Tiled orders of width 3

We consider projective cover over tiled order and calculate the kernel of epimorphism from direct sum of submodules of distributive module to their sum.

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Zhuravlev, V., Zhuravlyov, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2009
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153385
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Tiled orders of width 3 / V. Zhuravlev, D. Zhuravlyov // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 1. — С. 111–123. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-153385
record_format dspace
spelling irk-123456789-1533852019-06-15T01:26:36Z Tiled orders of width 3 Zhuravlev, V. Zhuravlyov, D. We consider projective cover over tiled order and calculate the kernel of epimorphism from direct sum of submodules of distributive module to their sum. 2009 Article Tiled orders of width 3 / V. Zhuravlev, D. Zhuravlyov // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 1. — С. 111–123. — Бібліогр.: 7 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 16P40. http://dspace.nbuv.gov.ua/handle/123456789/153385 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider projective cover over tiled order and calculate the kernel of epimorphism from direct sum of submodules of distributive module to their sum.
format Article
author Zhuravlev, V.
Zhuravlyov, D.
spellingShingle Zhuravlev, V.
Zhuravlyov, D.
Tiled orders of width 3
Algebra and Discrete Mathematics
author_facet Zhuravlev, V.
Zhuravlyov, D.
author_sort Zhuravlev, V.
title Tiled orders of width 3
title_short Tiled orders of width 3
title_full Tiled orders of width 3
title_fullStr Tiled orders of width 3
title_full_unstemmed Tiled orders of width 3
title_sort tiled orders of width 3
publisher Інститут прикладної математики і механіки НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/153385
citation_txt Tiled orders of width 3 / V. Zhuravlev, D. Zhuravlyov // Algebra and Discrete Mathematics. — 2009. — Vol. 8, № 1. — С. 111–123. — Бібліогр.: 7 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT zhuravlevv tiledordersofwidth3
AT zhuravlyovd tiledordersofwidth3
first_indexed 2025-07-14T04:36:33Z
last_indexed 2025-07-14T04:36:33Z
_version_ 1837595670056271872
fulltext Jo u rn al A lg eb ra D is cr et e M at h . Algebra and Discrete Mathematics RESEARCH ARTICLE Number 1. (2009). pp. 111 – 123 c© Journal “Algebra and Discrete Mathematics” Tiled orders of width 3 Viktor Zhuravlev, Dmytro Zhuravlyov Communicated by V. V. Kirichenko Abstract. We consider projective cover over tiled order and calculate the kernel of epimorphism from direct sum of submodules of distributive module to their sum. 1. Tiled orders over discrete valuation rings Recall [1] that a semimaximal ring is a semiperfect semiprime right Noetherian ring A such that for each primitive idempotent e ∈ A the ring eAe is a discrete valuation ring (not necessarily commutative). Denote by Mn(B) the ring of all n× n matrices over a ring B. Theorem 1 (see [1]). Each semimaximal ring is isomorphic to a finite direct product of prime rings of the following form: Λ =     O πα12O . . . πα1nO πα21O O . . . πα2nO . . . . . . . . . . . . . . . . . . . . . . . . . . . παn1O παn2O . . . O     , (1) where n ≥ 1, O is a discrete valuation ring with a prime element π, and αij are integers such that αij + αjk ≥ αik, αii = 0 for all i, j, k. 2000 Mathematics Subject Classification: 16P40. Key words and phrases: tiled order, distributive module, projective cover. Jo u rn al A lg eb ra D is cr et e M at h .112 Tiled orders of width 3 The ring O is embedded into its classical division ring of fractions D, and (1) is the set of all matrices (aij) ∈Mn(D) such that aij ∈ παijO = eiiΛejj , where e11, . . . , enn are the matrix units of Mn(D). It is clear that Q = Mn(D) is the classical ring of fractions of Λ. Obviously, the ring A is right and left Noetherian. Definition 1. A module M is distributive if its lattice of submodules is distributive, i.e., K ∩ (L+N) = K ∩ L+K ∩N for all submodules K, L, and N . Clearly, any submodule and any factormodule of a distributive module are distributive modules. A semidistributive module is a direct sum of distributive modules. A ring A is right (left) semidistributive if it is semidistributive as the right (left) module over itself. A ring A is semidistributive if it is both left and right semidistributive (see [7]). Theorem 2 (see [6]). The following conditions for a semiperfect semi- prime right Noetherian ring A are equivalent: • A is semidistributive; • A is a direct product of a semisimple artinian ring and a semimax- imal ring. By a tiled order over a discrete valuation ring, we mean a Noetherian prime semiperfect semidistributive ring Λ with nonzero Jacobson radi- cal. In this case, O = eΛe is a discrete valuation ring with a primitive idempotent e ∈ Λ. Definition 2. An integer matrix E = (αij) ∈Mn(Z) is called • an exponent matrix if αij + αjk ≥ αik and αii = 0 for all i, j, k; • a reduced exponent matrix if αij + αji > 0 for all i, j, i 6= j. We use the following notation: Λ = {O, E(Λ)}, where E(Λ) = (αij) is the exponent matrix of the ring Λ, i.e. Λ = n∑ i,j=1 eijπ αijO, Jo u rn al A lg eb ra D is cr et e M at h .V. Zhuravlev, D. Zhuravlyov 113 in which eij are the matrix units. If a tiled order is reduced, i.e., Λ/R(Λ) is the direct product of division rings, then αij + αji > 0 if i 6= j, i.e., E(Λ) is reduced. We denote by M(Λ) the poset (ordered by inclusion) of all projective right Λ-modules that are contained in a fixed simple Q-module U . All simple Q-modules are isomorphic, so we can choice one of them. Note that the partially ordered sets Ml(Λ) and Mr(Λ) corresponding to the left and the right modules are anti-isomorphic. The set M(Λ) is completely determined by the exponent matrix E(Λ) = (αij). Namely, if Λ is reduced, then M(Λ) = {pz i | i = 1, . . . n, and z ∈ Z}, where pz i ≤ pz′ j ⇐⇒ { z − z′ ≥ αij if M(Λ) = Ml(Λ), z − z′ ≥ αji if M(Λ) = Mr(Λ). Obviously, M(Λ) is an infinite periodic set. Let P be an arbitrary poset. A subset of P is called a chain if any two of its elements are related. A subset of P is called a antichain if no two distinct elements of the subset are related. Definition 3. The maximal number w(P ) of elements in an antichain of P is called the width of P . The width of Mr(Λ) is called the width of a tiled order Λ and denotes by w(Λ). Definition 4. A right (resp. left) Λ-module M (resp. N) is called a right (resp. left) Λ-lattice if M (resp. N) is a finitely generated free O-module. Given a tiled order Λ we denote Latr(Λ) (resp. Latl(Λ)) the category of right (resp. left) Λ-lattices. We denote by Sr(Λ) (resp. Sl(Λ)) the partially ordered by inclusion set, formed by all Λ-lattices contained in a fixed simple Mn(D)-module W (resp. in a left simple Mn(D)-module V ). Such Λ-lattices are called irreducible. Let Λ = {O, E(Λ)} be a tiled order, W (resp. V ) is a simple right (resp. left) Mn(D)-module with D-basis e1, . . . , en such that eiejk = δijek (eijek = δjkei). Then any right (resp. left) irreducible Λ-lattice M (resp. N), lying in W (resp. in V ) is a Λ-module with O-basis (πα1e1, . . . , π αnen), while { αi + αij ≥ αj , for the right case; αij + αj ≥ αi, for the left case. (2) Jo u rn al A lg eb ra D is cr et e M at h .114 Tiled orders of width 3 Thus, irreducible Λ-lattices M can be identified with integer-valued vector (α1, . . . , αn) satisfying (2). We shall write E(M) = (α1, . . . , αn) or M = (α1, . . . , αn). The order relation on the set of such vectors and the operations on them corresponding to sum and intersection of irreducible lattices are obvious. Remark 1. Obviously, irreducible Λ-lattices M1 = (α1, . . . , αn) and M2 = (β1, . . . , βn) are isomorphic if and only if αi = βi + z for i = 1, . . . , n and z ∈ Z. 2. Kernel of epimorphism from direct sum of modules to their sum Proposition 1. Let M be an irreducible and non-projective Λ-module, X be a maximal submodule of M . Then there exists projective submodule of M , which is not submodule of X. Proof. Let E(M) = (α1, . . . , αi−1, αi, αi+1, . . . , αn) and E(X) = (α1, . . . , αi−1, αi + 1, αi+1, . . . , αn). Since M is right Λ-module, αi + αik ≥ αk for all i, k. Consider the projective module παiPi with E(παiPi) = (αi + αi1, . . . , αi + αi,i−1, αi + αii, αi + αi,i+1, . . . , αi + αin). Obviously, παiPi ⊂M , but παiPi * X. Since X is maximal submodule of M , then X + παiPi = M . Besides, E(X ∩ παiPi) = (αi + αi1, . . . , αi + αi,i−1, αi + 1, αi + αi,i+1, . . . , αi + αin) = E(παiRi), (3) i. e. X ∩ παiPi = Ri, where Ri = rad Pi. Proposition 2. Let X1, . . . , Xs be the set of all maximal submodules of irreducible and non-projective Λ-module M with E(M) = (α1, . . . , αn) and E(Xi) = E(M) + eji , where ek = (0, . . . , 0 ︸ ︷︷ ︸ k−1 , 1, 0, . . . , 0). Then P (M) = s ⊕ i=1 παjiPji and M = s∑ i=1 παjiPji . Jo u rn al A lg eb ra D is cr et e M at h .V. Zhuravlev, D. Zhuravlyov 115 Proof. Since rad M = s⋂ i=1 Xi, we have E(rad M) = E(M) + s∑ i=1 eji , P (M) = s ⊕ i=1 παjiPji . Besides, παjiPji ⊂M for each i, whereas s∑ i=1 παjiPji ⊂ M . Suppose that s∑ i=1 παjiPji 6= M . Then there is the maximal submod- ule Xk such that παjiPji ⊆ Xk. This contradicts to inclusion παjkPjk * Xk. Lemma 1. Let M1, M2, M3 be submodules of distributive module M and ϕ : M1 ⊕M2 ⊕M3 →M1 +M2 +M3 be epimorphism of their direct sum on their sum defined by the rule (x1, x2, x3) 7→ x1 + x2 + x3. Then kerϕ = {(m12 −m31,m23 −m12,m31 −m23) | m12 ∈M1 ∩M2,m23 ∈ M2 ∩M3,m31 ∈M3 ∩M1}. Proof. Let us calculate the kernel of homomorphism ϕ. By definition kerϕ = {(x1, x2, x3) ∈M1 ⊕M2 ⊕M3 | x1 + x2 + x3 = 0}. Hence x1 = −(x2 + x3) and x1 ∈ (M2 + M3) ∩M1. Similarly, x2 ∈ (M1 + M3) ∩M2 and x3 ∈ (M2 + M1) ∩M3. Since modules M1, M2, M3 are distributive, we have (Mi + Mj) ∩ Mk = (Mi ∩ Mk) + (Mj ∩ Mk). Therefore x1 = x12 + x13, x2 = x21 + x23, x3 = x31 + x32, where xij ∈ Mi ∩Mj . Since x1 + x2 = (x12 + x21) + (x13 + x23) ∈ M3 and x13 + x23 ∈ M3, then x12 + x21 ∈ M3. Given that x12, x21 ∈ M1 ∩M2, we have x12 +x21 ∈M1 ∩M2 ∩M3. Similarly x23 +x32 ∈M1 ∩M2 ∩M3, x31 + x13 ∈M1 ∩M2 ∩M3. Therefore x12 +x21 = t3 ∈M1∩M2∩M3, x23 +x32 = t1 ∈M1∩M2∩ M3, x31 +x13 = t2 ∈M1∩M2∩M3. Hence x21 = t3−x12, x32 = t1−x23, x13 = t2 − x31. Then (x1, x2, x3) = (x12 + t2 − x31, x23 + t3 − x12, x31 + t1−x23). From the equality x1 +x2 +x3 = 0 implies that t1 + t2 + t3 = 0. Therefore (x1, x2, x3) = (x12 + t2 − x31, x23 − (t1 + t2) − x12, x31 + t1 − x23) = = ((x12 + t2) − x31, (x23 − t1) − (t2 + x12), x31 − (x23 − t1)) . Denoting by x12 + t2 = y12 ∈ M1 ∩ M2, x23 − t1 = y23 ∈ M2 ∩ M3, x31 = y31, we obtain kerϕ = {(y12 − y31, y23 − y12, y31 − y23) | y12 ∈ M1 ∩M2, y23 ∈M2 ∩M3, y31 ∈M3 ∩M1}. If M1 ∩M2 ⊂ M3, then x12 + x21 ∈ M3 for any x1 ∈ M1, x2 ∈ M2. Therefore kerϕ = {(x1, x2,−(x1+x2)) | x1 ∈ (M2+M3)∩M1, x2 ∈ (M3+ M1) ∩ M2}. Hence kerϕ ≃ ((M2 +M3) ∩M1) ⊕ ((M3 +M1) ∩M2)}. Since (M2+M3)∩M1 = M2∩M1+M3∩M1 = M3∩M1 and (M3+M1)∩ M2 = M3∩M2+M1∩M2 = M3∩M2, then kerϕ ≃ (M3∩M1)⊕(M3∩M2). Jo u rn al A lg eb ra D is cr et e M at h .116 Tiled orders of width 3 Let us write formally the expression for the kernel of the homomor- phism ϕ in the other way (y12 − y31, y23 − y12, y31 − y23) = = y12(1,−1, 0) + y23(0, 1,−1) + y31(−1, 0, 1). Note that ((M1 ∩M2)(1,−1, 0)) ∩ ((M2 ∩M3)(0, 1,−1)) = 0, but (((M1 ∩M2)(1,−1, 0)) + ((M2 ∩M3)(0, 1,−1)))∩((M3 ∩M1)(−1, 0, 1)) 6= 0. Therefore, the sum of modules is not direct. Consider the epimorphism ψ : (M1∩M2)⊕ (M2∩M3)⊕ (M3∩M1) → kerϕ, defined by the equality ψ(x12, x23, x31) = (x12 − x31, x23 − x12, x31 − x23) . Then kerψ = {(x12, x23, x31) | x12 − x31 = x23 − x12 = x31 − x23 = 0} = {(x12, x23, x31) | x12 = x23 = x31}. By the fundamental theorem on homomorphism of modules we have kerϕ ≃ ((M1 ∩M2) ⊕ (M2 ∩M3) ⊕ (M3 ∩M1)/ kerψ, i. e. kerϕ ≃ ((M1 ∩M2) ⊕ (M2 ∩M3) ⊕ (M3 ∩M1)) /(M1 ∩M2 ∩M3). Note that in the general case kerϕ ≃ {(y12 − y31, y23 − y12) | y31 ∈M3 ∩M1, y23 ∈M2 ∩M3, y12 ∈M1 ∩M2} or kerϕ ≃ (M3 ∩M1) ⊕ (M2 ∩M3) + (M1 ∩M2)(1,−1). Let M1, . . . ,Mn be submodules of M such that Mi * ∑ j 6=i Mj for all i = 1, . . . , n and I1, I2 be nonempty subsets of the set I = {1, . . . , n} such that I1 ∪ I2 = I, I1 ∩ I2 = ∅. We have the following exact sequences 0 → K → ⊕ i∈I Mi → ∑ i∈I Mi → 0, 0 → K1 → ⊕ i∈I1 Mi → ∑ i∈I1 Mi → 0, 0 → K2 → ⊕ i∈I2 Mi → ∑ i∈I2 Mi → 0, Jo u rn al A lg eb ra D is cr et e M at h .V. Zhuravlev, D. Zhuravlyov 117 where K,K1,K2 are the kernels of epimorphisms from direct sum on the sum of modules. Next commutative diagram 0 �� 0 �� 0 �� 0 // KI1 ⊕KI2 // �� KI1 ⊕KI2 // �� 0 // �� 0 0 // KI // �� n ⊕ i=1 Mi // �� n∑ i=1 Mi // �� 0 0 // ( ∑ j∈I1 Mj ) ∩ ( ∑ j∈I2 Mj ) // �� ( ∑ j∈I1 Mj ) ⊕ ( ∑ j∈I2 Mj ) // �� n∑ i=1 Mi // �� 0 0 0 0 has exact rows and two columns exact. Therefore by lemma 3 × 3 first column 0 → KI1 ⊕KI2 → KI → (∑ j∈I1 Mj ) ∩ (∑ j∈I2 Mj ) → 0. is also exact. In particular, if I2 = {k}, I1 = I \ {k}, then KI2 = 0 and we have from the commutative diagram 0 �� 0 �� 0 �� 0 // KI1 // �� KI1 // �� 0 // �� 0 0 // KI // �� n ⊕ i=1 Mi // �� n∑ i=1 Mi // �� 0 0 // ( ∑ i6=j Mi ) ∩Mj // �� ( ∑ i6=j Mi ) ⊕Mj // �� n∑ i=1 Mi // �� 0 0 0 0 Jo u rn al A lg eb ra D is cr et e M at h .118 Tiled orders of width 3 the exact sequence 0 → KI1 → KI →   ∑ j∈I1 Mj   ∩Mk → 0. Theorem 3. Let M1, . . . ,Mn be submodules of distributive module M = n∑ i=1 Mi and epimorphism ϕ : n ⊕ i=1 Mi 7→ M operates by the rule ϕ(m1, . . . ,mn) = m1 + . . . + mn. Then ker ϕ = {(y1, . . . , yn) | yi = ∑ j 6=i sign(j − i) ·mij , mij ∈Mi ∩Mj}. Proof. We use induction by n. It is well known that the kernel of epi- morphism equals to {m12,−m12}, where m12 ∈ M1 ∩M2, that implies the base of induction for n = 2. Suppose that the kernel of epimorphism ϕ(m1, . . . ,mn−1) = m1 + . . . + mn−1 is Kn = {(y1, . . . , yn−1) | yi = ∑ j 6=i sign(j − i) ·mij , mij ∈ Mi∩Mj}. Denote by L = {(y1, . . . , yn) | yi = ∑ j 6=i sign(j − i) ·mij , mij ∈ Mi ∩Mj}. Obviously, Kn ≃ {(y1, . . . , yn−1, 0)} ⊂ L. Then n ⊕ i=1 Mi / L ≃ ( n ⊕ i=1 Mi / Kn )/ (L/Kn). By assumption we have n ⊕ i=1 Mi / Kn ≃ ( ∑ i6=n Mi ) ⊕Mn. Proposition 3. L/Kn ≃ ( ∑ i6=n Mi ) ∩Mn. Proof. Indeed, L/Kn = {(y1, . . . , yn) +Kn} = = {(m1n,m2n, . . . ,mn−1n,−(m1n +m2n + . . .+mn−1n)) +Kn} . Consider epimorphism ψ : L/Kn 7→ ( ∑ i6=n Mi ) ∩Mn, for which ψ ((m1n,m2n, . . . ,mn−1n,−(m1n +m2n + . . .+mn−1n)) +Kn) = = m1n +m2n + . . .+mn−1n. Jo u rn al A lg eb ra D is cr et e M at h .V. Zhuravlev, D. Zhuravlyov 119 The kernel of this epimorphism ker ψ = {(m1n,m2n, . . . ,mn−1n, 0) +Kn, where m1n +m2n + . . .+mn−1n = 0} ≃ Kn. Therefore ψ is isomorphism. Hence, n ⊕ i=1 Mi / L ≃ ( ∑ i6=n Mi ) ⊕Mn / ( ∑ i6=n Mi ) ∩Mn ≃ n∑ i=1 Mi. On the other hand n ⊕ i=1 Mi / K ≃ n∑ i=1 Mi. Therefore K ≃ L. Obviously, L ⊆ K = ker ϕ. Hence, L = K. Corollary 1. Let M be irreducible Λ-module and P (M) = s ⊕ i=1 παjiPji , M = s∑ i=1 παjiPji . Then the kernel of epimorphism ϕ : P (M) 7→M equals to ker ϕ = {(y1, . . . , yn) | yi = ∑ k 6=i sign(k − i) ·mik, mik ∈ Pji ∩ Pjk }. Proof. Tiled order Λ is semidistributive ring. Therefore every irreducible Λ-module is distributive. According to preliminary theorems core epi- morphism has specified above form. The kernel K as submodule in n ⊕ i=1 Mi can be formally written as виглядi K = ∑ i<j Mi ∩Mj(ei − ej),where ek = (0, . . . , 0 ︸ ︷︷ ︸ k−1 , 1, 0, . . . , 0). 3. Tiled order of width 3 Proposition 4. Modules P ( Mi∩( ∑ k 6=i Mk) ) , i = 1, . . . , n, have a common direct summand P ′ if and only if the modules P (Mi∩Mj), i, j = 1, . . . , n, also have common direct summand P ′. Proof. Let modules P ( Mi ∩ ( ∑ k 6=i Mk) ) , i = 1, . . . , n, have a common di- rect summand P ′. This is equivalent to the fact that moduleMi∩( ∑ k 6=i Mk) has the maximal submodulesXi with E(Xi) = E(Mi∩( ∑ k 6=i Mk))+e ′. Since Mi∩Mj = ( Mi∩( ∑ k 6=i Mk) ) ∩ ( Mj∩( ∑ k 6=j Mk) ) for i 6= j, then the module Jo u rn al A lg eb ra D is cr et e M at h .120 Tiled orders of width 3 Mi∩Mj also have maximal submodulesNij with E(Nij) = E(Mi∩Mj)+e ′. Therefore, the modules P (Mi ∩Mj), i, j = 1, . . . , n, have also common summand P ′. Now let the modules P (Mi ∩ Mj), i, j = 1, . . . , n, have a common summand P ′. This means that the module P (Mi ∩Mj) has the maximal submodule Nij with E(Nij) = E(Mi ∩Mj) + e′. Therefore, module Mk ∩ (Mi + Mj) = Mi ∩Mk + Mj ∩Mk has maximal submodule Xijk with E(Xijk) = E(Mk ∩ (Mi + Mj)) + e′. Similarly we get that the module Mk∩(Mi+· · ·+Mj) = Mi∩Mk+· · ·+Mj∩Mk has maximal submoduleXk with E(Xk) = E(Mk∩(Mi+· · ·+Mj))+e ′. In particular, the module Mi∩ ( ∑ k 6=i Mk) has the maximal submodule Yi with E(Yi) = E(Mi∩( ∑ k 6=i Mk))+ e′. This is equivalent to the fact that modules P ( Mi ∩ ( ∑ k 6=i Mk) ) , i = 1, . . . , n, have a common direct summand P ′. Let module M with E(M) = (α1, . . . , αn) has a projective cover P (M) = παiPi ⊕ παjPj ⊕ παkPk and M = παiPi + παjPj + παkPk. Then K = (παiPi ∩ π αjPj) (ei − ej) + (παjPj ∩ π αkPk) (ej − ek)+ + (παkPk ∩ παiPi) (ek − ei). Suppose that παiPi ∩ π αjPj = παjPj ∩ π αkPk. Then (παiPi + παkPk) ∩ π αjPj = παiPi ∩ π αjPj and (παiPi + παjPj) ∩ π αkPk = (παjPj + παkPk) ∩ π αiPi. From the equality (παiPi + παkPk) ∩ π αjPj = παiPi ∩ π αjPj we get (παiPi + παjPj) ∩ π αkPk = = ((παiPi + παjPj) ∩ π αkPk) ∩ ((παjPj + παkPk) ∩ π αiPi) = = παiPi ∩ π αkPk. So we have two exact sequences 0 → παiPi ∩ π αjPj → K → (παiPi + παjPj) ∩ π αkPk → 0, 0 → παiPi ∩ π αkPk → K → (παiPi + παkPk) ∩ π αjPj → 0. Whereas (παiPi + παkPk)∩π αjPj = παiPi∩π αjPj and (παiPi + παjPj)∩ παkPk = παiPi ∩ π αkPk, then the exact sequence splits: K ≃ (παiPi ∩ π αjPj) ⊕ (παiPi ∩ π αkPk) . Let the width of tiled order do not exceed 3. Jo u rn al A lg eb ra D is cr et e M at h .V. Zhuravlev, D. Zhuravlyov 121 Proposition 5. Let irreducible Λ-module M have exactly two maximal non-projective submodules X and Y with E(M) = (α1, . . . , αi−1, αi, αi+1, . . . , αn), E(X) = (α1, . . . , αj−1, αj + 1, αj+1, . . . , αn) and E(Y ) = (α1, . . . , αi−1, αi + 1, αi+1, . . . , αn). Then P (M) = παiPi ⊕ παjPj and we have the exact sequence 0 → παiPi ∩ π αjPj → παiPi ⊕ παjPj →M → 0. Proof. We have M = X + παiPi = Y + παjPj , π αiPi + παjPj ⊆ M , but παiPi +παjPj does not belong to any maximal submodule X or Y . Then παiPi + παjPj = M. Since M/X ≃ Uj та M/Y ≃ Ui, then M/(radM) = M/(X ∩ Y ) ≃ Ui ⊕ Uj . Therefore P (M) ≃ P (M/radM) ≃ P (Ui ⊕ Uj) ≃ P (Ui) ⊕ P (Uj) ≃ Pi ⊕ Pj . Obviously, the kernel of epimorphism ϕ : παiPi ⊕ παjPj →M coincides with παiPi ∩ π αjPj = παiRi ∩ π αjRj . Consider the case when the module M = (α1, . . . , αn) has exactly three maximal submodules X = (α1, . . . , αi−1, αi + 1, αi+1, . . . , αn), Y = (α1, . . . , αj−1, αj + 1, αj+1, . . . , αn) and Z = (α1, . . . , αk−1, αk + 1, αk+1, . . . , αn). Let module M with E(M) = (α1, . . . , αn) have a projective cover P (M) = παiPi ⊕ παjPj ⊕ παkPk and M = παiPi + παjPj + παkPk. Then K = (παiPi ∩ π αjPj) (ei − ej) + (παjPj ∩ π αkPk) (ej − ek)+ + (παkPk ∩ παiPi) (ek − ei). Also we have three exact sequences 0 → παiPi ∩ π αjPj → K → (παiPi + παjPj) ∩ π αkPk → 0, 0 → παjPj ∩ π αkPk → K → (παjPj + παkPk) ∩ π αiPi → 0, 0 → παkPk ∩ παiPi → K → (παkPk + παiPi) ∩ π αjPj → 0. Let modules παiPi ∩ παjPj , π αjPj ∩ παkPk and παkPk ∩ παiPi are pairwise different. Projective cover P (K) of module K is a direct summand of each of the the direct sums P (παiPi ∩ π αjPj) ⊕ P ((παiPi + παjPj) ∩ π αkPk), P (παjPj ∩ παkPk) ⊕ P ((παjPj + παkPk) ∩ π αiPi), P (παkPk ∩ παiPi) ⊕ P ((παkPk + παiPi) ∩ π αjPj). Jo u rn al A lg eb ra D is cr et e M at h .122 Tiled orders of width 3 Suppose that the module P (K) contains 2 isomorphic direct sum- mand P ′. Since modules παiPi ∩ π αjPj and (παiPi + παjPj)∩ π αkPk are irreducible, their projective coverings do not contain isomorphic direct summands. Therefore, the module P ′ is a direct summand of modules P (παiPi ∩ π αjPj), P ((παiPi + παjPj) ∩ π αkPk). The module P ′ is a di- rect summand of modules P ((παiPi + παjPj) ∩ π αkPk), P ((παjPj + παkPk) ∩ π αiPi), P ((παkPk + παiPi) ∩ π αjPj). Module P (K) contains as direct summand each of the mod- ules P ((παiPi + παjPj) ∩ π αkPk), P ((παjPj + παkPk) ∩ π αiPi), P ((παkPk + παiPi) ∩ π αjPj). Hence, we obtain that P (K) with a pairwise different modules παiPi∩ παjPj , π αjPj ∩ παkPk, π αkPk ∩ παiPi has at least four non-isomorphic direct summands. Thus, P (K) contains only non-isomorphic direct summands. So P (K) = παaPa ⊕ παbPb ⊕ παcPc. Now we have 2 exact sequences 0 → L→ P (K) → K → 0 0 → K → P (M) →M → 0 Theorem 4. L ≃ παaPa ∩ π αbPb ∩ π αcPc. Proof. Consider the homomorphism ϕ : P (K) 7→ P (M) with the image K. For corresponding to ϕ matrix [ϕ] we have [ϕ] ∈   HomΛ (παaPa, π αiPi) HomΛ (παbPb, π αiPi) HomΛ (παcPc, π αiPi) HomΛ (παaPa, π αjPj) HomΛ (παbPb, π αjPj) HomΛ (παcPc, π αjPj) HomΛ (παaPa, π αkPk) HomΛ (παbPb, π αkPk) HomΛ (παcPc, π αkPk)   . Since HomΛ (παaPa, π αiPi) ≃ παi−αaeiΛea = παi−αa · παiaO, then [ϕ] = (ϕml) ∈   παi−αa+αiaO παi−αb+αibO παi−αc+αicO παj−αa+αjaO παj−αb+αjbO παj−αc+αjcO παk−αa+αkaO παk−αb+αkbO παk−αc+αkcO   . Let m1 ∈ παaPa, m2 ∈ παbPb, m3 ∈ παcPc. Then ϕ(m1,m2,m3) = (m1ϕ11 +m2ϕ12 +m3ϕ13,m1ϕ21+ +m2ϕ22 +m3ϕ23,m1ϕ31 +m2ϕ32 +m3ϕ33). Since K = {(y1, y2,−(y1 + y2)}, the rank of [ϕ] is 2. So the kernel of kerϕ is obtained from the system of equations m1ϕ11 +m2ϕ12 +m3ϕ13 = 0, m1ϕ21 +m2ϕ22 +m3ϕ23 = 0. Hence, m1, m2 are expressed by m3, and then kerϕ is isomorphic to παaPa ∩ π αbPb ∩ π αcPc. Jo u rn al A lg eb ra D is cr et e M at h .V. Zhuravlev, D. Zhuravlyov 123 Conclusion The results obtained in sections 2, 3, to build a projective resolution of irreducible modules over tiled order of width 3 and calculate the global dimension of the order. References [1] A.G. Zavadskij and V.V. Kirichenko, Torsion-free Modules over Prime Rings, Zap. Nauch. Seminar. Leningrad. Otdel. Mat. Steklov. Inst. (LOMI) - 1976. - v. 57. - p. 100-116 (in Russian). English translation in J. of Soviet Math., v. 11, N 4, April 1979, p. 598-612. [2] Zh. T. Chernousova, M. A. Dokuchaev, M. A. Khibina, V. V. Kirichenko, S. G. Miroshnichenko, and V. N. Zhuravlev, Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I., Algebra and Discrete Math. 1 (2002) 32–63. [3] Zh. T. Chernousova, M. A. Dokuchaev, M. A. Khibina, V. V. Kirichenko, S. G. Miroshnichenko, and V. N. Zhuravlev, Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II. Algebra and Discrete Math. 2 (no. 2) (2003) 47–86. [4] M. Hazewinkel, N. Gubareni and V. V. Kirichenko, Algebras, Rings and Modules. Vol. 1, Series: Mathematics and Its Applications, 575, Kluwer Acad. Publish., 2004. xii+380pp. [5] M. Hazewinkel, N. Gubareni and V. V. Kirichenko, Algebras, Rings and Modules. Vol. 2, Series: Mathematics and Its Applications, 586. Springer, Dordrecht, 2007. xii+400pp. [6] V. V. Kirichenko and M. A. Khibina, Semi-perfect semi-distributive rings, In: Infi- nite Groups and Related Algebraic Topics, Institute of Mathematics NAS Ukraine, 1993, pp. 457–480 (in Russian). [7] A. A. Tuganbaev, Semidistributive modules and rings, Kluwer Acad. Publ., Dor- drecht, 1998. Contact information V. Zhuravlev Department of Mechanics and Mathematics, Kiyv National Taras Shevchenko University, Volodymyrska, 64, Kyiv 01033, Ukraine E-Mail: vshur@univ.kiev.ua D. Zhuravlyov Department of Mechanics and Mathematics, Kiyv National Taras Shevchenko University, Volodymyrska, 64, Kyiv 01033, Ukraine Received by the editors: 07.04.2009 and in final form 07.04.2009.