Effective ring
In this paper we will investigate commutative Bezout domains whose finite homomorphic images are semipotent rings. Among such commutative Bezout rings we consider a new class of rings and call them an effective rings. Furthermore we prove that effective rings are elementary divisor rings.
Saved in:
Date: | 2014 |
---|---|
Main Authors: | Zabavsky, B.V., Kuznitska, B.M. |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2014
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/153352 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Effective ring / B.V. Zabavsky, B.M. Kuznitska // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 149–156. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Effective ring
by: B. V. Zabavsky, et al.
Published: (2014) -
Effective ring
by: Zabavsky, B. V., et al.
Published: (2018) -
Comaximal factorization in a commutative Bezout ring
by: Zabavsky, B.V., et al.
Published: (2020) -
Comaximal factorization in a commutative Bezout ring
by: Zabavsky, B. V., et al.
Published: (2020) -
Type conditions of stable range for identification of qualitative generalized classes of rings
by: Zabavsky, B.V.
Published: (2018)