The word problem in Hanoi Towers groups

We prove that the elements of the Hanoi Towers groups Hm have depth bounded from above by a poly-logarithmic function O(logm⁻²n), where n is the length of an element. Therefore the word problem in groups Hm is solvable in subexponential time exp(O(logm⁻²n)).

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Bondarenko, I.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2014
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153336
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The word problem in Hanoi Towers groups / I. Bondarenko // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 248–255. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-153336
record_format dspace
fulltext
spelling irk-123456789-1533362019-06-15T01:26:27Z The word problem in Hanoi Towers groups Bondarenko, I. We prove that the elements of the Hanoi Towers groups Hm have depth bounded from above by a poly-logarithmic function O(logm⁻²n), where n is the length of an element. Therefore the word problem in groups Hm is solvable in subexponential time exp(O(logm⁻²n)). 2014 Article The word problem in Hanoi Towers groups / I. Bondarenko // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 248–255. — Бібліогр.: 9 назв. — англ. 1726-3255 2010 MSC:68R05, 20F10. http://dspace.nbuv.gov.ua/handle/123456789/153336 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We prove that the elements of the Hanoi Towers groups Hm have depth bounded from above by a poly-logarithmic function O(logm⁻²n), where n is the length of an element. Therefore the word problem in groups Hm is solvable in subexponential time exp(O(logm⁻²n)).
format Article
author Bondarenko, I.
spellingShingle Bondarenko, I.
The word problem in Hanoi Towers groups
Algebra and Discrete Mathematics
author_facet Bondarenko, I.
author_sort Bondarenko, I.
title The word problem in Hanoi Towers groups
title_short The word problem in Hanoi Towers groups
title_full The word problem in Hanoi Towers groups
title_fullStr The word problem in Hanoi Towers groups
title_full_unstemmed The word problem in Hanoi Towers groups
title_sort word problem in hanoi towers groups
publisher Інститут прикладної математики і механіки НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/153336
citation_txt The word problem in Hanoi Towers groups / I. Bondarenko // Algebra and Discrete Mathematics. — 2014. — Vol. 17, № 2. — С. 248–255. — Бібліогр.: 9 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT bondarenkoi thewordprobleminhanoitowersgroups
AT bondarenkoi wordprobleminhanoitowersgroups
first_indexed 2025-07-14T04:32:24Z
last_indexed 2025-07-14T04:32:24Z
_version_ 1837595408146104320