Quantum transport equations for Bose systems taking into account nonlinear hydrodynamic processes

Using the method of nonequilibrium statistical operator by Zubarev, an approach is proposed for the description of kinetics which takes into account the nonlinear hydrodynamic fluctuations for a quantum Bose system. Non-equilibrium statistical operator is presented which consistently describes both...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
Hauptverfasser: Hlushak, P.A., Tokarchuk, M.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2014
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/153499
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Quantum transport equations for Bose systems taking into account nonlinear hydrodynamic processes / P.A. Hlushak, M.V. Tokarchuk // Condensed Matter Physics. — 2014. — Т. 17, № 2. — С. 23606:1-14. — Бібліогр.: 49 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Using the method of nonequilibrium statistical operator by Zubarev, an approach is proposed for the description of kinetics which takes into account the nonlinear hydrodynamic fluctuations for a quantum Bose system. Non-equilibrium statistical operator is presented which consistently describes both the kinetic and nonlinear hydrodynamic processes. Both a kinetic equation for the nonequilibrium one-particle distribution function and a generalized Fokker-Planck equation for nonequilibrium distribution function of hydrodynamic variables (densities of momentum, energy and particle number) are obtained. A structure function of hydrodynamic fluctuations in cumulant representation is calculated, which makes it possible to analyse the generalized Fokker-Planck equation in Gaussian and higher approximations of the dynamic correlations of hydrodynamic variables which is important in describing the quantum turbulent processes.