On the particle-hole symmetry of the fermionic spinless Hubbard model in D = 1

We revisit the particle-hole symmetry of the one-dimensional (D=1) fermionic spinless Hubbard model, associating that symmetry to the invariance of the Helmholtz free energy of the one-dimensional spin-1/2 XXZ Heisenberg model, under reversal of the longitudinal magnetic field and at any finite temp...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Thomaz, M.T., Corrêa Silva, E.V., Rojas, O.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2014
Назва видання:Condensed Matter Physics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153559
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the particle-hole symmetry of the fermionic spinless Hubbard model in D = 1 / M.T. Thomaz, E.V. Corrêa Silva, O. Rojas // Condensed Matter Physics. — 2014. — Т. 17, № 2. — С. 23002:1-6. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-153559
record_format dspace
spelling irk-123456789-1535592019-06-15T01:27:35Z On the particle-hole symmetry of the fermionic spinless Hubbard model in D = 1 Thomaz, M.T. Corrêa Silva, E.V. Rojas, O. We revisit the particle-hole symmetry of the one-dimensional (D=1) fermionic spinless Hubbard model, associating that symmetry to the invariance of the Helmholtz free energy of the one-dimensional spin-1/2 XXZ Heisenberg model, under reversal of the longitudinal magnetic field and at any finite temperature. Upon comparing two regimes of that chain model so that the number of particles in one regime equals the number of holes in the other, one finds that, in general, their thermodynamics is similar, but not identical: both models share the specific heat and entropy functions, but not the internal energy per site, the first-neighbor correlation functions, and the number of particles per site. Due to that symmetry, the difference between the first-neighbor correlation functions is proportional to the z-component of magnetization of the XXZ Heisenberg model. The results presented in this paper are valid for any value of the interaction strength parameter V, which describes the attractive/null/repulsive interaction of neighboring fermions. Ми наново переглядаємо симетрiю частинка-дiрка одновимiрної (D = 1) фермiонної безспiнової моделi Габбарда, пов’язуючи цю симетрiю з iнварiантнiстю вiльної енергiї Гельмгольца одновимiрної спiн-1/2 X X Z моделi Гайзенберга, при iнверсiї (перекиданнi) поздовжнього магнiтного поля i при довiльнiй скiнченнiй температурi. В результатi порiвняння двох режимiв ланцюжкової моделi, коли число частинок в одному режимi дорiвнює числу дiрок в iншому, знайдено, що в загальному, їх термодинамiка є подiбною, але не iдентичною: обидвi моделi мають однаковi функцiї питомої теплоємностi та ентропiї, але рiзнi внутрiшню енергiю на вузол, кореляцiйнi функцiї перших сусiдiв i число частинок на вузол. Завдяки цiй симетрiї, рiзниця мiж кореляцiйними функцiями перших сусiдiв є пропорцiйною до z-компоненти намагнiченостi X X Z моделi Гайзенберга. Представленi в цiй статтi результати справедливi для довiльного значення параметра сили взаємодiї V , який описує притягальну/нульову/вiдштовхувальну взаємодiю сусiднiх фермiонiв. 2014 Article On the particle-hole symmetry of the fermionic spinless Hubbard model in D = 1 / M.T. Thomaz, E.V. Corrêa Silva, O. Rojas // Condensed Matter Physics. — 2014. — Т. 17, № 2. — С. 23002:1-6. — Бібліогр.: 11 назв. — англ. 1607-324X arXiv:1407.2050 DOI:10.5488/CMP.17.23002 PACS: 05.30.Fk, 71.27.+a, 75.10.Pq http://dspace.nbuv.gov.ua/handle/123456789/153559 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We revisit the particle-hole symmetry of the one-dimensional (D=1) fermionic spinless Hubbard model, associating that symmetry to the invariance of the Helmholtz free energy of the one-dimensional spin-1/2 XXZ Heisenberg model, under reversal of the longitudinal magnetic field and at any finite temperature. Upon comparing two regimes of that chain model so that the number of particles in one regime equals the number of holes in the other, one finds that, in general, their thermodynamics is similar, but not identical: both models share the specific heat and entropy functions, but not the internal energy per site, the first-neighbor correlation functions, and the number of particles per site. Due to that symmetry, the difference between the first-neighbor correlation functions is proportional to the z-component of magnetization of the XXZ Heisenberg model. The results presented in this paper are valid for any value of the interaction strength parameter V, which describes the attractive/null/repulsive interaction of neighboring fermions.
format Article
author Thomaz, M.T.
Corrêa Silva, E.V.
Rojas, O.
spellingShingle Thomaz, M.T.
Corrêa Silva, E.V.
Rojas, O.
On the particle-hole symmetry of the fermionic spinless Hubbard model in D = 1
Condensed Matter Physics
author_facet Thomaz, M.T.
Corrêa Silva, E.V.
Rojas, O.
author_sort Thomaz, M.T.
title On the particle-hole symmetry of the fermionic spinless Hubbard model in D = 1
title_short On the particle-hole symmetry of the fermionic spinless Hubbard model in D = 1
title_full On the particle-hole symmetry of the fermionic spinless Hubbard model in D = 1
title_fullStr On the particle-hole symmetry of the fermionic spinless Hubbard model in D = 1
title_full_unstemmed On the particle-hole symmetry of the fermionic spinless Hubbard model in D = 1
title_sort on the particle-hole symmetry of the fermionic spinless hubbard model in d = 1
publisher Інститут фізики конденсованих систем НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/153559
citation_txt On the particle-hole symmetry of the fermionic spinless Hubbard model in D = 1 / M.T. Thomaz, E.V. Corrêa Silva, O. Rojas // Condensed Matter Physics. — 2014. — Т. 17, № 2. — С. 23002:1-6. — Бібліогр.: 11 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT thomazmt ontheparticleholesymmetryofthefermionicspinlesshubbardmodelind1
AT correasilvaev ontheparticleholesymmetryofthefermionicspinlesshubbardmodelind1
AT rojaso ontheparticleholesymmetryofthefermionicspinlesshubbardmodelind1
first_indexed 2025-07-14T04:39:19Z
last_indexed 2025-07-14T04:39:19Z
_version_ 1837595844285562880
fulltext Condensed Matter Physics, 2014, Vol. 17, No 2, 23002: 1–6 DOI: 10.5488/CMP.17.23002 http://www.icmp.lviv.ua/journal On the particle-hole symmetry of the fermionic spinless Hubbard model in D = 1 M.T. Thomaz1, E.V. Corrêa Silva2, O. Rojas3 1 Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/no, CEP 24210-346, Niterói-RJ, Brazil 2 Departamento de Matemática, Física e Computação, Faculdade de Tecnologia, Universidade do Estado do Rio de Janeiro, Rodovia Presidente Dutra km 298 s/no, Pólo Industrial, CEP 27537-000, Resende-RJ, Brazil 3 Departamento de Ciências Exatas, Universidade Federal de Lavras, Caixa Postal 3037, CEP 37200-000, Lavras-MG, Brazil Received January 10, 2014, in final form February 25, 2014 We revisit the particle-hole symmetry of the one-dimensional (D = 1) fermionic spinless Hubbard model, as- sociating that symmetry to the invariance of the Helmholtz free energy of the one-dimensional spin-1/2 X X Z Heisenberg model, under reversal of the longitudinal magnetic field and at any finite temperature. Upon com- paring two regimes of that chain model so that the number of particles in one regime equals the number of holes in the other, one finds that, in general, their thermodynamics is similar, but not identical: both models share the specific heat and entropy functions, but not the internal energy per site, the first-neighbor correlation functions, and the number of particles per site. Due to that symmetry, the difference between the first-neighbor correlation functions is proportional to the z-component of magnetization of the X X Z Heisenberg model. The results presented in this paper are valid for any value of the interaction strength parameter V , which describes the attractive/null/repulsive interaction of neighboring fermions. Key words: quantum statistical mechanics, strongly correlated electron system, spin chain models PACS: 05.30.Fk, 71.27.+a, 75.10.Pq The one-band Hubbard model [1, 2] partially describes quantum magnetic phenomena; the complex- ity of real materials, however, imposes severe limitations on the direct comparison of experimental and theoretical results. It is not always clear which missing terms should be included in the fermionic Hamil- tonian to account for the diversity of phenomena in a strongly correlated electron system. The development of optical lattices over the last two decades has made the experimental simulation of chainmodels possible. The three-dimensional Hubbardmodel at low temperatures has been simulated by a fermionic quantum gas trapped in an optical lattice [3, 4]. A review of the simulation of the Fermi- Hubbard model with fermionic atoms in optical lattices can be found in [5]. The simulation of a one- dimensional spin-1/2 Ising model by a degenerate Bose gas of rubidium atoms confined in an optical lat- tice can be found in [6]. The simplest one-dimensional fermionic model is the fermionic spinless Hubbard model, the generalizations of which have been applied to the description of Verwey metal-insulator tran- sitions and charge-ordering phenomena of the Fe3O4, Ti4O7, LiV2O4 and other d -metal compounds [7, 8]. In this paper we revisit the consequences of the particle-hole symmetry on the thermodynamics of the one-dimensional fermionic spinless Hubbard model in the whole range of temperatures, by mapping it into the exactly solvableD = 1 spin-1/2 X X Z Heisenberg model. Appendix A shows the β-expansion of the Helmholtz free energy (HFE) of this model, up to the order β6 [9]. The spinless fermionic Hubbard model in D = 1 is a very simple anti-commutative model the Hamil- tonian of which is [10]: H(t ,V ,µ) = t N∑ i=1 ( c† i ci+1 +c† i+1ci ) +V N∑ i=1 ni ni+1 −µ N∑ i=1 ni , (1) ©M.T. Thomaz, E.V. Corrêa Silva, O. Rojas, 2014 23002-1 http://dx.doi.org/10.5488/CMP.17.23002 http://www.icmp.lviv.ua/journal M.T. Thomaz, E.V. Corrêa Silva, O. Rojas in which (ci ,c† i ), with i ∈ {1,2, . . . , N }, are fermionic annihilation and creation operators, respectively, and N is the number of sites in the chain. These operators satisfy anticommutation relations, {ci ,c† j } = δi j 1li and {ci ,c j } = 0, in which t is the hopping integral, V is the strength of the repulsion (V > 0) or attrac- tion (V < 0) between first-neighbour fermions, µ is the chemical potential and ni = c† i ci is the operator number of fermions at the i th site of the chain. Sznajd and Becker [10] have shown that the Hamiltonian (1) has a particle-hole symmetry; conse- quently, the HFE of this model,W (t ,V ,µ;β), satisfies the relation W (t ,V ,µ;β) =W (t ,V ,−µ+2V ;β)− (µ−V ), (2) in which β= 1 kT , k is the Boltzmann’s constant and T is the absolute temperature in Kelvin. The relation (2) is valid for any values (positive, null or negative) of V and µ. Equation (2) provides the condition for having the same number of particles and holes at the same potentialV but at distinct chemical potentials, 〈ni 〉(t ,V ,µ;T ) = 1−〈ni 〉(t ,V ,−µ+2V ;T ), (3) in which 〈ni 〉 is the average number of fermionic particles at each site of the chain at temperature T . Haldane [11] showed the equivalence of the model (1) and the spin-1/2 X X Z Heisenberg model in D = 1. More recently, Sznajd and Becker [10] also used the inverse Wigner-Jordan transformation to show that the Hamiltonian (1) is mapped onto the Hamiltonian of the one-dimensional spin-1/2 X X Z Heisenberg model with a longitudinal magnetic field, HS=1/2(J ,∆,h) = N∑ i=1 [ J ( Sx i Sx i+1 +Sy i Sy i+1 +∆Sz i Sz i+1 )−hSz i ] , (4) in which Sl = σl 2 , l ∈ {x, y, z}, and σl are the Pauli matrices. The norm of the spin operator~S is ||~S|| = p 3 2 . The Hamiltonians (1) and (4) are related by H(t ,V ,µ) = HS=1/2(J = 2t ,∆=V /(2t ),h =µ−V )−N ( J∆ 4 + h 2 ) 1l (5) and 1l is the identity operator of the chain. This relation shows a constant shift between the energy spec- trum of these two models. LetWS=1/2(J ,∆,h;β) be the HFE associated to the Hamiltonian (4) of the D = 1 spin-1/2 X X Z Heisen- berg model. A direct consequence of (5) is that W (t ,V ,µ;β) =WS=1/2(J = 2t ,∆=V /(2t ),h =µ−V ;β)+ ( V 4 − µ 2 ) . (6) At finite temperature (T , 0), the HFE of the one-dimensional S = 1/2 X X Z Heisenberg model is an even function of the longitudinal magnetic field h, WS=1/2(J ,∆,−h;T ) =WS=1/2(J ,∆,h;T ). (7) Such invariance ofWS=1/2 comes from the symmetry of the Hamiltonian (4) upon reversal of the external magnetic field, h →−h, and of the spin operators,~Si →−~Si , in which i ∈ {1,2, · · ·N }. Consider, for a given magnetic field h and a fixed value (positive, null or negative) of V , the chemical potential µ so that h = µ−V . For a reversed magnetic field, the corresponding chemical potential µ2 for which −h =µ2 −V is µ2 =−µ+2V. (8) The identity (7) and the condition (8) recover the result (2) satisfied by the HFE of the spinless Hubbard model for any values ofV andµ. Notice that in the half-filling condition (µ=V ), we haveµ2 =µ, and there is no visible consequence of the symmetry (7). We point out that the quantity−µ+2V , which appears on the r.h.s. of (8), also appears as an argument of W (the HFE of D = 1 spinless fermionic Hubbard model) in the r.h.s. of (2), which in its turn comes 23002-2 On the particle-hole symmetry of the fermionic spinless Hubbard model in D = 1 from the particle-hole symmetry of the Hamiltonian (1). On the other hand, (7) comes from the fact that the HFE of the D = 1 spin-1/2 X X Z Heisenberg model is insensitive to a reversal of the longitudinal magnetic field. Equation (3) can be interpreted as follows: the number of particles in the chain under a potential V and a chemical potential µ equals the number of holes in the chain under the same potential V and a chemical potential µ2 given by (8). Those configurations correspond to distinct distributions of the fermionic particles in the chain, and certainly have some different thermodynamic functions at tempera- ture T . In what follows, we explore the consequences of the equality (7) in the thermodynamic functions of those two configurations. The specific heat C and the entropy S, both per site, are related to the HFE of the model (1) by C (t ,V ,µ;β) =−β2 ∂2 ∂β2 [ β W (t ,V ,µ;β) ] and S k =β2 ∂ ∂βW (t ,V ,µ;β), respectively. Due to equation (6) we ob- tain C (t ,V ,µ;T ) =C (t ,V ,−µ+2V ;T ) (9a) and S(t ,V ,µ;T ) = S(t ,V ,−µ+2V ;T ). (9b) Both (9a) and (9b) are valid in the whole range of temperatures T > 0. This can be verified at each order of the β-expansion of the thermodynamic functions derived from the expansion (16) of the HFE of the model, shown in appendix A. However, not all thermodynamic functions of the model (1) are identical for the chemical potentials µ and µ2, at the same potentialV . The internal energy per site ε(t ,V ,µ;β) = ∂ ∂β [βW (t ,V ,µ;β)] distinguishes the distributions of the fermionic particles in the chain: ε(t ,V ,µ2;β) =−V +µ+ε(t ,V ,µ;β). (10) Notice that the difference of internal energies per site does not depend on the temperature. This equality is valid for any temperature T > 0 and it is verified at each order of the expansion in β for this thermo- dynamic function, obtained from (16). In the spin-1/2Heisenberg model (4), the parallel and anti-parallel configurations of spin with respect to the external magnetic field can be distinguished, for instance, by the average value of the z-component of the spin operator Sz i at a site and the correlation function of odd powers of such operators. In terms of fermionic operators, we have Sz i = ni − 1 2 1li , in which 1li is the identity operator at the i -th site. For the spinless fermionic Hubbard model, the first-neighbor correlation function Gi ,i+1(t ,V ,µ;T ) ≡ 〈ni ni+1〉 also relates configurations in which the number of particles in one equals the number of holes in the other, for two values of the chemical potential, µ and µ2. The two-point correlation function Gi ,i+1 is related to the HFE by Gi ,i+1(t ,V ,µ;T ) = ∂W (t ,V ,µ;T ) ∂V . (11) From relation (6), the symmetry condition (7) and the definition of the z-component of the magneti- zation of the D = 1 spin-1/2 X X Z Heisenberg model, M S=1/2 z (J ,∆,h;T ) = −∂WS=1/2(J ,∆,h;T ) ∂h = 〈Sz i 〉(J ,∆,h;T ), (12) in which i ∈ {1,2, · · · , N } and 〈Sz i 〉(J ,∆,h;T ) is the mean value of the z-component of the spin-1/2 operator at the i th site of the chain and at temperature T , we obtain Gi ,i+1(t ,V ,µ2;T )−Gi ,i+1(t ,V ,µ;T ) =−2M S=1/2 z (J ,∆,h;T ), (13) where on its r.h.s. we have the z-component of the magnetization M S=1/2 z in the presence of a longitu- dinal magnetic field. (Notice that Mz is a one-point function of the model, whereas Gi ,i+1 is a two-point 23002-3 M.T. Thomaz, E.V. Corrêa Silva, O. Rojas function.) Equation (13) is valid for each order of the β-expansion of the functionGi ,i+1(t ,V ,µ;β), derived from the expansion (16). As a consequence of the symmetry in equation (7), the magnetizationM S=1/2 z is an odd function of the magnetic field h, M S=1/2 z (J ,∆,−h;T ) =−M S=1/2 z (J ,∆,h;T ). (14) By writing equation (14) in terms of fermionic operators, Sz i = ni − 1li 2 , one obtains 〈ni 〉(t ,V ,µ;T ) = 1−〈ni 〉(t ,V ,−µ+2V ;T ), (15) thus, recovering equation (3). In summary, we have verified that the particle-hole symmetry of the one-dimensional spinless fermionic Hubbard model (1) is associated to the invariance of the HFE of the D = 1 spin-1/2 X X Z Heisenberg model (4) with respect to a reversal of the longitudinal external magnetic field. The thermodynamics of the chain off the half-filling condition (µ , V ) with chemical potentials µ and µ2, under the same potential V , are not identical; rather, some thermodynamic functions permit their distinction. Although the number of fermionic particles in the chain differ for µ and µ2, we obtain unexpected results, expressed in (9a) and (9b), where both configurations exhibit the same specific heat and entropy per site at any finite temperature T and at any value of V . Distinction arises from other thermodynamic functions of the chain, though: the values of the internal energy per site of these two distributions of particles in the chain differ by a constant that is independent of the temperature; and the difference of their first-neighbour correlation functions is a one-point function proportional to the z-component of magnetization per site of the spin-1/2model (4). The equality of the number of particles in the chain for the chemical potential µ and the number of holes in the chain for the chemical potential µ2 is a consequence of the odd parity of magnetization M S=1/2 z (J ,∆,h;β) under reversal of the magnetic field h →−h, for any temperature. The results presented here are valid for any value of V (negative, null or positive) and any value of temperature T > 0, verified at each order of the β-expansion of the respective thermodynamic function. These results are also valid at very low temperatures and could be checked in an optical lattice simulation of the one-dimensional fermionic spinless Hubbard model. Acknowledgements E.V. Corrêa Silva thanks CNPq (Fellowship CNPq, Brazil, Proc. No. 303876/2010-7) for partial financial support. O. Rojas thanks CNPq and FAPEMIG for partial financial support. A. The HFE of the one-dimensional spinless fermionic Hubbard model up to order β6 In reference [9] we calculated the β-expansion of the HFE of the normalized one-dimensional spin-S of the X X Z Heisenberg model with single-ion anisotropy term in the presence of a longitudinal magnetic field up to the order β6 , in terms of the rescaled spin operator~s =~S/ p S(S +1). In the present work we have applied equation (6) to equation (B) of reference [9], with ||~S|| = p 3 2 , to derive the β-expansion, up to the order β6 , of the HFE of the one-dimensional fermionic spinless Hubbard model. We have obtained W (t ,V ,µ;β) = − ln2 β − 1 2 µ+ 1 4 V + ( −1 4 t 2 + 1 4 V µ− 5 32 V 2 − 1 8 µ2 ) β + ( 1 16 V µ2 − 1 16 t 2V + 1 16 V 3 − 1 8 V 2µ ) β2 23002-4 On the particle-hole symmetry of the fermionic spinless Hubbard model in D = 1 + ( − 1 48 V µ3 + 1 16 t 2µ2 + 7 96 t 2V 2 + 1 64 V 2µ2 + 1 96 V 3µ − 31 3072 V 4 + 1 32 t 4 − 1 8 t 2V µ+ 1 192 µ4 ) β3 + ( − 7 256 t 2V 3 − 23 384 V 3µ2 − 1 128 V 5 − 1 32 t 2V µ2 + 1 32 t 4V + 1 24 V 2µ3 + 1 16 t 2V 2µ+ 7 192 V 4µ− 1 96 V µ4 ) β4 + ( − 47 1536 t 4V 2 − 1 96 t 2µ4 − 1 32 t 4µ2 − 239 7680 V 5µ − 1 144 t 6 + 287 36864 V 6 − 31 1152 V 3µ3 − 1 2880 µ6 − 21 2560 t 2V 4 + 1 480 V µ5 + 7 192 t 2V 3µ+ 5 1536 V 2µ4 − 23 384 t 2V 2µ2 + 1 24 V t 2µ3 + 139 3072 V 4µ2 + 1 16 V t 4µ ) β5 + ( 13 768 V t 2µ4 − 1 64 t 4V 2µ+ 157 1536 t 2V 3µ2 − 29 10240 V 7 + 1 128 V t 4µ2 − 13 192 t 2V 2µ3 − 7 576 V 4µ3 − 53 768 t 2V 4µ + 17 11520 V µ6 + 83 23040 t 4V 3 + 1603 92160 t 2V 5 − 17 1920 V 2µ5 − 119 30720 V 5µ2 + 389 46080 V 6µ− 11 768 V t 6 + 41 2304 V 3µ4 ) β6 +O(β7). (16) References 1. Hubbard J., Proc. R. Soc. London, Ser. A, 1963, 276, 238; doi:10.1098/rspa.1963.0204. 2. Hubbard J., Proc. R. Soc. London, Ser. A, 1964, 277, 237; doi:10.1098/rspa.1964.0019. 3. Jördens R., Strohmaier N., Gunter K., Moritz H., Esslinger T., Nature, 2008, 455, 204; doi:10.1038/nature07244. 4. Schneider U., Hackermuller L., Will S., Best Th., Bloch I., Costi T.A., Helmes R.W., Rasch D., Rosch A., Science, 2008, 322, 1520; doi:10.1126/science.1165449. 5. Esslinger T., In: Annual Review of Condensed Matter Physics, Vol. 1, Langer J.S. (Ed.), Annual reviews, Palo Alto, CA, 2010, 129–152; doi:10.1146/annurev-conmatphys-070909-104059. 6. Simon J., Bakr W.S., Ma R., Tai M.E., Preiss Ph.M., Greiner M., Nature, 2011, 472, 307; doi:10.1038/nature09994. 7. Verwey E.J.W., Haaymann P.W., Physica, 1941, 8, 979; doi:10.1016/S0031-8914(41)80005-6. 8. Kobayashi K., Susaki T., Fujimori A., Tonogai T., Takagi H., Europhys. Lett., 2002, 59, 868; doi:10.1209/epl/i2002-00123-2 9. Rojas O., de Souza S.M., Corrêa Silva E.V., Thomaz M.T., Eur. Phys. J. B., 2005, 47, 165; doi:10.1140/epjb/e2005-00310-5. 10. Sznajd J., Becker K., J. Phys.: Condens. Matter, 2005, 17, 7359; doi:10.1088/0953-8984/17/46/020. 11. Haldane F.D.M., Phys. Rev. Lett., 1980, 45, 1358; doi:10.1103/PhysRevLett.45.1358. 23002-5 http://dx.doi.org/10.1098/rspa.1963.0204 http://dx.doi.org/10.1098/rspa.1964.0019 http://dx.doi.org/10.1038/nature07244 http://dx.doi.org/10.1126/science.1165449 http://dx.doi.org/10.1146/annurev-conmatphys-070909-104059 http://dx.doi.org/10.1038/nature09994 http://dx.doi.org/10.1016/S0031-8914(41)80005-6 http://dx.doi.org/10.1209/epl/i2002-00123-2 http://dx.doi.org/10.1140/epjb/e2005-00310-5 http://dx.doi.org/10.1088/0953-8984/17/46/020 http://dx.doi.org/10.1103/PhysRevLett.45.1358 M.T. Thomaz, E.V. Corrêa Silva, O. Rojas До симетрiї частинка-дiрка фермiонної безспiнової моделi Габбарда в D = 1 M.T. Томас1, Е.В. Корреа Сiльва2, О. Рохас3 1 Iнститут фiзики, Федеральний унiверситет Флумiненсе, Нiтерой-РЖ, Бразилiя 2 Факультет математики, фiзики та iнформатики, технологiчний факультет, Державний унiверситет Рiо-де-Жанейро, Ресенде-РЖ, Бразилiя 3 Факультет точних наук, Федеральний унiверситет м. Лаврас, Лаврас-МЖ, Бразилiя Ми наново переглядаємо симетрiю частинка-дiрка одновимiрної (D = 1) фермiонної безспiнової моделi Габбарда, пов’язуючи цю симетрiю з iнварiантнiстю вiльної енергiї Гельмгольца одновимiрної спiн-1/2 X X Z моделi Гайзенберга, при iнверсiї (перекиданнi) поздовжнього магнiтного поля i при довiльнiй скiн- ченнiй температурi. В результатi порiвняння двох режимiв ланцюжкової моделi, коли число частинок в одному режимi дорiвнює числу дiрок в iншому, знайдено, що в загальному, їх термодинамiка є подi- бною, але не iдентичною: обидвi моделi мають однаковi функцiї питомої теплоємностi та ентропiї, але рiзнi внутрiшню енергiю на вузол, кореляцiйнi функцiї перших сусiдiв i число частинок на вузол. Завдя- ки цiй симетрiї, рiзниця мiж кореляцiйними функцiями перших сусiдiв є пропорцiйною до z-компоненти намагнiченостi X X Z моделi Гайзенберга. Представленi в цiй статтi результати справедливi для довiльно- го значення параметра сили взаємодiї V , який описує притягальну/нульову/вiдштовхувальну взаємодiю сусiднiх фермiонiв. Ключовi слова: квантово-статистична механiка, сильноскорельована електронна система, моделi спiнових ланцюжкiв 23002-6 The HFE of the one-dimensional spinless fermionic Hubbard model up to order 6