On a factorization of an iterated wreath product of permutation groups
We show that if each group of permutations (Gi, Mi), i ∈ N has a factorization then their infinite iterated wreath product ≀i₌₁∞Gi also has a factorization. We discuss some properties of this factorization and give examples.
Gespeichert in:
Datum: | 2014 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2014
|
Schriftenreihe: | Algebra and Discrete Mathematics |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/153343 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | On a factorization of an iterated wreath product of permutation groups / B. Bajorska, V. Sushchansky // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 14–26. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | We show that if each group of permutations (Gi, Mi), i ∈ N has a factorization then their infinite iterated wreath product ≀i₌₁∞Gi also has a factorization. We discuss some properties of this factorization and give examples. |
---|