The word problem in Hanoi Towers groups
We prove that the elements of the Hanoi Towers groups Hm have depth bounded from above by a poly-logarithmic function O(logm⁻²n), where n is the length of an element. Therefore the word problem in groups Hm is solvable in subexponential time exp(O(logm⁻²n)).
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2014
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/153336 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The word problem in Hanoi Towers groups / I. Bondarenko // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 248–255. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-153336 |
---|---|
record_format |
dspace |
fulltext |
|
spelling |
irk-123456789-1533362019-06-15T01:26:27Z The word problem in Hanoi Towers groups Bondarenko, I. We prove that the elements of the Hanoi Towers groups Hm have depth bounded from above by a poly-logarithmic function O(logm⁻²n), where n is the length of an element. Therefore the word problem in groups Hm is solvable in subexponential time exp(O(logm⁻²n)). 2014 Article The word problem in Hanoi Towers groups / I. Bondarenko // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 248–255. — Бібліогр.: 9 назв. — англ. 1726-3255 2010 MSC:68R05, 20F10. http://dspace.nbuv.gov.ua/handle/123456789/153336 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We prove that the elements of the Hanoi Towers groups Hm have depth bounded from above by a poly-logarithmic function O(logm⁻²n), where n is the length of an element. Therefore the word problem in groups Hm is solvable in subexponential time exp(O(logm⁻²n)). |
format |
Article |
author |
Bondarenko, I. |
spellingShingle |
Bondarenko, I. The word problem in Hanoi Towers groups Algebra and Discrete Mathematics |
author_facet |
Bondarenko, I. |
author_sort |
Bondarenko, I. |
title |
The word problem in Hanoi Towers groups |
title_short |
The word problem in Hanoi Towers groups |
title_full |
The word problem in Hanoi Towers groups |
title_fullStr |
The word problem in Hanoi Towers groups |
title_full_unstemmed |
The word problem in Hanoi Towers groups |
title_sort |
word problem in hanoi towers groups |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/153336 |
citation_txt |
The word problem in Hanoi Towers groups / I. Bondarenko // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 248–255. — Бібліогр.: 9 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT bondarenkoi thewordprobleminhanoitowersgroups AT bondarenkoi wordprobleminhanoitowersgroups |
first_indexed |
2025-07-14T04:32:24Z |
last_indexed |
2025-07-14T04:32:24Z |
_version_ |
1837595408146104320 |