Similarities and differences in the construction of dispersion laws for charge carriers in semiconductor crystals and adiabatic potentials in molecules

Using the group theory and the method of invariants, it is shown how the vibronic potential can be written in a matrix form and the corresponding adiabatic potentials can be found. The molecule having D₃d symmetry is considered herein as an example. The symmetries of normal vibrations active in Jahn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
Hauptverfasser: Bercha, S.A., Rizak, V.M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2014
Schriftenreihe:Condensed Matter Physics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/153508
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Similarities and differences in the construction of dispersion laws for charge carriers in semiconductor crystals and adiabatic potentials in molecules / S.A. Bercha, V.M. Rizak // Condensed Matter Physics. — 2014. — Т. 17, № 2. — С. 23701:1-8. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Using the group theory and the method of invariants, it is shown how the vibronic potential can be written in a matrix form and the corresponding adiabatic potentials can be found. The molecule having D₃d symmetry is considered herein as an example. The symmetries of normal vibrations active in Jahn-Teller's effect were defined. E-E vibronic interaction was considered to obtain vibronic potential energy in a matrix form and thus the adiabatic potential. Significant differences are shown in the construction of a secular matrix D(k) for defining a dispersion law for charge carriers in the crystals and the matrix of vibronic potential energy, which depends on the normal coordinates of normal vibrations active in Jahn-Teller's effect. Dispersion law of charge carriers in the vicinity of Γ point of Brillouin zone of the crystal with D₃d² symmetry was considered as an example.