Equilibrium currents in a Corbino graphene ring

We address the description of a graphene Corbino disk in the context of a tight binding approach that includes both kinetic and Rashba spin-orbit coupling due to an external out-of-plane electric field. Persistent equilibrium currents are induced by an external magnetic field breaking time reversal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
Hauptverfasser: López, A., Bolívar, N., Medina, E., Berche, B.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2014
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/153489
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Equilibrium currents in a Corbino graphene ring / A. López, N. Bolívar, E. Medina, B. Berche // Condensed Matter Physics. — 2014. — Т. 17, № 3. — С. 33803:1-8. — Бібліогр.: 19 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We address the description of a graphene Corbino disk in the context of a tight binding approach that includes both kinetic and Rashba spin-orbit coupling due to an external out-of-plane electric field. Persistent equilibrium currents are induced by an external magnetic field breaking time reversal symmetry. By direct diagonalization, we compute the spectrum and focus on the dispersion near the K points at the Fermi level. The dispersion keenly reproduces that of a continuum model in spite of the complexity of the boundary conditions. We validate the assumptions of the continuum model in terms of predominant zig-zag boundaries conditions and weak sub-band coupling. The wave functions displaying the lowest transverse modes are obtained, showing the predominance of edge states with charge density at the zig-zag edges. The persistent charge currents, nevertheless, do not follow the traditional argument of current cancellation from levels below the Fermi level, and thus they depart in the tight-binding from those found in the continuum model.