments and actin monomers at rest (0 min) and in an activation state (after preincubation with WGA lectin for thirty seconds, one minute and three minutes): A – control; B – experimental diabetes mellitus (EDM); C – control against a background of agmatine administration; D – experimental diabetes mellitus against a background of agma- tine administration. The data were obtained by immunoblot densitometry (Fig. 1A–C). The actin content of each fraction at different time-points of WGA stimulation was expressed as a percentage of the total actin amount. The data are presented as the mean ± standard mean error of five experiments: * Significantly different from unstimulated cells (0 min) at P < 0.05. 410 I. V. Brodyak, I. I. Bila, N. O. Sybirna under such conditions did not change (Fig. 2). Although the level of F-actin fraction of cyto- skeletal filaments did not undergo significant changes in leukocytes under EDM after 1 and 3 min of WGA lectin exposure, the process of actin depolymerization (represented by actin of short filaments) accelerated, thus increasing the content of actin monomers up to 30 % after 3 min of WGA lectin exposure (Fig. 2). After cell activation, there is a rapid and short-term increase in F-actin, which correlates with a decrease in the content of G-actin [27]. However, under EDM the opposite processes of intensified depolymerization of short actin filaments and increased contents of G-actin take place in leukocytes activated by WGA lectin. During the activation of leukocytes, short actin filaments are involved in changing the morphology and functional capacity of the cells, whereas the reduction of their content in leukocytes under diabetes mellitus clearly causes the impairment of all those functions. Such changes may be a result of the distur- bances of transmembrane and intracellular signaling through sialoglycoconjugates of leu- kocytes, the number and structural organiza- tion of oligosaccharide chains of which are changed under EDM [28]. The results are consistent with our earlier research [29], which revealed that under type 1 DM the PI-3'-kinase signaling pathway, which in fact causes the delay of WGA- stimulating signal transduction, in blood leu- kocytes is misaligned and slowed. PI-3'-kinase signaling pathway is involved in cellular re- sponse to external stimuli by regulating the activity of proteins of the cytoskeleton [14] and forming stress fibrils, lamellipodia and filopodia of leukocytes [30, 31]. Changes in the level of actin polymerization-depolymer- ization in leukocytes under EDM may indicate a breach in systems of activation, adhesion and phagocytosis, as well as manifestation of cy- totoxicity, because the actin cytoskeleton of leukocytes is continually reorganized, being a dynamic system that determines the morpho- logical changes in the cell [32, 33]. After agmatine administration, actin frac- tions in leukocytes were distributed as follows in the control group of rats: 72 ± 6 % in the fraction containing membrane filaments close- ly associated with the cytoskeleton, 18 ± 3 % represented short actin filaments, and actin monomers accounted for 10 ± 2 % (Fig. 2). Thus, the administration of agmatine to the control group of animals leads to the reduction of actin monomers due to the intensification of actin filament polymerization in the plasma membrane skeleton in comparison with un- stimulated leukocytes from the control group of animals (Fig. 2). In leukocytes of the control group of ani- mals against the background of agmatine ad- ministration after 0.5 min of WGA lectin stimulation, the percentage of polymerized actin represented by cytoskeletal filaments and short actin filaments, decreased by 50 % and 11 % respectively. Such an intensive process of depolymerization led to a sharp increase in G-actin – from 10 % in the state of inactivation to 72 % in the state of leukocyte activation by WGA lectin for thirty seconds. After 1 min WGA lectin exposure, we observed just the opposite effect – an intensive process of actin polymerization caused an increase in F-actin filaments of the cytoskeletal fraction up to 45 %, whereas the fraction of short actin fila- ments increased up to 20 %. The level of actin 411 The dynamics of actin filament polymerization in activated leukocytes under experimental diabetes mellitus monomers in leukocytes after 1 min WGA lectin exposure decreased twofold. In 3 min after WGA lectin exposure, the level of F-actin filaments of the leukocyte cytoskeleton dropped to 7 %, which correlated with an in- crease in G-actin content up to about 80 %. The obtained data indicate that in the control group of animals the agmatine administration causes the formation of leukocyte response to activation signals after 1 min exposure to WGA lectin, and it terminates the process of actin filament cell reorganization if the cells are preincubated for 3 min (Fig. 2). Conse qu- en tly, the dynamics of actin redistribution in this group of animals shows that major chan- ges in activated leukocytes occur in the cyto- skeletal filaments, correlating with the chan ges in actin monomers. Since the level of F-actin fraction of short actin filaments after 1 and 3 min. of WGA lectin stimulating effects does not undergo significant changes as compared to the initial state of leukocytes (0 min. – with- out WGA exposure), it can be assumed that in the control group of animals agmatine causes the cytoskeletal actin filaments polymerization de novo at the exposure of actin monomers at 1 min of WGA lectin action, involving the activation of Arp2/3 complex [34]. If agmatine is administered to animals with EDM, the process of polymerization in leuko- cytes intensifies in the fraction of cytoskeletal filaments and depolymerization of short actin filaments occurs compared to animals under EDM without agmatine administration (Fig. 2, see 0 min.). Under EDM, against a background of agmatine administration, the stimulating effect of WGA lectin exposure for 0.5 min. leads to the intensification of actin polymeriza- tion process in the cytoskeletal filament frac- tion of leukocytes due to depolymerization of short actin filaments and usage of actin mono- mers (Fig. 2). After 1 min WGA lectin expo- sure, the level of F-actin filaments of the leu- kocyte cytoskeleton reduced by 40 %, which correlated with an increase in G-actin content up to 30 % and short actin filaments up to 20 % (Fig. 2). After 3 min of WGA lectin stimulation in leukocytes of animals with EDM against the background of agmatine administration, actin was redistributed among the three fractions in the following ratio – 67 ± 8, 23 ± 3 and 10 ± 1, reaching the level of performance in an inac- tive state (Fig. 2, see 0 and 3 min.). Therefore, in leukocytes of animals with EDM, against the background of agmatine administration, the dynamics of response to stimulating effects of WGA lectin were cha- rac terized by the intensification of polymeriza- tion of cytoskeletal actin filaments already after 0.5 min exposure to lectin, by exceptio- nal ly rapid depolymerization processes after 1 min exposure to lectin, and by the return to the performance level in the initial state after 3 min exposure to lectin (Fig. 2). Under those conditions, the WGA lectin binds to comple- mentary glycoconjugates on the surface of leukocytes and lectin-induced signal transduc- tion, which causes the reorganization of the actin cytoskeleton, reach actin content in each fraction similarly to the activated leukocytes of the control group of animals. The findings indicate that agmatine positively affects the functional state of the animal leukocytes under EDM. Perhaps the normalization of glucose level in animals with EDM in response to agmatine [35, 36] is one of the mechanisms for mediating those functional changes in leu- kocytes under EDM. 412 I. V. Brodyak, I. I. Bila, N. O. Sybirna Conclusions Based on our previous results [22, 28] and obtained data, we can conclude that under EDM the changes in the number and struc- tural organization of sialoglycoconjugates on the surface of leukocytes lead to the disruption of WGA-induced transmembrane and intracel- lular signaling, resulting in the enhanced de- polymerization processes of short actin fila- ments and an increase in the content of G-actin. In leukocytes of the animals with EDM, against the background of agmatine adminis- tration, the transduction of lectin-induced sig- nal through sialoglycoconjugates causes a quantitative redistribution of actin fractions. It indicates that polyamine helps to restore and maintain the functional response of leukocytes to the activation signals. REFERENCES 1. Alba-Loureiro TC, Munhoz CD, Martins JO, Cer- chiaro GA, Scavone C, Curi R, Sannomiya P. Neu- trophil function and metabolism in individuals with diabetes mellitus. Braz J Med Biol Res. 2007; 40(8):1037–44. 2. McManus LM, Bloodworth RC, Prihoda TJ, Blod- gett JL, Pinckard RN. Agonist-dependent failure of neutrophil function in diabetes correlates with extent of hyperglycemia. J Leukoc Biol. 2001;70(3): 395–404. 3. Tipu HN, Ahmed TA, Bashir MM. Human leukocyte antigen class II susceptibility conferring alleles among non-insulin dependent diabetes mellitus pa- tients. J Coll Physicians Surg Pak. 2011;21(1):26–9. 4. Vicente-Manzanares M, Sánchez-Madrid F. Role of the cytoskeleton during leukocyte responses. Nat Rev Immunol. 2004;4(2):110–22. 5. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89. 6. Galbraith CG, Yamada KM, Galbraith JA. Polyme- rizing actin fibers position integrins primed to probe for adhesion sites. Science. 2007;315(5814):992–5. 7. Narita A, Mueller J, Urban E, Vinzenz M, Small JV, Maéda Y. Direct determination of actin polarity in the cell. J Mol Biol. 2012;419(5):359–68. 8. Arjonen A, Kaukonen R, Ivaska J. Filopodia and adhesion in cancer cell motility. Cell Adh Migr. 2011;5(5):421–30. 9. Schnoor M. Endothelial actin-binding proteins and actin dynamics in leukocyte transendothelial migra- tion. J Immunol. 2015;194(8):3535–41. 10. Rullo J, Becker H, Hyduk SJ, Wong JC, Digby G, Arora PD, Cano AP, Hartwig J, McCulloch CA, Cybulsky MI. Actin polymerization stabilizes α4β1 integrin anchors that mediate monocyte adhesion. J Cell Biol. 2012;197(1):115–29. 11. Fukuyama T, Ogita H, Kawakatsu T, Inagaki M, Takai Y. Activation of Rac by cadherin through the c-Src-Rap1-phosphatidylinositol 3-kinase-Vav2 pathway. Oncogene. 2006;25(1):8–19. 12. Heit B, Liu L, Colarusso P, Puri KD, Kubes P. PI3K accelerates, but is not required for, neutrophil che- motaxis to fMLP. J Cell Sci. 2008;121(Pt 2):205–14. 13. Snapp KR, Heitzig CE, Kansas GS. Attachment of the PSGL-1 cytoplasmic domain to the actin cyto- skeleton is essential for leukocyte rolling on P-se- lectin. Blood. 2002;99(12):4494–502. 14. Welch MD. The world according to Arp: regulation of actin nucleation by the Arp2/3 complex. Trends Cell Biol. 1999;9(11):423–7. 15. Pollard TD, Blanchoin L, Mullins RD. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct. 2000;29:545–76. 16. Brodyak IV, Bila II, Overchuk M, Sybirna NO. Effect of agmatine on actin polymerization in leukocytes of strep-tozotocin-induced diabetic rats. Studia Bio- logica. 2014; 8(3–4):17–30. 17. Chang CH, Wu HT, Cheng KC, Lin HJ, Cheng JT. In- crease of beta-endorphin secretion by agmatine is in- duced by activation of imidazoline I(2A) receptors in adrenal gland of rats. Neurosci Lett. 2010;468(3):297–9. 18. Hwang SL, Liu IM, Tzeng TF, Cheng JT. Activation of imidazoline receptors in adrenal gland to lower 413 The dynamics of actin filament polymerization in activated leukocytes under experimental diabetes mellitus plasma glucose in streptozotocin-induced diabetic rats. Diabetologia. 2005;48(4):767–75. 19. Jou SB, Liu IM, Cheng JT. Activation of imidazoline receptor by agmatine to lower plasma glucose in streptozotocin-induced diabetic rats. Neurosci Lett. 2004;358(2):111–4. 20. Lee JP, Chen W, Wu HT, Lin KC, Cheng JT. Metfor- min can activate imidazoline I-2 receptors to lower plasma glucose in type 1-like diabetic rats. Horm Metab Res. 2011;43(1):26–30. 21. Piletz JE, Aricioglu F, Cheng JT, Fairbanks CA, Gilad VH, Haenisch B, Halaris A, Hong S, Lee JE, Li J, Liu P, Molderings GJ, Rodrigues AL, Satria- no J, Seong GJ, Wilcox G, Wu N, Gilad GM. Agma- tine: clinical applications after 100 years in transla- tion. Drug Discov Today. 2013;18(17–18):880–93. 22. Sybirna NО, Shevtsova AI, Ushakova GО, Bro- dyak IV, Pismenetzka IY. Fundamentals of glycobi- ology. Monograph; Lviv: Ivan Franko National University of Lviv, 2015. 492 p. 23. Kleveta G, Borzęcka K, Zdioruk M, Czerkies M, Kuberczyk H, Sybirna N, Sobota A, Kwiatkowska K. LPS induces phosphorylation of actin-regulatory proteins leading to actin reassembly and macrophage motility. J Cell Biochem. 2012;113(1):80–92. 24. Kwiatkowska K, Frey J, Sobota A. Phosphorylation of FcgammaRIIA is required for the receptor-in- duced actin rearrangement and capping: the role of membrane rafts. J Cell Sci. 2003;116(Pt 3):537–50. 25. Fenteany G, Zhu S. Small-molecule inhibitors of actin dynamics and cell motility. Curr Top Med Chem. 2003;3(6):593–616. 26. Lin BH, Tsai MH, Lii CK, Wang TS. IP3 and cal- cium signaling involved in the reorganization of the actin cytoskeleton and cell rounding induced by cigarette smoke extract in human endothelial cells. Environ Toxicol. 2016;31(11):1293–1306. 27. Watts RG, Crispens MA, Howard TH. A quantitative study of the role of F-actin in producing neutrophil shape. Cell Motil Cytoskeleton. 1991;19(3):159–68. 28. Ferents I, Brodyak I, Lyuta M, Klymyshyn N, Bur- da V, Sybirna N. Sialylation status of leukocyte cell-surface glycoconjugates in streptozotocin-in- duced diabetic rats and after treatment with agma- tine. Curr Iss Pharm Med Sci. 2013; 26(4):390–2. 29. Sybirna NO, Zdioruk MI, Brodiak IV, Bars’ka ML, Vovk OI. [Activation of the phosphatidylinositol-3’- kinase pathway with lectin-induced signal through sialo-containing glycoproteins of leukocyte mem- branes under type 1 diabetes mellitus]. Ukr Biokhim Zh. (1999). 2011;83(5):22–31. 30. Aiba Y, Kameyama M, Yamazaki T, Tedder TF, Kuro- sa ki T. Regulation of B-cell development by BCAP and CD19 through their binding to phosphoinositide 3-kinase. Blood. 2008;111(3):1497–503. 31. Fais S, Malorni W. Leukocyte uropod formation and membrane/cytoskeleton linkage in immune interac- tions. J Leukoc Biol. 2003;73(5):556–63. 32. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003;112(4):453–65. Review. Erratum in: Cell. 2003;113(4):549. 33. Zarbock A, Kempf T, Wollert KC, Vestweber D. Leukocyte integrin activation and deactivation: novel mechanisms of balancing inflammation. J Mol Med (Berl). 2012;90(4):353–9. 34. Samstag Y, Eibert SM, Klemke M, Wabnitz GH. Actin cytoskeletal dynamics in T lymphocyte activation and migration. J Leukoc Biol. 2003;73(1):30–48. 35. Ferents IV, Brodyak IV, Lyuta MYa, Sybirna NО. Effect of agmatine on the blood system parameters of rats un-der the condition of experimental diabetes mellitus. Studia Biologica. 2012; 6(3):65–72. 36. Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc Rhoads J, Carey Satterfield M, Smith SB, Spen- cer TE, Yin Y. Arginine metabolism and nutrition in growth, health and disease. Amino Acids. 2009; 37(1):153–68. Динаміка полімеризації актинових філаментів в активованих лейкоцитах за умов експериментального цукрового діабету на фоні введення агматину І. В. Бродяк, І. І. Біла, Н. О. Сибірна Мета. Дослідити вплив агматину на перерозподіл фракцій актину, які представлені актиновими філамен- тами цитоскелету, короткими актиновими філамента- ми скелету плазматичної мембрани і мономерами ак- тину (G-актин), у лейкоцитах щурів з експерименталь- 414 I. V. Brodyak, I. I. Bila, N. O. Sybirna ним цукровим діабетом (ЕЦД) Методи. Лейкоцити лізували в Тритоні Х-100 і піддавали центрифугуван- ню, у результаті якого було отримано актинові філа- менти цитоскелету, короткі актинові філаменти і моно- мери актину, які розділяли в SDS-ПААГ, після чого проводили імуноблот аналіз із використанням анти- актинових антитіл. Результати. За умов ЕЦД у лейко- цитах, активованих сіалоспецифічним лектином за- родків пшениці (WGA), спостерігається інтенсифіку- вання процесу деполімеризації коротких актинових філаментів і збільшення вмісту G-актину, а на фоні введення агматину динаміка формування відповіді на WGA-стимулювальний вплив характеризувалася по- силенням полімеризації актину у фракції філаментів цитоскелету вже на 0,5 хв впливу лектину, дуже стрім- ким процесом деполімеризації на 1 хв після дії лекти- ну та поверненням показників до рівня у вихідному стані у разі дії лектину впродовж 3 хв. Висновки. У лейкоцитах тварин з ЕЦД на фоні введення агмати- ну трансдукція WGA-індукованого сигналу через сіалоглікокон’югати зумовлює перерозподіл вмісту актину, вказуючи на те, що даний поліамін сприяє від- новленню і підтриманню функціональної відповіді лейкоцитів на активаційні сигнали. К л юч ов і с л ов а: актин, лейкоцити, агматин, екс- периментальний цукровий діабет. Динамика полимеризации актиновых филаментов в активированных лейкоцитах в условиях экспериментального сахарного диабета на фоне введения агматина И. В. Бродяк, И. И. Била, Н. А. Сибирна Цель. Исследовать влияние агматина на перераспре- деление фракций актина, которые представлены актиновыми филаментами цитоскелета, короткими актиновыми филаментами скелета плазматической мембраны и мономерами актина (G-актин), в лейко- цитах крыс с экспериментальным сахарным диабетом (ЭСД). Методы. Лейкоциты лизировали в Тритоне Х-100 и подвергали центрифугированию, в результате которого было получено актиновые филаменты цитос- келета, короткие актиновые филаменты и мономеры актина, которые разделяли в SDS-ПААГ, после чего проводили иммуноблот анализ с использованием антиактиновых антител. Результаты. В условиях ЭСД в лейкоцитах, активированных сиалоспецыфическим лектином зародышей пшеницы (WGA), наблюдается интенсификация процесса деполимеризации коротких актиновых филаментов и увеличение содержания G-актина, а на фоне введения агматина динамика формирования ответа на WGA-стимулирующее влия- ние характеризировалась усилением полимеризации актина во фракции филаментов цитоскелета уже на 0,5 мин влияния лектина, очень стремительным процессом деполимеризации на 1 мин после действия лектина и возвращением показателей к уровню в исходном со- стоянии в случае действия лектина в течение 3 мин. Выводы. В лейкоцитах животных с ЭСД на фоне введения агматина трансдукция WGA-индуцированого сигнала через сиалогликоконьюгаты приводит к пере- распределению содержания актина, указывая на то, что данный полиамин способствует восстановлению и поддержанию функционального ответа лейкоцитов на активационные сигналы. К л юч е в ы е с л ов а: актин, лейкоциты, агматин, экспериментальный сахарный диабет. Received 20.09.2017