n -ary comodules over n -ary (co)algebras

In the paper we study connections between (co)modules over n-ary and binary (co)algebras.

Saved in:
Bibliographic Details
Date:2008
Main Author: Zekovic, B.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2008
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/153374
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:n -ary comodules over n -ary (co)algebras / B. Zekovic// Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 4. — С. 80–89. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-153374
record_format dspace
spelling irk-123456789-1533742019-06-15T01:26:21Z n -ary comodules over n -ary (co)algebras Zekovic, B. In the paper we study connections between (co)modules over n-ary and binary (co)algebras. 2008 Article n -ary comodules over n -ary (co)algebras / B. Zekovic// Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 4. — С. 80–89. — Бібліогр.: 7 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 20N15, 20C05, 20C07, 16S34. http://dspace.nbuv.gov.ua/handle/123456789/153374 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In the paper we study connections between (co)modules over n-ary and binary (co)algebras.
format Article
author Zekovic, B.
spellingShingle Zekovic, B.
n -ary comodules over n -ary (co)algebras
Algebra and Discrete Mathematics
author_facet Zekovic, B.
author_sort Zekovic, B.
title n -ary comodules over n -ary (co)algebras
title_short n -ary comodules over n -ary (co)algebras
title_full n -ary comodules over n -ary (co)algebras
title_fullStr n -ary comodules over n -ary (co)algebras
title_full_unstemmed n -ary comodules over n -ary (co)algebras
title_sort n -ary comodules over n -ary (co)algebras
publisher Інститут прикладної математики і механіки НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/153374
citation_txt n -ary comodules over n -ary (co)algebras / B. Zekovic// Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 4. — С. 80–89. — Бібліогр.: 7 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT zekovicb narycomodulesovernarycoalgebras
first_indexed 2025-07-14T04:36:03Z
last_indexed 2025-07-14T04:36:03Z
_version_ 1837595638302244864
fulltext Algebra and Discrete Mathematics RESEARCH ARTICLE Number 4. (2008). pp. 80 – 89 c© Journal “Algebra and Discrete Mathematics” n-ary comodules over n-ary (co)algebras B. Zeković Communicated by V. A. Artamonov Abstract. In the paper we study connections between (co)modules over n-ary and binary (co)algebras. Introduction In this paper, the notations of right (left) (co)modules over (co)algeb- ras are generalized from binary to n-ary case Definition 1.1 and 1.2 It is proved that a module M is a right n-ary C-comodule if and only if it is a left n-ary C∗-module Theorem 2.1. A dual statement is proved in Theorem 3.1. Notations of right (left) n-ary (co)module algebras are introduced and it is proved that an n-ary C-comodule algebra is an n-ary C∗-module algebra, Theorem 2.2. Moreover, n-ary C-module algebra is an n-ary C∗-comodule algebra Theorem 3.3. All necessary notations and definitions can be founded in the papers listed in References. 1. Basic notions Let k be a ground commutative associative ring with a unit, C and M modules over k. In what follows, ⊗ is a tensor product over k. All homomorphisms are k-linear maps. In [Z1], the concept of n-ary algebras (C, m) is defined, where m : C ⊗ · · · ⊗ C → C is n-ary multiplication, 2000 Mathematics Subject Classification: 20N15, 20C05, 20C07, 16S34. Key words and phrases: right(left) n-ary (co)-module over (co)algebra, right(left) n-ary (co)-module algebra. B. Zeković 81 which is associative. It means that the following diagram is commutative: C⊗(2n−1) 1⊗i C ⊗m⊗1 ⊗(n−i−1) C �� m⊗1 ⊗(n−1) C // C⊗n m �� C⊗n m // C i.e. for any i = 1, . . . , n we have m · ( m ⊗ 1 ⊗(n−1) C ) = m · ( 1⊗i C ⊗ m ⊗ 1 ⊗(n−i−1) C ) . The concept of n-ary coalgebra (C,∆) is defined in [Z2], where ∆ : C → C ⊗ · · · ⊗ C is n-ary comultiplication, which is coassociative, that is the following diagram is commutative: C ∆ �� ∆ // C⊗n 1⊗i C ⊗∆⊗1 ⊗(n−i−1) C �� C⊗n ∆⊗1 ⊗(n−1) C // C⊗(2n−1) i.e. for any i = 1, . . . , n we have ( ∆ ⊗ 1 ⊗(n−1) C ) · ∆ = ( 1⊗i C ⊗ ∆ ⊗ 1 ⊗(n−i−1) C ) · ∆. Analogously, the concept of n-ary bialgebra (C, m,∆) , where m is as- sociative n-ary multiplication and ∆ is coassociative n-ary comultiplica- tion. It is shown that ∆ is a homomorphism of n-ary algebras. We do not suppose an existence of the unit and counit. In [Z1] the notion of homomorphism f : (C, mC) → (C ′, mC′) of n-ary algebras is defined as a morphism f : C → C ′, such that the following diagram is commutative: C⊗n mC �� f⊗n // C ′⊗n m C′ �� C f // C ′ i.e. f · mC = mC′ · f⊗n. Let C be an n-ary coalgebra and a finitely generated projective k- module. Denote by C∗ the k-module Hom(C, k). Then C∗ is an n-ary algebra with multiplication l1 ∗ · · · ∗ ln, where for c ∈ C: (l1 ∗ · · · ∗ ln) (c) = ∑ c l1 ( c(1) ) · · · ln ( c(n) ) (1) 82 n-ary comodules over n-ary (co)algebras if ∆(c) = ∑ c c(1) ⊗ · · · ⊗ c(n) ∈ C⊗n. Conversely, let C be an n-ary algebra and a finitely generated projective k-module. Define n-ary comultiplication ∆∗ in C∗ = Hom(C, k), by the rule: (∆∗)(x1 ⊗ · · · ⊗ xn) = l(x1 · · ·xn) (2) where xi ∈ C. Here we use the isomorphism of k-modules: ( C⊗n )∗ ≃ (C∗)⊗n because C is a finitely-generated projective k-module. Then, C∗ is a n-ary coalgebra. If C is a n-ary (co)algebra, then (C∗)∗ ≃ C, [B]. Definition 1.1. Let C be a n-ary coalgebra. We say that k-module M is a right n-ary C-comodule, if there exists a map ρ : M → M ⊗ C⊗(n−1), such that the following diagram is commutative: M ρ �� ρ // M ⊗ C⊗(n−1) 1M⊗1⊗i C ⊗∆⊗1 ⊗(n−i−2) C �� M ⊗ C⊗(n−1) ρ⊗1 ⊗(n−1) C // M ⊗ C⊗(2n−1) i.e. ( 1M ⊗ 1⊗i C ⊗ ∆ ⊗ 1 ⊗(n−i−2) C ) · ρ = ( ρ ⊗ 1 ⊗(n−1) C ) · ρ for any i. Definition 1.2. Let C be a n-ary algebra. k-module M is called a left n-ary C-module, if there exists a map γ : C⊗(n−1) ⊗ M → M , such that the following diagram is commutative: C⊗(n−1) ⊗ M γ // M C⊗(2n−1) ⊗ M 1 ⊗(n−1) C ⊗γ OO 1⊗i C ⊗m⊗1 ⊗(n−i−2) C ⊗1M // C⊗(n−1) ⊗ M γ OO i.e. γ · ( 1 ⊗(n−1) C ⊗ γ ) = γ · ( 1⊗i C ⊗ m ⊗ 1 ⊗(n−i−2) C ⊗ 1M ) for any i = 1, . . . , n. B. Zeković 83 Definition 1.3. Let C be a n-ary bialgebra. n-ary algebra M is called a left n-ary C-module algebra, if: 1) M is a left n-ary C-module; 2) for any c1, . . . , cn−1 ∈ C, m1, . . . , mn ∈ M (c1 ⊗ · · · ⊗ cn−1) (m1 · · ·mn) = ∑ c1,...,cn−1 ( c1(1) · · · cn−1(1)m1 ) · · · ( c1(n) · · · cn−1(n)mn ) Definition 1.4. Let C be an n-ary bialgebra. n-ary algebra M is called a right n-ary C-comodule algebra, if: 1) M is a right n-ary C-comodule with the structure morphism ρ : M → M ⊗ C⊗(n−1); 2) ρ is a homomiorphism of n-ary algebras. 2. The relations between n-ary comodules and modules Theorem 2.1. Let C be a n-ary coalgebra. Then M is a right n-ary C-comodule if and only if M is a left n-ary C∗-module. Proof. Suppose that M is a right n-ary C-comodule and ρ(m) = ∑ (m) m(0) ⊗ m(1) ⊗ · · · ⊗ m(n−1), (3) where m ∈ M and m(0) ∈ M, m(i) ∈ C for = 1, . . . , n−1. If l1, . . . , ln−1 ∈ C∗, m ∈ M , then we put ρ∗ (l1 ⊗ · · · ⊗ ln−1 ⊗ m) = ∑ (m) m(0)l1 ( m(1) ) · · · sln−1 ( m(n−1) ) ∈ M. (4) Further, if l1, . . . , l2n−2 ∈ C∗ and m ∈ M , then by Definition 1.2 we have: ( ρ∗ · ( 1 ⊗(n−1) C∗ ⊗ ρ∗ )) (l1 ⊗ · · · ⊗ l2n−2 ⊗ m) = ρ∗  l1 ⊗ · · · ⊗ ln−1 ⊗ ∑ (m) m(0)ln ( m(1) ) · · · l2n−2 ( m(n−1) )   = ∑ m(0) m(0)(0)l1 ( m(0)(1) ) · · · ln−1 ( m(0)(n−1) ) ln ( m(1) ) · · · l2n−2 ( m(n−1) ) . (5) 84 n-ary comodules over n-ary (co)algebras On the other hand, ( ρ∗ · ( 1 ⊗(i−1) C∗ ⊗ m∗ ⊗ 1 ⊗(n−1−i) C∗ ⊗ 1M )) (l1 ⊗ · · · ⊗ l2n−2 ⊗ m) = ρ∗ (l1 ⊗ · · · ⊗ li−1 ⊗ (li ∗ · · · ∗ li+n−1) ⊗ ln+i ⊗ · · · l2n−2 ⊗ m) = ∑ m m(0)l1 ( m(1) ) · · · li−1 ( m(i−1) ) (l1 ∗ · · · ∗ li+n−1)× ( m(i) ) li+n ( m(i+1) ) · · · l2n−2 ( m(n−1) ) = ∑ m m(0)l1 ( m(1) ) · · · li−1 ( m(i−1) ) ×   ∑ m(i) l1 ( m(i)(1) ) · · · li+n−1 ( m(i)(n) )   li+n ( m(i+1) ) · · · l2n−2 ( m(n−1) ) . (6) By Definition 1.2 we have: ∑ m m(0)(0) ⊗ m(0)(1) ⊗ · · · ⊗ m(0)(n−1) ⊗ m(1) ⊗ · · · ⊗ m(n−1) = ∑ m m(0) ⊗ · · · ⊗ m(i−1) ⊗ m(i)(0) ⊗ · · · · · · ⊗ m(i)(n−1) ⊗ m(i+1) ⊗ · · · ⊗ m(n−1). It proves the equallities (5) and (6), i.e. M is a left n-ary C∗-module. Since, the module C is a finite-generated projective k-module, then (C∗)∗ ≃ C and therefore the converse statement follows. Theorem 2.2. Let C be an n-ary bialgebra. If M is a right n-ary C- comodule algebra, then M is a left n-ary C∗-module algebra. Proof. Suppose that M is a right n-ary C-comodule algebra and C is an n-ary bialgebra. We shall show that M is left n-ary C∗-module algebra with respect to the action (4). It is necessary to prove the following equality: ρ∗ [l1 ⊗ · · · ⊗ ln−1 ⊗ (m1 · · ·mn)] = ∑ l1,...,ln−1 ρ∗ ( l(1)(1) ⊗ · · · ⊗ l(n−1)(1) ⊗ m1 ) × · · · × ρ∗ ( l(1)(n) ⊗ l(n−1)(n) ⊗ mn ) . By (3) and (4), we have: ρ∗ [l1 ⊗ · · · ⊗ ln−1 ⊗ (m1 · · ·mn)] = ∑ (m1 · · ·mn)(0) l1 ( (m1 · · ·mn)(1) ) · · · ln−1 ( (m1 · · ·mn)(n−1) ) . (7) B. Zeković 85 But, the map ρ : M → M⊗C⊗(n−1) is a homomorphism of n-ary algebras, so: ρ(m1 · · ·mn) = ∑ (m1 · · ·mn)(0) ⊗ · · · ⊗ (m1 · · ·mn)(n−1) , ρ(m1) · · · ρ(mn) = ( ∑ m1 m1(0) ⊗ · · · ⊗ m1(n−1) ) · · · ( ∑ mn mn(0) ⊗ · · · ⊗ mn(n−1) ) = ∑ m1,...,mn ( m1(0) · · ·mn(0) ) ⊗ · · · ⊗ ( m1(n−1) ⊗ · · · ⊗ mn(n−1) ) . Consequently, (m1 · · ·mn)(0) = ∑ m1(0) · · ·mn(0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m1 · · ·mn)(n−1) = ∑ m1(n−1) · · ·mn(n−1). So in (7), we have: ρ∗ (l1 ⊗ · · · ⊗ ln−1 ⊗ (m1 · · ·mn) = ∑ ( m1(0) · · ·mn(0) ) l1 ( m1(1) · · ·mn(1) ) · · · ln−1 ( m1(n−1) · · ·mn(n−1) ) = ∑ m,l m1(0) · · ·mn(0)l1(1) ( m1(1) ) × · · · l1(n) ( mn(1) ) · · · ln−1(1) ( m1(n−1) ) · · · ln−1(n) ( mn(n−1) ) . But, it is equal to: [ ∑ m1 m1(0)l1(1) ( m1(1) ) · · · ln−1(1) ( m1(n−1) ) ] × · · · [ ∑ m1 mn(0)l1(n) ( mn(1) ) · · · ln−1(n) ( mn(n−1) ) ] . 3. Dual situation Theorem 3.1. Let C be an n-ary algebra. Then M is a right n-ary C-module M iff M is a left n-ary C∗-comodule. Proof. Suppose that m ∈ M and the submodule mC⊗(n−1) ⊆ M is con- tained in the span of linearly indepedent vectors a1, . . . , at . Then, for c1, . . . , cn−1 ∈ C, we have: m (c1 ⊗ cn−1) = f1 (c1 ⊗ · · · ⊗ cn−1) a1 + · · · + ft (c1 ⊗ · · · ⊗ cn−1) at (8) 86 n-ary comodules over n-ary (co)algebras where f1, . . . , ft ∈ [ C⊗(n−1) ]∗ = (C∗)⊗(n−1) , and so C is finitely gener- ated. If the system of vectors {a1, . . . , at} can be enlarged by a vector at+1 and then we can put ft+1 = 0. Lemma 3.2. Let b1, . . . , bd ∈ 〈a1, . . . , at〉 be given and g1, . . . , gd ∈ (C∗)⊗(n−1) , such that for all c1, . . . , cn−1 ∈ C: m (c1 ⊗ · · · ⊗ cn−1) = d ∑ i=1 gi (c1 ⊗ cn−1) bi. Then ∑d i=1 gi ⊗ bi = ∑t j=1 fj ⊗ aj holds in (C∗)⊗(n−1) ⊗ M . Proof. By the assumption bt = ∑t j=1 αijaj where αij ∈ k. Then m (c1 ⊗ · · · ⊗ cn−1) = d ∑ i=1 gi (c1 ⊗ cn−1) t ∑ j=1 αijaj = t ∑ j=1 [ d ∑ i=1 gi (c1 ⊗ · · · ⊗ cn−1) αij ] aj . Since a1, . . . , at are linearly indepedent, for all j by (8) we get: fj (c1 ⊗ · · · cn−1) = d ∑ i=1 gi (c1 ⊗ · · · ⊗ cn−1) αij . Thus, fj = ∑d i=1 gjαij in (C∗)⊗(n−1). Then t ∑ j=1 fj ⊗ aj = t ∑ j=1 d ∑ i=1 giαij ⊗ aj = d ∑ i=1  gi ⊗ t ∑ j=1 αijaj   = d ∑ i=1 gi ⊗ bi. Define the map ρ : M → (C∗)⊗(n−1) ⊗M by the following rule: if (8) holds, then we put ρ(m) = f1 ⊗ a1 + · · · + ft ⊗ at. (9) By Lemma 3.2 this definition is correct. Let us show now that if M is a right n-ary C-module, then M is a left n-ary C∗-comodule with respect to (9). In fact, ( 1 ⊗(n−1) C∗ ⊗ ρ ) ρ(m) = f1 ⊗ ρ(m1) + · · · + ft ⊗ ρ(mt). B. Zeković 87 But ρ(mi) = ∑ j fij ⊗ mj where fij ∈ (C∗)⊗(n−1). So ( 1 ⊗(n−1) C∗ ⊗ ρ ) ρ(m) = ∑ i,j fi ⊗ fij ⊗ mj . On the other hand, ( 1⊗i C∗ ⊗ ∆ ⊗ 1 ⊗(n−i−2) C∗ ⊗ 1M ) ρ(m) = ∑ j ( 1⊗i C∗ ⊗ ∆ ⊗ 1 ⊗(n−i−2) C∗ ) fj ⊗ mj . Further, by associativity Definition 1.2, for all c1, . . . , c2n−2 ∈ C and all m ∈ M , for any i we have [m (c1 ⊗ · · · ⊗ cn−1)] (cn ⊗ · · · ⊗ c2n−2) = m [c1 ⊗ · · · ⊗ ci ⊗ (ci+1 ⊗ · · · ⊗ ci+n) ⊗ ci+n+1 ⊗ · · · ⊗ c2n−2] (10) Suppose that m1, . . . , mt be as above. Then, as in (8) mj (cn ⊗ · · · ⊗ c2n−2) = gj1 (cn ⊗ · · · ⊗ c2n−2)m1 + · · · + gjt (cn ⊗ · · · ⊗ c2n−2) mt where gj1, . . . , gjt ∈ (C∗)⊗(n−1). So, by (8) and (9) , we have ( 1 ⊗(n−1) C∗ ⊗ ρ ) ρ(m) = ∑ i,j fi ⊗ gij ⊗ mj . By (10) for all j: ∑ i fi (c1 ⊗ · · · ⊗ cn−1) gij (cn ⊗ · · · ⊗ c2n−2) = fj [c1 ⊗ · · · ⊗ ci ⊗ (ci+1 ⊗ · · · ⊗ ci+n) ⊗ ci+n+1 ⊗ · · · ⊗ c2n−2] . In other words we have that in (C∗)⊗(2n−2) that ∑ i fi ⊗ gij = ( 1⊗i C∗ ⊗ ∆C∗ ⊗ 1 ⊗(n−i−2) C∗ ) fj . Tensor-multiplying by mj and summing on j, we obtain ∑ i,j fi ⊗ gij ⊗ mj = ( 1⊗i C∗ ⊗ ∆C∗ ⊗ 1 ⊗(n−i−2) C∗ ) ∑ j fj ⊗ mj . But, the left side is equal to ( 1 ⊗(n−1) C∗ ⊗ ρ ) ρ(m) and right side is equal to ( 1⊗i C∗ ⊗ ∆C∗ ⊗ 1 ⊗(n−i−2) C∗ ) ρ(m). Consequently, M is a left n-ary C∗- comodule. 88 n-ary comodules over n-ary (co)algebras Theorem 3.3. Let C be an n-ary bialgebra, now. If M is a right n-ary C-module algebra, then M is a left n-ary C∗-comodule algebra. Proof. Assume that M is a right n-ary C-module algebra. It means that for all c1, . . . , cn−1 ∈ C and all m1, . . . , mn ∈ M we have: (m1 · · ·mn) (c1 ⊗ · · · ⊗ cn−1) = ∑ c1,...,cn−1 m1 ( c1(1) ⊗ · · · ⊗ cn−1(1) ) · · ·mn ( c1(n) ⊗ · · · ⊗ cn−1(n) ) (11) Let us show now that M is a left n-ary C∗-comodule algebra, i.e. the map (9) is a homomorphism of n-ary algebras. Suppose that m1, . . . , mr ∈ M and a1, . . . , at is a base in ∑r j=1 mjC ⊗(n−1). Assume that ρ(mi) = ∑t j=1 fij ⊗ aj where fij ∈ (C∗)⊗(n−1) But, ∑ c1,...,cn−1 m1 ( c1(1) ⊗ · · · ⊗ cn−1(1) ) · · ·mn ( c1(n) ⊗ · · · ⊗ cn−1(n) ) = ∑ c1,...,cn−1   ∑ j1 f1,j1 ( c1(1) ⊗ · · · ⊗ cn−1(1) ) aj1   times · · · ×   ∑ jn f1,jn ( c1(n) ⊗ · · · ⊗ cn−1(n) ) ajn   ∑ j1,...,jn aj1 · · · ajn [ ∑ f1,j1 ( c1(1) ⊗ · · · ⊗ cn−1(1) ) × · · · × fn,jn ( c1(n) ⊗ · · · ⊗ cn−1(n) )] For all j1, . . . , jn we have: ∑ c1,...,cn−1 f1,j1 ( c1(1) ⊗ · · · ⊗ cn−1(1) ) · · · fn,jn ( c1(n) ⊗ · · · ⊗ cn−1(n) ) = (f1,j1 ∗ · · · ∗ fn,jn ) (c1 ⊗ · · · ⊗ cn−1) . In that way, the right side of (11) is equal to: ∑ j1,...,jn (f1,j1 ∗ · · · ∗ fn,jn ) (c1 ⊗ · · · ⊗ cn−1) aj1 · · · ajn . By Lemma 3.2 b∗ = aj1 · · · ajn for all j1, . . . , jn and by (11), we obtain that ρ (m1 · · ·mn) = ∑ j1,...,jn (f1,j1 ∗ · · · ∗ fn,jn ) ⊗ aj1 · · · ajn = n ∏ s=1   ∑ js (fs,js ⊗ ajs )   = ρ(m1) · · · ρ(mn). B. Zeković 89 References [A] Artamonov V. A., Structure of Hopf algebra. Itogi Nauki I techniki, Algebra. Topology, Geometry, v29, Moscow, Viniti, 1999, pp.3–63. [Ab] Abe Eiichi, Hopf algebras, Cambridge University Press, Cambridge, 1980. [M] Montgomery Susan, Hopf algebras and Teir Actions on Ring, Amer. Math. Soc., Providence, Rhode Island, Nat. Sci. Found, 1993. [Z1] Zekovich B., On n-ary bialgebras (I), Tchebyshev sbornik 4 N3, 2003, pp.65–73. [Z2] Zekovich B., On n-ary bialgebras (II), Tchebyshev sbornik 4 N3, 2003, pp.73– 80. [B] Bourbaki N, Alge‘bre commutative, Hermann, Paris, 1961–1965. [Z3] Zekovich B., Ternary Hopf algebras, Algebra and Discrete mathematics, N3, 2005, pp.96–106. Contact information B. Zeković Faculty of Science, University of Montene- gro, P. O. Box 211, 81000 Podgorica, Mon- tenegro E-Mail: biljanaz@cg.yu Received by the editors: 03.09.2008 and in final form 02.10.2008.