The role of stress in heart failure – ground for sex specific pathophysiology

In the last hundred years modern society went through numerous changes in life style, dietary habits, work load, physical activity and other environmental factors. As a species we are not well adapted to new demands. Higher levels of stress hormones provoke various effects, especially gradual chang...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Heffer, M., Zibar, L., Viljetic, B., Makarovic, Z.
Формат: Стаття
Мова:English
Опубліковано: Інститут молекулярної біології і генетики НАН України 2011
Назва видання:Вiopolymers and Cell
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153704
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The role of stress in heart failure – ground for sex specific pathophysiology / Heffer M., Zibar L., Viljetic B., Makarovic Z. // Вiopolymers and Cell. — 2011. — Т. 27, № 2. — С. 93-106. — Бібліогр.: 140 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-153704
record_format dspace
spelling irk-123456789-1537042019-06-15T01:30:41Z The role of stress in heart failure – ground for sex specific pathophysiology Heffer, M. Zibar, L. Viljetic, B. Makarovic, Z. Reviews In the last hundred years modern society went through numerous changes in life style, dietary habits, work load, physical activity and other environmental factors. As a species we are not well adapted to new demands. Higher levels of stress hormones provoke various effects, especially gradual change in the sensitivity of adrenergic, glucocorticoid and insulin receptors. All these changes are mutually associated and they gradually lead to metabolic syndrome, obesity, diabetes, heart failure and other types of pathology depending on genetic makeup and environmental factors. The aim of this paper is to summarize current knowledge concerning the impact of stress on cardiac function. Whereas stress response is sex specific we would emphasize a potential difference in pathophysiology of ischemic heart failure in men and women. Modern medicine has misinterpreted autonomous nervous system functions for years and this was reflected in heart failure (HF) and arterial hypertension therapy. Stress before the onset of menopause has a lesser effect on cardiac function compared to stress after menopause. Postmenopausal women have a significantly higher risk of heart disease, which is related to the diminished protection of the female hormonal cycle, but low doses of estrogen have not proven protective in postmenopausal women. Potential new targets of sexspecific cardiac therapy would come from better understanding of the molecular mechanisms exerted by nuclear receptors for steroid hormones, transcription factors involved in heart remodeling, cross-talk in adrenergic signaling pathways and their down-stream molecules. Keywords: heart failure, stress, adrenergic receptors, sex specific. За останнє століття сучасне суспільство зазнало багаточисельних змін у способі життя (звичках, харчуванні, навантаженнях, фізичній активності), а також під впливом чинників довкілля. Як біологічний вид ми не дуже добре адаптувалися до нових умов. Вищі рівні гормонів стресу спричиняють різні ефекти, поступово змінюється чутливість адренергічних, глюкокортикоїдних і інсулінових рецепторів. Усі ці зміни взаємопов’язані і залежно від генетичних і екологічних факторів призводять до таких метаболічних синдромів, як ожиріння, цукровий діабет, серцева недостатність тощо. Оскільки відповідь на стрес залежить і від статі, потрібно враховувати можливу різницю у патофізіології серцевої недостатності у чоловіків і жінок. Протягом багатьох років функції вегетативної нервової системи невірно трактувалися сучасною медициною, що відбилося на терапії серцевої недостатності і гіпертензії. Вплив стресу на серцеву функцію у перід до і після менопаузи різниться. У жінок у постменопаузі значно підвищується ризик серцево-судинних захворювань, який визначається зниженням захисної функції жіночого гормонального циклу. Глибше вивчення молекулярних механізмів дії ядерних рецепторів стероїдних гормонів, факторів транскрипції, які беруть участь у ремоделюванні серця, перехресних адренергічних сигнальних шляхів та їхніх ефекторних молекул призведе до постановки нових задач для гендер-специфічної терапії. Ключові слова: серцева недостатність, стрес, адренергічні рецептори, статева специфічність. За последнее столетие современное общество претерпело многочисленные изменения в образе жизни (привычках, способе питании, нагрузках, физической активности), а также под влиянием факторов окружающей среды. Как биологический вид мы не очень хорошо адаптировались к новым условиям. Более высокие уровни гормонов стресса приводят к различным эффектам, постепенно меняется чувствительность адренергических, глюкокортикоидных и инсулиновых рецепторов. Все эти изменения взаимосвязаны и в зависимости от генетической и экологических факторов приводят к таким метаболическим синдромам, как ожирение, сахарный диабет, сердечная недостаточность и др. Поскольку ответ на стресс зависит и от пола, нужно учитывать возможную разницу в патофизиологии сердечной недостаточности у мужчин и женщин. В течение многих лет функции вегетативной нервной системы неверно трактовались современной медициной, что отразилось на терапии сердечной недостаточности и гипертензии. Влияние стресса на сердечную функцию в период до и после менопаузы различается. У женщин в постменопаузе значительно повышается риск сердечно-сосудистых заболеваний, определяемый снижением защитной функции женского гормонального цикла. Более углубленное изучение молекулярных механизмов действия ядерных рецепторов стероидных гормонов, факторов транскрипции, участвующих в ремоделировании сердца, перекрестных адренергических сигнальных путей и их эффекторных молекул приведет к постановке новых задач для гендер-специфической терапии. Ключевые слова: сердечная недостаточность, стресс, адренергические рецепторы, половая специфичность. 2011 Article The role of stress in heart failure – ground for sex specific pathophysiology / Heffer M., Zibar L., Viljetic B., Makarovic Z. // Вiopolymers and Cell. — 2011. — Т. 27, № 2. — С. 93-106. — Бібліогр.: 140 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.000088 http://dspace.nbuv.gov.ua/handle/123456789/153704 616.1 + 612.176 en Вiopolymers and Cell Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Reviews
Reviews
spellingShingle Reviews
Reviews
Heffer, M.
Zibar, L.
Viljetic, B.
Makarovic, Z.
The role of stress in heart failure – ground for sex specific pathophysiology
Вiopolymers and Cell
description In the last hundred years modern society went through numerous changes in life style, dietary habits, work load, physical activity and other environmental factors. As a species we are not well adapted to new demands. Higher levels of stress hormones provoke various effects, especially gradual change in the sensitivity of adrenergic, glucocorticoid and insulin receptors. All these changes are mutually associated and they gradually lead to metabolic syndrome, obesity, diabetes, heart failure and other types of pathology depending on genetic makeup and environmental factors. The aim of this paper is to summarize current knowledge concerning the impact of stress on cardiac function. Whereas stress response is sex specific we would emphasize a potential difference in pathophysiology of ischemic heart failure in men and women. Modern medicine has misinterpreted autonomous nervous system functions for years and this was reflected in heart failure (HF) and arterial hypertension therapy. Stress before the onset of menopause has a lesser effect on cardiac function compared to stress after menopause. Postmenopausal women have a significantly higher risk of heart disease, which is related to the diminished protection of the female hormonal cycle, but low doses of estrogen have not proven protective in postmenopausal women. Potential new targets of sexspecific cardiac therapy would come from better understanding of the molecular mechanisms exerted by nuclear receptors for steroid hormones, transcription factors involved in heart remodeling, cross-talk in adrenergic signaling pathways and their down-stream molecules. Keywords: heart failure, stress, adrenergic receptors, sex specific.
format Article
author Heffer, M.
Zibar, L.
Viljetic, B.
Makarovic, Z.
author_facet Heffer, M.
Zibar, L.
Viljetic, B.
Makarovic, Z.
author_sort Heffer, M.
title The role of stress in heart failure – ground for sex specific pathophysiology
title_short The role of stress in heart failure – ground for sex specific pathophysiology
title_full The role of stress in heart failure – ground for sex specific pathophysiology
title_fullStr The role of stress in heart failure – ground for sex specific pathophysiology
title_full_unstemmed The role of stress in heart failure – ground for sex specific pathophysiology
title_sort role of stress in heart failure – ground for sex specific pathophysiology
publisher Інститут молекулярної біології і генетики НАН України
publishDate 2011
topic_facet Reviews
url http://dspace.nbuv.gov.ua/handle/123456789/153704
citation_txt The role of stress in heart failure – ground for sex specific pathophysiology / Heffer M., Zibar L., Viljetic B., Makarovic Z. // Вiopolymers and Cell. — 2011. — Т. 27, № 2. — С. 93-106. — Бібліогр.: 140 назв. — англ.
series Вiopolymers and Cell
work_keys_str_mv AT hefferm theroleofstressinheartfailuregroundforsexspecificpathophysiology
AT zibarl theroleofstressinheartfailuregroundforsexspecificpathophysiology
AT viljeticb theroleofstressinheartfailuregroundforsexspecificpathophysiology
AT makarovicz theroleofstressinheartfailuregroundforsexspecificpathophysiology
AT hefferm roleofstressinheartfailuregroundforsexspecificpathophysiology
AT zibarl roleofstressinheartfailuregroundforsexspecificpathophysiology
AT viljeticb roleofstressinheartfailuregroundforsexspecificpathophysiology
AT makarovicz roleofstressinheartfailuregroundforsexspecificpathophysiology
first_indexed 2025-07-14T05:11:45Z
last_indexed 2025-07-14T05:11:45Z
_version_ 1837597885578870784
fulltext The role of stress in heart failure – ground for sex specific pathophysiology M. Heffer1, L. Zibar2, B. Viljetic3, Z. Makarovic4 1Department of Medical Biology, School of Medicine, Josip Juraj Strossmayer University of Osijek 4, Huttlerova St., Osijek, Croatia, 31000 2Department of Pathophysiology, School of Medicine, Josip Juraj Strossmayer University of Osijek 4, Huttlerova St., Osijek, Croatia, 31000 3Department of Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, Josip Juraj Strossmayer University of Osijek 4, Huttlerova St., Osijek, Croatia, 31000 4Department of Cardiology, Clinical Hospital Osijek 4, Huttlerova St., Osijek, Croatia, 31000 mheffer@mefos.hr In the last hundred years modern society went through numerous changes in life style, dietary habits, work load, physical activity and other environmental factors. As a species we are not well adapted to new de- mands. Higher levels of stress hormones provoke various effects, especially gradual change in the sensitivity of adrenergic, glucocorticoid and insulin receptors. All these changes are mutually associated and they gradually lead to metabolic syndrome, obesity, diabetes, heart failure and other types of pathology depending on genetic makeup and environmental factors. The aim of this paper is to summarize current knowledge concerning the impact of stress on cardiac function. Whereas stress response is sex specific we would emphasize a potential difference in pathophysiology of ischemic heart failure in men and women. Modern medicine has misinterpreted autonomous nervous system functions for years and this was reflected in heart failure (HF) and arterial hypertension therapy. Stress before the onset of menopause has a lesser effect on cardiac function compared to stress after menopause. Postmenopausal women have a significantly higher risk of heart disease, which is related to the diminished protection of the female hormonal cycle, but low doses of estrogen have not proven protective in postmenopausal women. Potential new targets of sex- specific cardiac therapy would come from better understanding of the molecular mechanisms exerted by nuclear receptors for steroid hormones, transcription factors involved in heart remodeling, cross-talk in adrenergic signaling pathways and their down-stream molecules. Keywords: heart failure, stress, adrenergic receptors, sex specific. Introduction. America’s top 15 most prescribed drugs by dispensed prescriptions published on the internet pages (www.forbes.com/2010/05/11/; source – IMS National Prescription Audit) belong to the top six cate- gories: pain killers, blood pressure and cholesterol lowering drugs, medication of hypothyroidism, anxie- ty/depression and type two diabetes. Six out of top 15 are blood pressure lowering medications. A huge mar- ket of 83 million dollars in the year 2010 belongs to the second most prescribed medication – simvastatin – a drug efficient in cholesterol lowering. If Dr. Hans Selye, the scientist who established stress reaction, would be asked to interprete such data, he would re- cognize population based symptoms of the most com- mon modern disease – chronic stress. Number of scien- tific publications on this subject doubles every few years, but it seems like we still do not have a handle on the large scale health risks caused by the new pande- 93 ISSN 0233–7657. Biopolymers and Cell. 2011. Vol. 27. N 2. P. 93–106  Institute of Molecular Biology and Genetics NAS of Ukraine, 2011 mic. Trained as medical doctors, we often look after pa- tients as removed from their social environment and make conclusions based on the currently presented isolated set of symptoms. In this paper we try to bring together pieces of knowledge connecting autonomous nervous regulation of the heart’s function, major signa- ling pathways executing molecular instructions in stress response and the role of stress in the development of heart failure. Special notice should be taken of sex- specific molecular mechanisms, suggesting a differen- ce in pathophysiology. The anatomy of cardiac innervations. Two bran- ches of the autonomous nervous system, parasympa- thetic and sympathetic, fight for the same targets, op- posing and/or modulating each other. Each branch consists of efferent and afferent fibers. The efferent parasympathetic innervations of heart (Fig. 1) originate in medullar nuclei (nucleus ambiguous, nucleus tractus solitarius and dorsal motor nucleus), whose axons fol- low vagal nerve to intrinsic ganglia located on epicar- dial surface of atria [1]. Postganglionic fibers of intrin- sic ganglia cross AV groove, penetrate myocardium and terminate in subendocardium (more atrial then ventricular) modulating SA and AV nodal function [2]. Acetylcholine, exclusive neurotransmitter of the effe- rent parasympathetic branch, operates through nicoti- nic receptor on preganglionic neurons and muscarinic receptors expressed on cardiomyocytes [3]. The densi- ty of muscarinic receptors is much higher in the atria compared to the ventricles [4], this is reflected in a lesser effect on the contractility than on the heart rate. Along predominant subtype M2, receptors M3 and M4 are up-regulated in the heart failure (HF) [5]. Musca- rinic receptors on cardiomyocytes and conductive sys- tem are Gi protein-coupled, causing decrease in cellu- lar cAMP and decreasing contractile forces and ve- locity [3]. More prolific efferent cardiac sympathetic inner- vations originate from the intermediolateral cell co- lumn of the spinal cord (commonly from T1 till T5), follow spinal nerves until superior, middle and stellate cervical ganglion as well as upper thoracic ganglia [2]. The postganglionic fibers arising from sympathetic trunk follow the coronary arteries and penetrate myo- cardium. Neurotransmitter of the sympathetic branch is norepinephrine, but cotransmission of epinephrine is well documented in panic disorder [6] and essential hypertension [7], in which case catecholamine level re- leased by sympathetic nerves is increased for 10 %. Another neurotransmitter, neuropeptide Y (NPY) is readily found in sympathetic nerve of gut and liver [8] of healthy individuals, but also is acutely released du- ring maximal aerobic exercise at high rates of cardiac nerve firing and chronically released in patients with HF [9]. Catecholamine work through two major classes of adrenergic receptors (AR), α (α1 α2) and β (β1, β2, β3), members of the super family of G protein-coupled receptors (Fig. 2). Different subtypes of α-ARs regu- late cardiac contractility and peripheral resistance; α1A- and α1B-constitute the majority of cardiac α-ARs [10], α1D – is predominant AR of human coronary arteries [11], while three subtypes of α2-AR (α2A, α2B and α2C) mediate vasodilatation of arteries, vasoconstriction of veins, platelet aggregation and various endocrine responses to the sympathetic stimulation [12]. Taking a 94 HEFFER M. ET AL. Fig. 1. The anatomy of sympathetic and parasympathetic efferent connections of the heart closer look at cardiac distribution of α1-ARs reveals much higher amount of α1B- then of α1A-AR and much higher amount of α1-ARs in the ventricles than in the atria [4]. The cardiac response to catecholamine stimulation in healthy mammalian heart is predominantly mediated by β-AR as follows; 70–80 % by β1, 20–30 % by β2 and β3 account just minimal contribution [4, 13]. Using the functional criteria, sensitivity toward typical β3-AR agonist CGP-12177 in β3-knockout mice [14, 15], as well as molecular cloning techniques [16] it has been established that β1-AR exist in multiple active con- formations functionally opposing each other. All adre- nergic receptors respond to both, norepinephrine and epinephrine, but they are not equally sensitive to these stimuli and the final outcome of the ligand binding de- pends on the intracellular signaling pathway. Increased force of contraction, accelerated relaxation and increa- sed beating rate are outcome of the activation of Gs protein by β1- and β2-AR, followed by activation of ade- nylate cyclase, production of cAMP and activation of protein kinase A (PKA) [17]. PKA mediates short-term inotropic effect by phosphorylation of few Ca2+ chan- nels or pumps (sarcolemmal L-type Ca2+ channels, phospholamban – sarcoplasmatic Ca2+ pump and sarco- plasmatic SR Ca2+ release channels) and proteins redu- cing myofilament Ca2+ affinity (troponin I and myosin binding protein C). Prolonged activation of this signa- ling pathway either leads to long-term enhancement of contractility (24 hours) or myocyte apoptosis and nec- rosis, due to intracellular Ca2+ increase and activation of Ca2+ calmodulin-dependent protein kinase II (CaMKII) [18, 19]. A low-affinity site (or isoform) of β1-AR is 40-fold more efficient in arrhythmic potency through Ca2+ induced Ca2+ release than the regular β1-AR [20]. Receptors β2 and β3 provide protection from adverse outcome through coupling Gi and activating phosphatidylinositol 3-kinase (PI3K)-protein kinase B, which determines cell survival [21] or nitric oxide (NO) production, which inhibits myocyte contraction [22, 23]. Differently than in dogs and rodents, β3- response is negligible in primates [24]. The low-af- finity form of β1-AR has chronotropic and arrhythmic effects [20, 25, 26]. The variety of catecholamine re- ceptors provides functional differences either on the level of receptor itself (distribution, affinity for ligand and G protein, mechanism of density regulation) or on the down-stream levels (signaling mechanism). When cardiomyocytes or intrinsic ganglion cells express mo- re than one receptor (what they usually do) final res- ponse depends on signaling cross-talk, a very interes- ting field for pharmacological investigation and inter- vention. Most of these studies were done on animal models (rat, dog or rabbit) and the results need further justification in human medicine. Both branches of autonomous nervous system also posses afferent fibers (Fig. 3) providing feedback im- pulses for local reflexes and informing higher integ- rative centers (nucleus of the solitary tract, nucleus dor- salis n. vagi, medial and ventral forebrain). The sparse number of cardiac visceral sensory neurons sits in the dorsal root ganglia (C6-T8) or in nodose ganglion [27, 28]. Although their function is maintaining balance between sympathetic and parasympathetic stimulation during aging is crucial, they have just recently been in- vestigated [29]. Aging is accompanied with a severe re- duction of sympathetic afferent neurons; the number of neurons in old rats was just 15 % of the number in juve- nile animals. Physiological and pathophysiological conditions leading to the preservation or smaller reduc- tion in the number of autonomous neurons have not be- en investigated yet. The interconnection of parasympathetic and sym- pathetic fibers becomes even more complicated after 95 THE ROLE OF STRESS IN HEART FAILURE – GROUND FOR SEX SPECIFIC PATHOPHYSIOLOGY The adrenergic signaling pathways H H CA H CA H H "1A $1LA / $1< "1B "1D Gq Gq Gq Phospholipase C Adenyl cyclase Adenyl cyclase ERK "2A "2B "2C Gi Gi Gi ? Gs/ Gi Gi PI3K eNOS NO ATP cAMP cAMP ATP cAMP PIP2 IP3 DAG Ca2+ cAMP > $2 $3> Gs Smooth muscle contraction Smooth muscle relaxation Inhibition of transmitter release Ca2+ Heart muscle contraction Smooth muscle relaxation Glycogenolysis Fig. 2. Family of adrenergic receptors and their down-stream signal- ling pathways; H – heart; CA – coronary artery finding sympathetic efferent neurons in intramural places [1]. Armour suggested three levels of cardiac au- tonomous regulation; the simplest one, intrinsic and working on short range-bit to bit; the second one on the level of cardiac plexus and nodose ganglion, working on middle range-minutes or hours; the tertiary level located in the medulla oblongata and cortical centers providing long lasting changes (days, months or even years). Cardiac innervations are still not fully understood and further studies need to deal with effects of over- stimulation, sex-specific aging and potential of re- generation. Sympathetic excitation in the development of cardiovascular pathology. HF is associated with de- creased inotropic response. At first glance, pharmaco- logical treatment at the level of α1 and β1-AR should le- ad to an improvement. Non-selective agonists, inclu- ding epinephrine and norepinephrine, have adverse ef- fects like hypertension and arrhythmia [30] due to α- AR stimulation. The development of more selective agonist for β1-AR was the next logical step. Dopamine infusion at intermediate doses stimulates predominant- ly cardiac β1-AR, while lower doses work just on dopa- mine receptors in splanhnic and renal arterial bed [31]. Dopamine was neglected as a possible compound for long term treatment because of the respiratory depres- sant effect [32] and overall unpredictable outcomes in HF [33]. Neither one of the next generation, more se- lective β1-AR agonist (prenalterol, xamoterol, dobuta- mine), was more successful [34–36]. Creation of a hi- ghly selective agonist was the ultimate goal till the end of the nineties. Some tried to overcome receptor speci- ficity barriers by designing inhibitors of down-stream signaling molecules. Milrinone and enoximone are se- lective inhibitors of cAMP-specific phosphodiesterase (PDE) III isoenzyme in myocardium and smooth mus- cle, prolonging the half life of cAMP and increasing intracellular Ca2+, both without benefit over placebo [37, 38] in long term treatment of ischemic heart failu- re. Milrinone was found to be beneficial in treatment of dilated cardiomyopathies, treatment of low output syn- drome following cardiac surgery and patients with con- gestive HF prior to cardiac surgery due to a combinati- on of anti-apoptotic and positive inotropic effects [39]. The large, randomized, double blind placebo- controlled clinical trials were over and over pointing to either the goal of finding selective agonist was tricky to achieve or the concept of sympathomimethic boost to failing heart was wrong. The paradigm of the failing heart craving more sympathetic stimulation was fed by findings of both anatomical and functional cardiac sympathetic denervation. Chidsey and Braunwald per- formed studies on excised atrial tissue obtained during heart surgery [40] and found a significant reduction of norepinephrine concentration in the failing heart. Al- lman and coworkers interpreted positron emission tomography with carbon-11-hydroxyephedrine (radio- isotope taken up by sympathetic nerves) after acute myocardial infarction as patchy denervation [41]. Also, progression of HF is accompanied with β-AR selective down regulation [42, 43]. Approximate ratio of 50:50 β1/β2-AR is not just shifted in favor of β2-AR, yet both receptors become uncoupled of their down-steam sig- naling pathways and desensitized to adrenergic stimu- 96 HEFFER M. ET AL. Fig. 3. The anatomy of sympathetic and parasympathetic afferent con- nections of the heart lation [44–46]. All of this data justified the use of β-AR agonist, but clinical results were showing the opposite. One of the crucial pieces in the puzzle came from Cohn and coworkers’ study [47] in which they mea- sured plasma norepinephrine at supine rest and found high correlation between concentration of norepineph- rine in venous blood and risk of mortality. The concen- trations of resting norepinephrine in their study remain stable on successive days, and were a sign of general sympathetic-nervous-system activation, while epine- phrine was a marker of acute stress response [48] and variable from day to day. Similar data were coming out of succeeding studies [49, 50] proving that in untreated patients with congestive heart disease cardiac norepi- nephrine spillover was increased as much as 50-fold, that corresponded to the levels in healthy adult during near maximal exertion. Increased cardiac adrenergic drive preceded generalized sympathetic activation [51] and manifested as 4–5 times higher than normal nor- epinephrine spillover in the mild HF, as well as in a he- art with a predisposition for ventricular tachycardia and ventricular fibrillation [52]. Along with norepinephrine the spillover of NPY [8], neuropeptide which is not subjected to neuronal reuptake and have been shown to cause coronary vasoconstriction, inhibiting vagal acti- vity and triggering ventricular arrhythmias through Y(2) receptors [53], also increases. Beside peripheral drive, in the rat coronary ligation model, norepinephri- ne is also increased in the central nervous system in the locus coeruleus and nucleus in which its project – para- ventricular nucleus of the hypothalamus – the one which participates in the regulation of autonomous ner- vous system [54, 55]. In the meantime, transgenic mice with overexpres- sion of β1-AR and β2-AR were generated [56]. Initial observations, performed on young animals, show no cardiac pathology with up to 60-fold overexpression of β2-AR [57] – the promising target for restoration in he- art failure. Longer observation, however, reveals quite a different picture; both transgenic models, overexp- ressing β1-AR [58] or β2-AR [59] develop cardiomyo- pathy and heart failure. The same result was obtained with mice overexpressing down-stream signaling mo- lecule for both adrenergic receptors; cardiac stimulato- ry G protein alpha subunit-Gsα [60, 61] and alpha cata- lytic subunit (Cα) of PKA [62]. All these studies concluded that selective down re- gulation of β-AR in patients with HF is a compensatory and protective mechanism, shifting paradigm from sympathetic stimulation toward blocking. In the begin- ning, β-blockers were introduced as a therapy to control the tachycardia associated with HF which unexpec- tedly reduced mortality in acute myocardial infarction [63]. Although few trials were conducted in following years, the first large randomized clinical trial showed clear evidence of mortality benefit was released in 1999 [64, 65]. Currently three types of β-blockers clas- sified as β1-AR selective, non-selective β-AR blockers and non-selective β/α-AR blockers are in use. Interes- tingly, non-selective β/α-AR blockers like carvedilol result in vasodilatation secondary to α-AR blockade lowering aortic pressure and are proving to be superior over more selective blockers [66]. Nowdays we have overall acceptance of HF deve- lopment is connected with progressive remodeling of cardiac sympathetic response. Although we know how to alleviate consequences of this response, we still do not know enough about the trigger of changes, early signs, risk factors, sex specific dynamic and therapy. The adrenergic receptors behavior under acute and chronic stress. In 1936 Dr. Hans Selye presented his finding of General Adaptation Syndrome explai- ning how various nocuous agents (exposure to cold, surgical injury, excessive muscular exercise, sublethal intoxication) produced the same typical response in experimental animals [67]. He described three stages of the syndrome development: the initial one expressed as a general alarm (decrease in size of lymphoid organs and fat tissue, fall of body temperature, formation of erosions in digestive tract), the phase of building up resistance and the phase of exhaustion after a period of a prolonged stress. The article was a cornerstone in the field of neuropsychiatry, kicking up an avalanche of studies and helping to reveal the effect of hormones and stress on the brain function. Today we understand stress as a multi-system response to challenges threate- ning homeostasis, having bearable or overwhelming allostatic load and potential health consequences [68]. All of the situations like the first jump with para- chute (as well as consequent jumps), running in front of an enraged bull, waiting for a big exam, being threaten with a gun, have in common the surge of epinephrine 97 THE ROLE OF STRESS IN HEART FAILURE – GROUND FOR SEX SPECIFIC PATHOPHYSIOLOGY and co-released cortisol from adrenal gland into the bloodstream. These two hormones activate responses in multiple organs having adrenergic or cortisol recep- tors, particularly response of the stress axis, the hypo- thalamic-pituitary-adrenal (HPA) axis, and sympathe- tic-adrenal medullary system. The mark of HPA acti- vation is elevation of corticotropin releasing factor (CRF), synthesized by a discrete population of neurons in parvocellular part of the paraventricular nucleus in the hypothalamus and released into hypophyseal-portal circulation [69]. Neuropeptide arginine vasopressin (AVP) is co-released at the same nerve endings. CRF stimulates synthesis and release of adenocorticotropic hormone (ACTH) from the anterior lobe of the pituita- ry gland while binding of arginine vasopressin to V1b pituitary receptors enhance release of ACTH in the sys- tem circulation [70]. ACTH induces glucocorticoid production and its release from the adrenal cortex. Besides numerous physiological and metabolic effects (suppression of immune, reproductive and digestive organs, inhibition of growth, glucolysis, proteolysis and lipolysis), glucocorticoids are one of the six known transcriptional activators of epinephrine synthesizing enzyme phenylethanolamine N-methyltransferase (PNMT) [71–73]. This enzyme is confined in its distri- bution just to the adrenal medulla and adrenalin syn- thesizing neurons of the brain stem in healthy indivi- duals, consequently producing more epinephrine. At the same time, a parallel track is also being activated; the sympathetic system releases norepinephrine stimu- lating target organs having adrenergic receptors, inclu- ding adrenal medulla. Epinephrine regulates its own production by inhibiting PNMT [74]. It is one of many inhibitory loops throughout HPA axis, bringing all players back to basal level. In between various animal models of stress (foot shock, electric shocks, forced swimming, forced run- ning, etc.) immobilization on wooden board is conside- red a putative model of posttraumatic stress disorders (PTSD). Single and repeated exposures induce dysre- gulation of the resting activity of the HPA axis [75], observed as increase in resting corticosterone levels [76, 77]. Dysregulation of HPA triggers multiple chan- ges in target organs. The transcriptome in the adrenal medulla after acute and chronic stress exposure is very different; the number of transcripts significantly diffe- red in the rat medulla after single immobilization – it was bigger (651 up and 487 down) than after immo- bilization on six consecutive days (370 up and 195 do- wn) [78]. Transcription factors and cell signaling mo- lecules go through the largest changes accompanied with transcripts related to growth factors, apoptosis, neurosecretion, heat shock proteins, structural proteins, chemokines, cytokines, metabolism and proteases. Immediate cardiovascular response to raised levels of epinephrine at the beginning of the stress response is increased blood pressure and heart rate, respectively. The heart is very sensitive to the changes of adrenergic levels, because 95 % of norepinephrine released on the sympathetic nerves is being recaptured [79]. In stress response, levels of epinephrine are major drive of car- diac performance. Hence, changes in norepinephrine reuptake mechanism and/or neurotransmitter load wo- uld sensitize the heart to arrhythmia development du- ring intense sympathetic activation, as during panic at- tacks, for example [6]. In a model of foot shock stress Basani reported su- persensitivity of isolated rat heart pacemaker to β2-se- lective agonists [80] suggesting increased β2-signaling. At the same time right atria were subsensitive to se- lective β1-agonist. Observed remodeling of adrenergic receptors was canceled by treatment with the mife- pristone, glucocorticoid receptor antagonist, indicating involvement of glucocorticoid mediated mechanism [81]. Similar experiments repeated on female rats de- monstrated more elevated plasma corticosterone in fe- male versus male animals, independent of estrus cycle, the same changes of adrenergic receptors during diest- rus and lack of changes in estrus [82]. This data sug- gests a role of sex steroids at least in remodeling of fe- male heart. Changes in adrenergic receptors also take place in adipose tissue manifested as decreased expres- sion of the β1- and β3-AR accompanied with increase ex- pression of β2-AR [83] and reflected in altered sensi- tivity to insulin [84]. While increase of β2-signaling du- ring stress response could be interpreted as protective because it was directing heart from activation of PKA, Ca2+ overload and apoptosis caused by β1-AR, on the other hand, raises insulin resistance in fat tissue, which is a bad strategy on the long term, leading to a «thrifty metabolism». However, recently used fluorescence re- sonance energy transfer (FRET) microscopy demonst- 98 HEFFER M. ET AL. rated particularity in distribution of adrenergic recep- tors in cardiomyocytes of failing heart [85]. Besides being more expressed, β2-AR in failing heart are redist- ributed from their common place at tranverse tubules to the cell crest – compartment of cAMP production re- served for β1-AR. Final outcome is β2-AR coupled to different signaling mechanism and behaving like β1- AR, also proved in the development of cardiomyopa- thies in β2-AR transgenic animals [59, 86]. To make stress response of the heart even more complicated, dif- ferent heart regions express different shift in adrener- gic receptors; murine right ventricules express decrea- sed level of β2-AR [87]. The adrenergic receptor remodeling is accompa- nied by the changes in the level of catecholamine. Ele- vated urinary concentrations of norepinephrine and epinephrine are observed in patients with posttraumatic stress disorder (PTSD) [88, 89]. Stress elevates the expression of PNMT mRNA [90] in a glucocorticoid dependent manner, especially after repeated immobili- zation stress, but not only at the adrenal medulla and neurons of the brain steam, but also at sympathetic nerve endings and cardiac tissue [91, 92]. Epinephrine is increased after the first immobilization, while levels of norepinephrine rise after the seventh immobilization [87]. Epinephrine is also found in the samples of blood from coronary sinus, released by the sympathetic ner- ves of heart in patients with essential hypertension [7] this was considered pathophysiological mechanism in the development of this disease. No association was fo- und between polymorphism of β2-AR, the most frequ- ent arterial adrenergic receptor, and hypertension and obesity [93]. However, the gene polymorphism in the rate-limiting enzyme in catecholamine biosynthesis, tyrosine hydroxylase (TH), is connected with stress-in- duced blood pressure changes [94]. On the other hand, angiotensin II AT1 receptor blockers (ARBs), com- monly used in the clinical treatment of arterial hyper- tension profoundly modify the response to the stress, preventing the peripheral and central sympathetic acti- vation [95]. ARBs, transportable across the blood- brain barrier, are a potential treatment of stress related and anxiety disorders [96, 97]. In most brain regions β1-ARs comprise > 80 % of adrenergic receptors [98]. Single exposure to restrained stress significantly decreases levels of β1-AR mRNA in the hypopthalamus, but repeated exposure brings back to control levels [99]. Right now we do not have any reliable and easy to follow stress-specific marker which could be used in studies of human or animal exposure to different stres- sors and their different intensity. Animal studies are pointing to significant remodeling of adrenergic recep- tors in heart and blood vessels in chronic stress, but even in animal models we do not know how to prevent them. Also, most animal studies are short-term, obser- ving changes provoked after consecutive stress expo- sure, while observations from human studies predict more then a decade or two long progression of cardiac pathology. We are looking not just for an animal mo- del, but also for a study plan which would combine the major risk factors and follow up data on vital functions in a long term study. Sex specific traits in the stress response and de- velopment of heart failure. HPA response is a very expensive effort for an organism and if overengaged has potential consequences [100]. It is often raised in the modern society even in the absence of physio- logical challenge, driven by conditioning («memory») during anticipation of potential threat [69]. The autono- mous nervous system has an interesting feature of iso- lating some organs and/or recruiting some more than others in general stress response. The heart is just one of the target organs in the stress response, whose en- gagement depends on individual heritable traits (inclu- ding sex) and the environment as well. The heart rhythm transcriptome genes encoding adrenergic receptors, connexins, cadherins, plakophi- lins, ankyrins, ion channels and transporters have signi- ficant heart chamber sex differences observed in the rat animal model [101]. Differences become particularly prominent in knockout models challenged by physiolo- gical ligand, agonist and antagonist of various recep- tors participating in stress response [102]. Environmental and sex-specific genetic factors are reflected on the pathology: prevalence of hypertension in Western society is higher in men aged 30–45 years than in women of similar age. On the other hand preva- lence of hypertension in women after this age increases to levels similar to or exceeds those in men [103–105]. Reverse man versus women epidemiology is observed in vasomotor disorders like Raynaud’s disease, postu- 99 THE ROLE OF STRESS IN HEART FAILURE – GROUND FOR SEX SPECIFIC PATHOPHYSIOLOGY ral orthostatic tachycardia syndrome and vasomotor symptoms (hot flashes) of menopause and migraine [106]. In both human and animal heart pathology diffe- rences is connected with estrogen levels [107–109]. Because women develop manifestation of coronary disease 10 years later then men, on average, and present with myocardial infarction 20 years later [110], general preconception is still how cardiovascular disease (CVD) is not a leading cause of mortality in women. The consequences of this misconception are numerous: the two-thirds of women, who died suddenly, had unre- cognized CVD symptoms, 35 % of heart attacks in women are believed to go unnoticed or unreported, wo- men present later and are more sick at the time of diag- nosis, they are less likely to undergo interventional car- diology, undergo cardiac rehabilitation and return to work after the first heart attack – which they are less li- kely to live through [111]. Women with acute coronary disease are more likely to present atypical symptoms: vomiting, abnormal pain location, nausea, dizziness and fatigue. The pathophysiology of HF is also diffe- rent in men and women: women more frequently deve- lop diastolic HF with preserved left ventricular func- tion and normal ejection fraction accompanied with prolonged history of arterial hypertension and comor- bidities [112, 113], men more frequently have systolic HF because of coronary artery disease [114]. Pressure overload, arterial hypertension, diabetes and aging it- self initiate myocardial hypertrophy. The hypertrophy generates alterations in cardiac geometry, referred as ventricular remodeling, measured by transthoracic echocardiography (two-dimensional or three-dimen- sional) and expressed as left ventricular (LV) volume, mass, sphericity index or LV mass/volume. The first stage of hypertrophy is adaptive response to stress due to increase of cardiomyocytes size and deposition of extracellular matrix [115]. Further progression of hy- pertrophy becomes maladaptive if accompanied with fibrosis (involving collagen deposition) and apoptosis. Male hearts develop more easily pathological hyper- trophy, while female ventricular remodeling follows the pattern of diastolic HF having a greater risk of ad- verse outcome as baseline ejection fraction is decrea- sing [113, 116]. Chronic hypertension induced ventricular hyper- trophy, left ventricular fibrosis and action potential prolongation is observed in animal models of both aging male and female Spontaneosly Hypertensive Rats (SHR) [117]. Male animals from 15 months of age develop left ventricular thinning, systolic and diastolic dysfunction, which is not present in females at the same age. In the mouse model of pressure overload by trans- verse aortic constriction, males show more hypertro- phy than females and females develop concentric while males develop eccentric hypertrophy [118]. Induction of matrix-related genes and a repression of mitochond- rial genes in maladaptive stress response are attenuated in estrogen receptor β knockout mice pointing to mole- cular mechanism of estrogen protection. Estrogen the- rapy in male Gαq transgenic mice prevent HF by inhi- bition of apoptosis-regulated signaling kinase-1 [119]. Women and men respond differently to chronic HF therapies, tailored to better fit to male than female pa- thology [120]. Women benefit more from angiotensin receptor blockers, while men benefit more from angio- tensin converting enzyme inhibitor [121]. Low dose of estrogen attenuate structural and functional remodeling in an animal model of HF [122]. Contrarily, estrogen treated female rats have a greater postmyocardial in- farction survival [123]. Also, estrogen did not improve ischemia and endo- thelial function in randomized controlled trials in post- menopausal women [124]. In survival studies, women had advantage in advance HF if presented with non- ischemic etiology [120]. The role of stress in CVD development is not fully investigated. Sexual dismorphism in the stress respon- se, especially its relation to female hormonal cycle, has been observed in animal models and in humans [125, 126]. Stress induces different changes of adrenergic re- ceptors and their signaling pathways. While all subty- pes of α1-AR decrease in female mice, it happens just to α1A-AR in a CRH gene knockout, suggesting the role of CRH in down-regulation of others. However, β1-AR decreases in male mice, but remains stable in female mice. Also, while the ability of α2-AR agonist to inhibit insulin secretion was attenuated in male insulin re- ceptor substrate 2 knockout animals, female animal de- veloped mild obesity and progressed less rapidly to dia- betes under adrenergic stimulation [127]. Adrenergic receptors and their down-stream signaling molecules exert a variety of effects and these molecules are good 100 HEFFER M. ET AL. candidate genes in gene polymorphism studies dealing with sex-specific pathology. The polymorphism in the nuclear receptor genes, like glucocorticoid receptor, was documented as a significant sex specific factor in rising stress response to psychosocial stimuli [128]. Al- so, the sex specific pathway of cardioprotection me- diated by estrogen receptors include transcription fac- tor myocyte enhancer factor 2 and class II histone de- acetylases, potential targets in sex specific therapy [129]. Polymorphism in the β1-AR and β3-AR increases cardiovascular risk in women, more to microvascular pathology than to obstructive coronary disease [130]. Difference in stress-response reactions is noticed in the peripheral and central nervous systems. Functional brain imaging studies of central stress response circuit- ry (amygdale, hypothalamus, hippocampus, brainstem, orbitofrontal cortex, medial prefrontal cortex and ante- rior cingulated gyrus) found the most prominent diffe- rences between men and women during early follicular phase [126]. Activation of central stress response cir- cuitry somehow predisposed women for development of more adverse effects; about twice as many women as men would develop PTSD, under the same exposure to trauma [131]. Also symptoms of further exacerbation are dife- rent, while anxiety is better predictor of PTSD in men, depression is found in women [132]. Psychosocial variables were recently associated with morbidity and mortality in CVD patients [133]. Psychosocial stress and depression might have role in accelerated aging [134]. Telomere length is a marker of biological aging and presence of stressor. A telomerase deficient mouse model is recently used in HF studies [135]. Emotio- nal/cognitive symptom cluster composed of worrying, feeling depressed and expressing cognitive problems predicts a high risk for a cardiac event [136]. Insomnia is a risk factor and symptom of stress, depression and anxiety [137], highly prevalent in patients with chronic heart disease [138]. Besides all indirect links between stress and cardiac disease in humans, Tako-Tsubo syndrome, firstly de- scribed by Sato et al in 1990 (Japan), directly links ex- cessive sympathetic stimulation triggered by intense psychological or physical stress and acute cardiomyo- pathy in the absence of arterosclerotic coronary artery disease [139, 140]. Stress is a multi organ disease. The heart is just one organ affected after years, even decades of increased sympathetic activity. Additional risk factors, genetic, metabolic, socioeconomic and environmental bring a different load on homeostatic mechanisms. The deve- lopment of HF differs between male and female, this is visible in the stress induced heart remodeling. Close observation of the differences will bring us closer to sex-specific therapy in the near future. М. Хеф фер, Л. Зи бар, Б. Виль е тич, З. Ма ка ро вич Роль стресу у сер цевій па то логії – осно ва міжстатевих па тофізіологічгих розбіжнос тей Ре зю ме За останнє століття су час не суспільство за зна ло ба га то чи - сельних змін у спо собі жит тя (звич ках, хар чу ванні, на ван та - жен нях, фізичній ак тив ності), а та кож під впли вом чин ників довкілля. Як біологічний вид ми не дуже доб ре адап ту ва ли ся до нових умов. Вищі рівні гор монів стре су спри чи ня ють різні ефе- кти, по сту по во змінюється чут ливість ад ре нергічних, глю ко- корти кої дних і інсуліно вих ре цеп торів. Усі ці зміни взаємо- пов’язані і за леж но від ге не тич них і еко логічних фак торів при - зво дять до та ких ме та болічних син дромів, як ожиріння, цук - ро вий діабет, сер це ва не дос татність тощо. Оскільки відпо- відь на стрес за ле жить і від статі, потрібно вра хо ву ва ти можливу різни цю у па тофізіології сер цевої не дос тат ності у чоловіків і жінок. Про тя гом ба гать ох років функції ве ге та - тив ної не рво вої сис те ми невірно трак ту ва ли ся су час ною ме - ди ци ною, що відби ло ся на те рапії сер це вої не дос тат ності і гі- пер тензії. Вплив стре су на сер це ву функцію у перід до і після ме но па у зи різнить ся. У жінок у по стме но па узі знач но підви - щується ри зик сер це во-су дин них за хво рю вань, який виз на ча- ється зни жен ням за хис ної функції жіно чо го гор мо наль но го цик лу. Глиб ше вив чен ня мо ле ку ляр них ме ханізмів дії ядерних ре - цеп торів сте рої дних гор монів, фак торів транс крипції, які бе - руть участь у ре мо де лю ванні сер ця, пе ре хресних ад ре нергіч- них сиг наль них шляхів та їхніх ефек тор них мо ле кул при зве де до поста нов ки но вих за дач для ген дер-спе цифічної те рапії. Клю чові сло ва: сер це ва не дос татність, стрес, ад ре нергічні ре цеп то ри, ста те ва спе цифічність. М. Хеф фер, Л. Зи бар, Б. Виль е тич, З. Ма ка ро вич Роль стрес са в сер деч ной па то ло гии – осно ва па то фи зи о ло ги чес ких раз ли чий меж ду по ла ми Ре зю ме За по след нее сто ле тие со вре мен ное об щес тво пре тер пе ло мно го чис лен ные из ме не ния в об ра зе жиз ни (при выч ках, спо со - бе пи та нии, на груз ках, фи зи чес кой ак тив нос ти), а так же под вли я ни ем фак то ров окру жа ю щей сре ды. Как би о ло ги чес кий вид мы не очень хо ро шо адап ти ро ва лись к но вым усло ви ям. Бо - лее вы со кие уров ни гор мо нов стрес са при во дят к раз лич ным эф фек там, по сте пен но ме ня ет ся чу встви тель ность ад ре нер - ги чес ких, глю ко кор ти ко ид ных и ин су ли но вых ре цеп то ров. Все эти из ме не ния вза и мос вя за ны и в за ви си мос ти от ге не ти чес - кой и эко ло ги чес ких фак то ров при во дят к та ким ме та бо ли - 101 THE ROLE OF STRESS IN HEART FAILURE – GROUND FOR SEX SPECIFIC PATHOPHYSIOLOGY чес ким син дро мам, как ожи ре ние, са хар ный ди а бет, сер деч ная не дос та точ ность и др. Пос коль ку от вет на стресс за ви сит и от пола, нуж но учи ты вать воз мож ную раз ни цу в па то фи зи о - ло гии сер деч ной не дос та точ нос ти у муж чин и жен щин. В те - че ние мно гих лет функ ции ве ге та тив ной не рвной сис те мы не вер но трак то ва лись со вре мен ной ме ди ци ной, что от ра зи - лось на те ра пии сер деч ной не дос та точ нос ти и ги пер тен зии. Вли я ние стрес са на сер деч ную функ цию в пе ри од до и по сле ме - но па у зы раз ли ча ет ся. У жен щин в по стме но па у зе зна чи тель но по вы ша ет ся риск сер деч но-со су дис тых за бо ле ва ний, опре де - ля е мый сни же ни ем за щит ной функ ции жен ско го гор мо наль но - го цик ла. Бо лее углуб лен ное из уче ние мо ле ку ляр ных ме ха низ мов де йствия ядер ных ре цеп то ров сте ро ид ных гор мо нов, фак то - ров транс крип ции, учас тву ю щих в ре мо де ли ро ва нии сер дца, пе ре крес тных ад ре нер ги чес ких сиг наль ных пу тей и их эф фек - тор ных мо ле кул при ве дет к по ста нов ке но вых за дач для ген - дер-спе ци фи чес кой те ра пии. Клю че вые сло ва: сер деч ная не дос та точ ность, стресс, ад - ре нер ги чес кие ре цеп то ры, по ло вая спе ци фич ность. REFERENCES 1. Armour J. A. Potential clinical relevance of the «little brain» on the mammalian heart // Exp. Physiol.–2008.–93, N 2.– P. 165– 176. 2. Cheng Z., Powley T. L., Schwaber J. S., Doyle F. J. 3rd. Vagal afferent innervation of the atria of the rat heart reconstructed with confocal microscopy // J. Comp. Neurol.–1997.–381, N 1.– P. 1–17. 3. Dhein S., van Koppen C. J., Brodde O. E. Muscarinic receptors in the mammalian heart // Pharmacol. Res.–2001.–44, N 3.– P. 161–182. 4. Myslivecek J., Novakova M., Palkovits M., Krizanova O., Kvet- nansky R. Distribution of mRNA and binding sites of adreno- ceptors and muscarinic receptors in the rat heart // Life Sci.– 2006.–79, N 2.–P. 112–120. 5. Wang H., Lu Y.Wang Z. Function of cardiac M3 receptors // Auton. Autacoid Pharmacol.–2007.–27, N 1.–P. 1–11. 6. Wilkinson D. J., Thompson J. M., Lambert G. W., Jennings G. L., Schwarz R. G., Jefferys D., Turner A. G., Esler M. D. Sym- pathetic activity in patients with panic disorder at rest, under laboratory mental stress, and during panic attacks // Arch. Gen. Psychiatry.–1998.–55, N 6.–P. 511–520. 7. Rumantir M. S., Jennings G. L., Lambert G. W., Kaye D. M., Se- als D. R., Esler M. D. The «adrenaline hypothesis» of hyper- tension revisited: evidence for adrenaline release from the heart of patients with essential hypertension // J. Hypertens.–2000.– 18, N 6.–P. 717–723. 8. Morris M. J., Cox H. S., Lambert G. W., Kaye D. M., Jennings G. L., Meredith I. T., Esler M. D. Region-specific neuropeptide Y overflows at rest and during sympathetic activation in humans // Hypertension.–1997.–29, Pt 1.–P. 137–143. 9. Esler M., Kaye D. Measurement of sympathetic nervous system activity in heart failure: the role of norepinephrine kinetics // Heart Fail. Rev.–2000.–5, N 1.–P. 17–25. 10. Wolff D. W., Dang H. K., Liu M. F., Jeffries W. B., Scofield M. A. Distribution of alpha 1-adrenergic receptor mRNA species in rat heart // J. Cardiovasc. Pharmacol.–1998.–32, N 1.–P. 117–122. 11. Jensen B. C., Swigart P. M., Laden M. E., DeMarco T., Hoopes C., Simpson P. C. The alpha-1D is the predominant alpha-1- adrenergic receptor subtype in human epicardial coronary arteries // J. Am. Coll. Cardiol.–2009.–54, N 13.–P. 1137–1145. 12. Bylund D. B. Subtypes of alpha 1- and alpha 2-adrenergic recep- tors // FASEB J.–1992.–6, N 3.–P. 832–839. 13. Gauthier C., Tavernier G., Charpentier F., Langin D., Le Marec H. Functional beta3-adrenoceptor in the human heart // J. Clin. Invest.–1996.–98, N 2.–P. 556–562. 14. Ito M., Grujic D., Abel E. D., Vidal-Puig A., Susulic V. S., La- witts J., Harper M. E., Himms-Hagen J., Strosberg A. D., Lowell B. B. Mice expressing human but not murine beta3-adrenergic receptors under the control of human gene regulatory elements // Diabetes.–1998.–47, N 9.–P. 1464–1471. 15. Preitner F., Muzzin P., Revelli J. P., Seydoux J., Galitzky J., Berlan M., Lafontan M., Giacobino J. P. Metabolic response to various beta-adrenoceptor agonists in beta3-adrenoceptor kno- ckout mice: evidence for a new beta-adrenergic receptor in brown adipose tissue // Br. J. Pharmacol.–1998.–124, N 8.– P. 1684–1688. 16. Granneman J. G. The putative beta 4-adrenergic receptor is a nvel state of the beta1-adrenergic receptor // Am. J. Physiol. En- docrinol. Metab.–2001.–280, N 2.–P. E199–202. 17. Santos I. N., Spadari-Bratfisch R. C. Stress and cardiac beta ad- renoceptors // Stress.–2006.–9, N 2.–P. 69–84. 18. Wang W., Zhu W., Wang S., Yang D., Crow M. T., Xiao R. P., Cheng H. Sustained beta1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin kinase signaling path- way // Circ. Res.–2004.–95, N 8.–P. 798–806. 19. Curran J., Hinton M. J., Rios E., Bers D. M., Shannon T. R. Beta- adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase // Circ. Res.–2007.–100, N 3.–P. 391–398. 20. Freestone N. S., Heubach J. F., Wettwer E., Ravens U., Brown D., Kaumann A. J. Beta4-adrenoceptors are more effective than beta1-adrenoceptors in mediating arrhythmic Ca2+ transients in mouse ventricular myocytes // Naunyn Schmiedebergs Arch. Pharmacol.–1999.–360, N 4.–P. 445–456. 21. Zhu W. Z., Zheng M., Koch W. J., Lefkowitz R. J., Kobilka B. K., Xiao R. P. Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes // Proc. Natl Acad. Sci. USA.–2001.–98, N 4.–P. 1607–1612. 22. Pott C., Brixius K., Bundkirchen A., Bolck B., Bloch W., Stein- ritz D., Mehlhorn U., Schwinger R. H. The preferential beta3- adrenoceptor agonist BRL 37344 increases force via beta1-/ beta2-adrenoceptors and induces endothelial nitric oxide syn- thase via beta3-adrenoceptors in human atrial myocardium // Br. J. Pharmacol.–2003.–138, N 3.–P. 521–529. 23. Sartiani L., De Paoli P., Stillitano F., Aimond F., Vassort G., Mugelli A., Cerbai E. Functional remodeling in post-myocardial infarcted rats: focus on beta-adrenoceptor subtypes // J. Mol. Cell. Cardiol.–2006.–40, N 2.–P. 258–266. 24. Shen Y. T., Cervoni P., Claus T., Vatner S. F. Differences in beta 3-adrenergic receptor cardiovascular regulation in conscious primates, rats and dogs // J. Pharmacol. Exp. Ther.–1996.–278, N 3.–P. 1435–1443. 25. Kaumann A. J. Is there a third heart beta-adrenoceptor? // Trends Pharmacol. Sci.–1989.–10, N 8.–P. 316–320. 26. Kaumann A. J., Lynham J. A. Stimulation of cyclic AMP-de- pendent protein kinase in rat atria by (–)-CGP 12177 through an atypical beta-adrenoceptor // Br. J. Pharmacol.–1997.–120, N 7.–P. 1187–1189. 27. Hopkins D. A., Armour J. A. Ganglionic distribution of afferent neurons innervating the canine heart and cardiopulmonary ner- ves // J. Auton. Nerv. Syst.–1989.–26, N 3.–P. 213–222. 28. Quigg M. Distribution of vagal afferent fibers of the guinea pig heart labeled by anterograde transport of conjugated horseradish peroxidase // J. Auton. Nerv. Syst.–1991.–36, N 1.–P. 13–24. 102 HEFFER M. ET AL. 29. Guic M. M., Kosta V., Aljinovic J., Sapunar D., Grkovic I. Cha- racterization of spinal afferent neurons projecting to different chambers of the rat heart // Neurosci. Lett.–2010.–469, N 3.– P. 314–318. 30. Smith H. J., Oriol A., Morch J., McGregor M. Hemodynamic studies in cardiogenic shock: treatment with isoproterenol and metaraminol // Circulation.–1967.–35, N 6.–P. 1084–1091. 31. Bayram M., De Luca L., Massie M. B., Gheorghiade M. Reas- sessment of dobutamine, dopamine, and milrinone in the mana- gement of acute heart failure syndromes // Am. J. Cardiol.– 2005.–96, N 6A.–P. 47G–58G. 32. van de Borne P., Oren R., Somers V. K. Dopamine depresses mi- nute ventilation in patients with heart failure // Circulation.– 1998.–98, N 2.–P. 126–131. 33. Tuttle R. R., Mills J. Dobutamine: development of a new cate- cholamine to selectively increase cardiac contractility // Circ. Res.–1975.–36, N 1.–P. 185–196. 34. Lambertz H., Meyer J., Erbel R. Long-term hemodynamic ef- fects of prenalterol in patients with severe congestive heart fai- lure // Circulation.–1984.–69, N 2.–P. 298–305. 35. The xamoterol in severe heart failure study group. Xamoterol in severe heart failure // The Lancet.–1990.–336, N 8706.–P. 1–6. 36. O’Connor C. M., Gattis W. A., Uretsky B. F., Adams K. F. Jr., McNulty S. E., Grossman S. H., McKenna W. J., Zannad F., Swedberg K., Gheorghiade M., Califf R. M. Continuous intravenous dobutamine is associated with an increased risk of death in patients with advanced heart failure: insights from the Flolan International Randomized Survival Trial (FIRST) // Am. Heart J.–1999.–138, N 1.–P. 78–86. 37. Felker G. M., Benza R. L., Chandler A. B., Leimberger J. D., Cuffe M. S., Califf R. M., Gheorghiade M., O’Connor C. M. Heart failure etiology and response to milrinone in decom- pensated heart failure: results from the OPTIME-CHF study // J. Am. Coll. Cardiol.–2003.–41, N 6.–P. 997–1003. 38. Metra M., Eichhorn E., Abraham W. T., Linseman J., Bohm M., Corbalan R., DeMets D., De Marco T., Elkayam U., Gerber M., Komajda M., Liu P., Mareev V., Perrone S. V., Poole-Wilson P., Roecker E., Stewart J., Swedberg K., Tendera M., Wiens B., Bristow M. R. Effects of low-dose oral enoximone admini- stration on mortality, morbidity, and exercise capacity in pati- ents with advanced heart failure: the randomized, double-blind, placebo-controlled, parallel group ESSENTIAL trials // Eur. Heart J.–2009.–30, N 24.–P. 3015–3026. 39. Yamaguchi A., Tanaka M., Naito K., Kimura C., Kobinata T., Okamura H., Ino T., Adachi H. The efficacy of intravenous mil- rinone in left ventricular restoration // Ann. Thorac. Cardiovasc. Surg.–2009.–15, N 4.–P. 233–238. 40. Chidsey C. A., Braunwald E., Morrow A. G., Mason D. T. Myo- cardial norepinephrine concentration in man – effects of reser- pine and of congestive heart failure // New Engl. J. Med.–1963.– 269, N 13.–P. 653–658. 41. Allman K. C., Wieland D. M., Muzik O., Degrado T. R., Wolfe E. R. Jr., Schwaiger M. Carbon-11 hydroxyephedrine with posi- tron emission tomography for serial assessment of cardiac adre- nergic neuronal function after acute myocardial infarction in humans // J. Am. Coll. Cardiol.–1993.–22, N 2.–P. 368–375. 42. Bristow M. R., Ginsburg R., Umans V., Fowler M., Minobe W., Rasmussen R., Zera P., Menlove R., Shah P., Jamieson S., Stinson E. B. Beta 1- and beta 2-adrenergic-receptor subpo- pulations in nonfailing and failing human ventricular myo- cardium: coupling of both receptor subtypes to muscle contrac- tion and selective beta 1-receptor down-regulation in heart fai- lure // Circ. Res.–1986.–59, N 3.–P. 297–309. 43. Brodde O. E. Pathophysiology of the beta-adrenoceptor system in chronic heart failure: consequences for treatment with ago- nists, partial agonists or antagonists? // Eur. Heart J.–1991.–12, Suppl F.–P. 54–62. 44. Bristow M. R., Hershberger R. E., Port J. D., Minobe W., Ras- mussen R. Beta 1- and beta 2-adrenergic receptor-mediated ade- nylate cyclase stimulation in nonfailing and failing human ven- tricular myocardium // Mol. Pharmacol.–1989.–35, N 3.– P. 295–303. 45. Bristow M. R., Hershberger R. E., Port J. D., Gilbert E. M., San- doval A., Rasmussen R., Cates A. E., Feldman A. M. Beta- adrenergic pathways in nonfailing and failing human ventricular myocardium // Circulation.–1990.–82, 2 Suppl.–P. I12–25. 46. Bristow M. R., Anderson F. L., Port J. D., Skerl L., Hershberger R. E., Larrabee P., O’Connell J. B., Renlund D. G., Volkman K., Murray J., Feldman A. M. Differences in beta-adrenergic neuroeffector mechanisms in ischemic versus idiopathic dilated cardiomyopathy // Circulation.–1991.–84, N 3.–P. 1024–1039. 47. Cohn J. N., Levine T. B., Olivari M. T., Garberg V., Lura D., Francis G. S., Simon A. B., Rector T. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure // New Engl. J. Med.–1984.–311, N 13.–P. 819–823. 48. Levine T. B., Francis G. S., Goldsmith S. R., Simon A. B., Cohn J. N. Activity of the sympathetic nervous system and renin- angiotensin system assessed by plasma hormone levels and their relationship to hemodynamic abnormalities in congestive heart failure // Am. J. Cardiol.–1982.–49, N 7.–P. 1659–1666. 49. Hasking G. J., Esler M. D., Jennings G. L., Burton D., Johns J. A., Korner P. I. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity // Circulation.–1986.– 73, N 4.–P. 615–621. 50. Kaye D. M., Lefkovits J., Jennings G. L., Bergin P., Broughton A., Esler M. D. Adverse consequences of high sympathetic ner- vous activity in the failing human heart // J. Am. Coll. Cardiol.– 1995.–26, N 5.–P. 1257–1263. 51. Rundqvist B., Elam M., Bergmann-Sverrisdottir Y., Eisenhofer G., Friberg P. Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure // Circulation.–1997.–95, N 1.–P. 169–175. 52. Meredith I. T., Broughton A., Jennings G. L., Esler M. D. Evi- dence of a selective increase in cardiac sympathetic activity in patients with sustained ventricular arrhythmias // New Engl. J. Med.–1991.–325, N 9.–P. 618–624. 53. Smith-White M. A., Herzog H., Potter E. K. Role of neuropep- tide Y Y(2) receptors in modulation of cardiac parasympathetic neurotransmission // Regul. Pept.–2002.–103, N 2–3.–P. 105– 111. 54. Patel K. P., Zhang P. L., Krukoff T. L. Alterations in brain he- xokinase activity associated with heart failure in rats // Am. J. Physiol.–1993.–265, N 4.–P. R923–R928. 55. Patel K. P., Zhang K. Neurohumoral activation in heart failure: role of paraventricular nucleus // Clin. Exp. Pharmacol. Phy- siol.–1996.–23, N 8.–P. 722–726. 56. Milano C. A., Allen L. F., Rockman H. A., Dolber P. C., McMinn T. R., Chien K. R., Johnson T. D., Bond R. A., Lefkowitz R. J. En- hanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor // Science.–1994.–264, N 5158.– P. 582–586. 57. Liggett S. B., Tepe N. M., Lorenz J. N., Canning A. M., Jantz T. D., Mitarai S., Yatani A., Dorn G. W., 2nd. Early and delayed consequences of beta(2)-adrenergic receptor overexpression in mouse hearts: critical role for expression level // Circulation.– 2000.–101, N 14.–P. 1707–1714. 103 THE ROLE OF STRESS IN HEART FAILURE – GROUND FOR SEX SPECIFIC PATHOPHYSIOLOGY 58. Engelhardt S., Hein L., Wiesmann F., Lohse M. J. Progressive hypertrophy and heart failure in beta1-adrenergic receptor trans- genic mice // Proc. Natl Acad. Sci. USA.–1999.–96, N 12.– P. 7059–7064. 59. Du X.-J., Gao X.-M., Wang B., Jennings G. L., Woodcock E. A., Dart A. M. Age-dependent cardiomyopathy and heart failure phenotype in mice overexpressing β2-adrenergic receptors in the heart // Cardiovasc. Res.–2000.–48, N 3.–P. 448–454. 60. Iwase M., Uechi M., Vatner D. E., Asai K., Shannon R. P., Kudej R. K., Wagner T. E., Wight D. C., Patrick T. A., Ishikawa Y., Homcy C. J., Vatner S. F. Cardiomyopathy induced by cardiac Gs alpha overexpression // Am. J. Physiol.–1997.–272, N 1.– P. H585–589. 61. Lader A. S., Xiao Y.-F., Ishikawa Y., Cui Y., Vatner D. E., Vatner S. F., Homcy C. J., Cantiello H. F. Cardiac Gsalpha overexpres- sion enhances L-type calcium channels through an adenylyl cyc lase independent pathway // Proc. Natl Acad. Sci. USA.–1998.– 95, N 16.–P. 9669–9674. 62. Antos C. L., Frey N., Marx S. O., Reiken S., Gaburjakova M., Ri- chardson J. A., Marks A. R., Olson E. N. Dilated cardiomyo- pathy and sudden death resulting from constitutive activation of protein kinase A // Circ. Res.–2001.–89, N 11.–P. 997–1004. 63. Waagstein F., Hjalmarson A. C., Wasir H. S. Apex cardiogram and systolic time intervals in acute myocardial infarction and ef- fects of practolol // Br. Heart. J.–1974.–36, N 11.–P. 1109– 1121. 64. Segev A., Mekori Y. A. The cardiac insufficiency bisoprolol stu- dy II // Lancet.–1999.–353, N 9161.–P. 1361. 65. Poole-Wilson P. A. The cardiac insufficiency bisoprolol study II // Lancet.–1999.–353, N 9161.–P. 1360–1361. 66. Poole-Wilson P. A., Swedberg K., Cleland J. G., Di Lenarda A., Hanrath P., Komajda M., Lubsen J., Lutiger B., Metra M., Rem- me W. J., Torp-Pedersen C., Scherhag A., Skene A. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol Euro- pean Trial (COMET): randomised controlled trial // Lancet.– 2003.–362, N 9377.–P. 7–13. 67. Selye H. A syndrome produced by diverse nocuous agents // Nature.–1936.–138, N 3479.– P. 32. 68. Day T. A. Defining stress as a prelude to mapping its neurocir- cuitry: no help from allostasis // Prog. Neuropsychopharmacol. Biol. Psychiatry.–2005.–29, N 8.–P. 1195–1200. 69. Herman J. P., Figueiredo H., Mueller N. K., Ulrich-Lai Y., Os- trander M. M., Choi D. C., Cullinan W. E. Central mechanisms of stress integration: hierarchical circuitry controlling hypotha- lamo-pituitary-adrenocortical responsiveness // Front. Neuroen- docrinol.–2003.–24, N 3.–P. 151–180. 70. Tanoue A., Ito S., Honda K., Oshikawa S., Kitagawa Y., Koshi- mizu T. A., Mori T., Tsujimoto G. The vasopressin V1b receptor critically regulates hypothalamic-pituitary-adrenal axis activity under both stress and resting conditions // J. Clin. Invest.– 2004.–113, N 2.–P. 302–309. 71. Ross M. E., Evinger M. J., Hyman S. E., Carroll J. M., Mucke L., Comb M., Reis D. J., Joh T. H., Goodman H. M. Identification of a functional glucocorticoid response element in the phenyletha- nolamine N-methyltransferase promoter using fusion genes in- troduced into chromaffin cells in primary culture // J. Neurosci.– 1990.–10, N 2.–P. 520–530. 72. Tai T. C., Claycomb R., Her S., Bloom A. K., Wong D. L. Gluco- corticoid responsiveness of the rat phenylethanolamine N-me- thyltransferase gene // Mol. Pharmacol.–2002.–61, N 6.– P. 1385–1392. 73. Wong D. L., Tai T. C., Wong-Faull D. C., Claycomb R., Kvetna- nsky R. Adrenergic responses to stress: transcriptional and post-transcriptional changes // Ann. N. Y. Acad. Sci.–2008.– 1148, N 1.–P. 249–256. 74. Fuller R. W., Hunt J. M. Inhibition of phenethanolamine N-me- thyl transferase by its product, epinephrine // Life Sci.–1967.–6, N 10.–P. 1107–1112. 75. Marti O., Gavalda A., Jolin T., Armario A. Effect of regularity- of exposure to chronic immobilization stress on the circadian pattern of pituitary adrenal hormones, growth hormone, and thy- roid stimulating hormone in the adult male rat // Psychoneuro- endocrinology.–1993.–18, N 1.–P. 67–77. 76. Ottenweller J. E., Servatius R. J., Natelson B. H. Repeated stress persistently elevates morning, but not evening, plasma cortico- sterone levels in male rats // Physiol. Behav.–1994.–55, N 2.– P. 337–340. 77. Fleshner M., Deak T., Spencer R. L., Laudenslager M. L., Wat- kins L. R., Maier S. F. A long-term increase in basal levels of corticosterone and a decrease in corticosteroid-binding globulin after acute stressor exposure // Endocrinology.–1995.–136, N 12.–P. 5336–5342. 78. Liu X., Serova L., Kvetnansky R., Sabbah E. L. Identifying the stress trancriptome in the adrenal medulla following acute and repeated immobilization // Ann.N. Y. Acad. Sci.–2008.–1148.– P. 1–28. 79. Eisenhofer G., Friberg P., Rundqvist B., Quyyumi A. A., Lam- bert G., Kaye D. M., Kopin I. J., Goldstein D. S., Esler M. D. Cardiac sympathetic nerve function in congestive heart failure // Circulation.–1996.–93, N 9.–P. 1667–1676. 80. Bassani R. A., de Moraes S. Effects of repeated footshock stress on the chronotropic responsiveness of the isolated pacemaker of the rat: role of beta-2 adrenoceptors // J. Pharmacol. Exp. Ther.– 1988.–246, N 1.–P. 316–321. 81. Rahnemaye F., Nourani R., Spadari R. C., De Moraes S. Foot- shock stress-induced supersensitivity to isoprenaline in the iso- lated pacemaker of the rat: effect of the compounds RU-38486 and RU-28362 // Gen. Pharmacol.–1992.–23, N 4.–P. 787–791. 82. Marcondes F. K., Vanderlei L. C. M., Lanza L. L. B., Spadari- Bratfisch R. C. Stress-induced subsensitivity to catecholamines depends on the estrous cycle // Can. J. Physiol. Pharmacol.– 1996.–74, N 6.–P. 663–699. 83. Farias-Silva E., Grassi-Kassisse D. M., Wolf-Nunes V., Spada- ri-Bratfisch R. C. Stress-induced alteration in the lipolytic res- ponse to beta-adrenoceptor agonists in rat white adipocytes // J. Lipid. Res.–1999.–40, N 9.–P. 1719–1727. 84. Farias-Silva E., Sampaio-Barros M. M., Amaral M. E., Carnei- ro E. M., Boschero A. C., Grassi-Kassisse D. M., Spadari-Brat- fisch R. C. Subsensitivity to insulin in adipocytes from rats submitted to foot-shock stress // Can. J. Physiol. Pharmacol.– 2002.–80, N 8.–P. 783–789. 85. Nikolaev V. O., Moshkov A., Lyon A. R., Miragoli M., Novak P., Paur H., Lohse M. J., Korchev Y. E., Harding S. E., Gorelik J. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation // Science.–2010.–327, N 5973.– P. 1653–1657. 86. Peter P. S., Brady J. E., Yan L., Chen W., Engelhardt S., Wang Y., Sadoshima J., Vatner S. F., Vatner D. E. Inhibition of p38 al- pha MAPK rescues cardiomyopathy induced by overexpressed beta 2-adrenergic receptor, but not beta 1-adrenergic receptor // J. Clin. Invest.–2007.–117, N 5.–P. 1335–1343. 87. Myslivecek J., Tillinger A., Novakova M., Kvetnansky R. Regu- lation of adrenoceptor and muscarinic receptor gene expression after single and repeated stress // Ann. N. Y. Acad. Sci.–2008.– 1148, N 1.–P. 367–376. 88. Southwick S. M., Bremner J. D., Rasmusson A., Morgan C. A., 3rd, Arnsten A., Charney D. S. Role of norepinephrine in the pa- 104 HEFFER M. ET AL. thophysiology and treatment of posttraumatic stress disorder // Biol. Psychiatry.–1999.–46, N 9.–P. 1192–1204. 89. Yehuda R., Siever L. J., Teicher M. H., Levengood R. A., Gerber D. K., Schmeidler J., Yang R. K. Plasma norepinephrine and 3- methoxy-4-hydroxyphenylglycol concentrations and severity of depression in combat posttraumatic stress disorder and major depressive disorder // Biol. Psychiatry.–1998.–44, N 1.–P. 56– 63. 90. Sabban E. L., Kvetnansky R. Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of trans- criptional events // Trends Neurosci.–2001.–24, N 2.–P. 91–98. 91. Krizanova O., Micutkova L., Jelokova J., Filipenko M., Sabban E., Kvetnansky R. Existence of cardiac PNMT mRNA in adult rats: elevation by stress in a glucocorticoid-dependent manner // Am. J. Physiol.–2001.–281, N 3.–P. H1372–1379. 92. Kvetnansky R., Kubovcakova L., Tillinger A., Micutkova L., Kri- zanova O., Sabban E. L. Gene expression of phenylethanolami- ne N-methyltransferase in corticotropin-releasing hormone kno- ckout mice during stress exposure // Cell. Mol. Neurobiol.– 2006.–26, N 4–6.–P. 735–754. 93. Galletty F., Iacone R., Ragone E., Russo O., Della Valle E., Sia- ni A., Barba G., Farinaro E., Strazzullo V., Strazzullo P. Lack of association between polymorphism in the beta2-adrenergic re- ceptor gene, hypertension and obesity in the Olivetti heart study // Am. J. Hypertens.–2004.–17, N 8.–P. 718–720. 94. Rao F., Zhang L., Wessel J., Zhang K., Wen G., Kennedy B. P., Rana B. K., Das M., Rodriguez-Flores J. L., Smith D. W., Cad- man P. E., Salem R. M., Mahata S. K., Schork N. J., Taupenot L., Ziegler M. G., O'Connor D. T. Tyrosine hydroxylase, the rate-li- miting enzyme in catecholamine biosynthesis: discovery of common human genetic variants governing transcription, auto- nomic activity, and blood pressure in vivo // Circulation.–2007.– 116, N 9.–P. 993–1006. 95. Armando I., Volpi S., Aguilera G., Saavedra J. M. Angiotensin II AT1 receptor blockade prevents the hypothalamic cortico- tropin-releasing factor response to isolation stress // Brain Res.– 2007.–1142.–P. 92–99. 96. Saavedra J. M., Benicky J. Brain and peripheral angiotensin II play a major role in stress // Stress.–2007.–10, N 2.–P. 185–193. 97. Keck M. E., Holsboer F. Hyperactivity of CRH neuronal circuits as a target for therapeutic interventions in affective disorders // Peptides.–2001.–22, N 5.–P. 835–844. 98. Minneman K. P., Hegstrand L. R., Molinoff P. B. Simultaneous determination of beta-1 and beta-2-adrenergic receptors in tis- sues containing both receptor subtypes // Mol. Pharmacol.– 1979.–16, N 1.–P. 34–46. 99. Zhang K., Komori T., Miyahara S., Yamamoto M., Matsumoto T., Okazaki Y. Effect of single and repeated restraint stresses on the expression of beta(1)-adrenoceptor mRNA in the rat hypo- thalamus and midbrain // Neuropsychobiology.–2002.–46, N 3.–P. 121–124. 100. McEwen B. S. Stress, adaptation, and disease: Allostasis and allostatic load // Ann. N. Y. Acad. Sci.–1998.–840.–P. 33–44. 101. Iacobas D. A., Iacobas S., Thomas N., Spray D. C. Sex-depen- dent gene regulatory networks of the heart rhythm // Funct. Integr. Genomics.–2010.–10, N 1.–P. 73–86. 102. Yang J. N., Chen J. F., Fredholm B. B. Physiological roles of A1 and A2A adenosine receptors in regulating heart rate, body temperature, and locomotion as revealed using knockout mice and caffeine // Am. J. Physiol. Heart Circ. Physiol.–2009.–296, N 4.–P. H1141–1149. 103. Cifkova R., Skodova Z., Lanska V., Adamkova V., Novozamska E., Jozifova M., Plaskova M., Hejl Z., Petrzilkova Z., Galovcova M., Palous D. Prevalence, awareness, treatment, and control of hypertension in the Czech Republic. Results of two nationwide cross-sectional surveys in 1997/1998 and 2000/2001, Czech Post-MONICA Study // J. Hum. Hypertens.–2004.–18, N 8.– P. 571–579. 104. Vokonas P. S., Kannel W. B., Cupples L. Epidemiology and risk of hypertension in the elderly: the framingham sudy // J. Hyper- tens. Suppl.–1988.–6, N 1.–P. S3–9. 105. Ong K. L., Cheung B. M., Man Y. B., Lau C. P., Lam K. S. Preva- lence, awareness, treatment, and control of hypertension among united states adults 1999–2004 // Hypertension.–2007.–49, N 1.–P. 69–75. 106. Hart E. C., Charkoudian N., Miller V. M. Sex, hormones and neuroeffector mechanisms // Acta Physiol. (Oxf.).–2010.– doi: 10.1111/j.1748-1716.2010.02192.x. 107. Thireau J., Aimond F., Poisson D., Zhang B., Bruneval P., Eder V., Richard S., Babuty D. New insights into sexual dimorphism during progression of heart failure and rhythm disorders // Endocrinology.–2010.–151, N 4.–P. 1837–1845. 108. Roger V. L., Go A. S., Lloyd-Jones D. M., Adams R. J., Berry J. D., Brown T. M., Carnethon M. R., Dai S., de Simone G., Ford E. S., Fox C. S., Fullerton H. J., Gillespie C., Greenlund K. J., Hailpern S. M., Heit J. A., Ho P. M., Howard V. J., Kissela B. M., Kittner S. J., Lackland D. T., Lichtman J. H., Lisabeth L. D., Makuc D. M., Marcus G. M., Marelli A., Matchar D. B., McDermott M. M., Meigs J. B., Moy C. S., Mozaffarian D., Mussolino M. E., Nichol G., Paynter N. P., Rosamond W. D., Sorlie P. D., Stafford R. S., Turan T. N., Turner M. B., Wong N. D., Wylie-Rosett J., on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee, Roger V. L., Turner M. B. and on behalf of the American Heart As- sociation Heart Disease and Stroke Statistics Writing Group Heart Disease and Stroke Statistics_2011 Update: A Report from the American Heart Association // Circulation.–2011.– 123.–P. e18–e209. 109. Lujan H. L., Dicarlo S. E. Sex differences to myocardial ische- mia and beta-adrenergic receptor blockade in conscious rats // Am. J. Physiol. Heart Circ. Physiol.–2008.–294, N 4.– P. H1523–1529. 110. Bozkurt B. Where do we currently stand with advice on hormone replacement therapy for women? // Methodist Debakey Cardio- vasc. J.–2010.–6, N 4.–P. 21–25. 111. Giardina E. G. Heart disease in women // Int. J. Fertil. Womens Med.–2000.–45, N 6.–P. 350–357. 112. Schwarz E. R., Dashti R. The clinical quandary of left and right ventricular diastolic dysfunction and diastolic heart failure // Cardiovasc. J. Afr.–2010.–21, N 4.–P. 212–220. 113. Kaku K., Takeuchi M., Otani K., Sugeng L., Nakai H., Haruki N., Yoshitani H., Watanabe N., Yoshida K., Otsuji Y., Mor-Avi V., Lang R. M. Age- and gender-dependency of left ventricular geometry assessed with real-time three-dimensional transtho- racic echocardiography // J. Am. Soc. Echocardiogr.–2011.– doi:10.1016/j.echo.2011.01.011. 114. Regitz-Zagrosek V., Oertelt-Prigione S., Seeland U., Hetzer R. Sex and gender differences in myocardial hypertrophy and heart failure // Circ. J.–2010.–74, N 7.–P. 1265–1273. 115. Hutchinson K. R., Stewart J. A., Lucchesi P. A. Extracellular matrix remodeling during the progression of volume overload- induced heart failure // J. Mol. Cell. Cardiol.–2010.–48, N 3.– P. 564–569. 116. Ky B., Kirwan B. A., de Brouwer S., Lubsen J., Poole-Wilson P., Otterstad J. E., Kimmel S. E., St. John Sutton M. Gender diffe- rences in cardiac remodeling and clinical outcomes in chronic stable angina pectoris (from the ACTION Trial) // Am. J. Car- diol.–2010.–105, N 7.–P. 943–947. 105 THE ROLE OF STRESS IN HEART FAILURE – GROUND FOR SEX SPECIFIC PATHOPHYSIOLOGY 117. Chan V., Fenning A., Levick S., Loch D., Chunduri P., Iyer A., Teo Y., Hoey A., Wilson K., Burstow D., Brown L. Cardiovascu- lar changes during maturation and aging in male and female spontaneously hypertensive rats // J. Cardiovasc. Pharmacol.– 2011.–doi: 10.1097/FJC.0b013e3182102c3b. 118. Fliegner D., Schubert C., Penkalla A., Witt H., Kararigas G., Dworatzek E., Staub E., Martus P., Ruiz Noppinger P., Kint- scher U., Gustafsson J. A., Regitz-Zagrosek V. Female sex and estrogen receptor-beta attenuate cardiac remodeling and apop- tosis in pressure overload // Am. J. Physiol. Regul. Integr. Comp. Physiol.–2010.–298, N 6.–P. R1597–1606. 119. Satoh M., Matter C. M., Ogita H., Takeshita K., Wang C. Y., Dorn G. W., 2nd, Liao J. K. Inhibition of apoptosis-regulated signaling kinase-1 and prevention of congestive heart failure by estrogen // Circulation.–2007.–115, N 25.–P. 3197–3204. 120. Ghali J. K., Krause-Steinrauf H. J., Adams K. F., Khan S. S., Rosenberg Y. D., Yancy C. W., Young J. B., Goldman S., Peber- dy M. A., Lindenfeld J. Gender differences in advanced heart fai- lure: insights from the BEST study // J. Am. Coll. Cardiol.– 2003.–42, N 12.–P. 2128–2134. 121. Ghali J. K., Lindenfeld J. Sex differences in response to chronic heart failure therapies // Expert. Rev. Cardiovasc. Ther.–2008.– 6, N 4.–P. 555–565. 122. Gardner J. D., Murray D. B., Voloshenyuk T. G., Brower G. L., Bradley J. M., Janicki J. S. Estrogen attenuates chronic volume overload induced structural and functional remodeling in male rat hearts // Am. J. Physiol. Heart Circ. Physiol.–2010.–298, N 2.–P. H497–504. 123. Konhilas J. P., Leinwand L. A. The effects of biological sex and diet on the development of heart failure // Circulation.–2007.– 116, N 23.–P. 2747–2759. 124. Merz C. N. B., Olson M. B., McClure C., Yang Y.-C., Symons J., Sopko G., Kelsey S. F., Handberg E., Johnson B. D., Cooper- DeHoff R. M., Sharaf B., Rogers W. J., Pepine C. J. A rando- mized controlled trial of low-dose hormone therapy on myocar- dial ischemia in postmenopausal women with no obstructive coronary artery disease: Results from the National Institutes of Health/National Heart, Lung, and Blood Institutesponsored Women’s Ischemia Syndrome Evaluation (WISE) // Am. Heart J.–2010.–159, N 6.–P. 987. e1–7. 125. Novakova M., Kvetnansky R., Myslivecek J. Sexual dimorphism in stress-induced changes in adrenergic and muscarinic receptor densities in the lung of wild type and corticotropin-releasing hormone-knockout mice // Stress.–2010.–13, N 1.–P. 22–35. 126. Goldstein J. M., Jerram M., Abbs B., Whitfield-Gabrieli S., Makris N. Sex differences in stress response circuitry activation dependent on female hormonal cycle // J. Neurosci.–2010.–30, N 2.–P. 431–438. 127. Garcia-Barrado M. J., Iglesias-Osma M. C., Moreno-Viedma V., Pastor Mansilla M. F., Gonzalez S. S., Carretero J., Mora- tinos J., Burks D. J. Differential sensitivity to adrenergic stimu- lation underlies the sexual dimorphism in the development of diabetes caused by Irs-2 deficiency // Biochem. Pharmacol.– 2011.–81, N 2.–P. 279–288. 128. Kumsta R., Entringer S., Koper J. W., van Rossum E. F., Hell- hammer D. H., Wust S. Sex specific associations between com- mon glucocorticoid receptor gene variants and hypothalamus- pituitary-adrenal axis responses to psychosocial stress // Biol. Psychiatry.–2007.–62, N 8.–P. 863–869. 129. van Rooij E., Fielitz J., Sutherland L. B., Thijssen V. L., Crijns H. J., Dimaio M. J., Shelton J., De Windt L. J., Hill J. A., Olson E. N. Myocyte enhancer factor 2 and class II histone deacety- lases control a gender-specific pathway of cardioprotection me- diated by the estrogen receptor // Circ. Res.–2010.–106, N 1.– P. 155–165. 130. Pacanowski M. A., Zineh I., Li H., Johnson B. D., Cooper- DeHoff R. M., Bittner V., McNamara D. M., Sharaf B. L., Merz C. N., Pepine C. J., Johnson J. A. Adrenergic gene polymor- phisms and cardiovascular risk in the NHLBI-sponsored Wo- men’s Ischemia Syndrome Evaluation // J. Transl. Med.–2008.– 6, N 1.–P. 11. 131. Christiansen D. M., Elklit A. Risk factors predict post-traumatic stress disorder differently in men and women // Ann. Gen. Psy- chiatry.–2008.–7.–P. 24. 132. Olff M., Langeland W., Draijer N., Gersons B. P. R. Gender dif- ferences in posttraumatic stress disorder // Psychol. Bull.– 2007.–133, N 2.–P. 183–204. 133. Macabasco-O’Connell A., Crawford M. H., Stotts N., Stewart A., Froelicher E. S. Gender and racial differences in psycho- social factors of low-income patients with heart failure // Heart Lung.–2010.–39, N 1.–P. 2–11. 134. Huzen J., van der Harst P., de Boer R. A., Lesman-Leegte I., Vo- ors A. A., van Gilst W. H., Samani N. J., Jaarsma T., van Veld- huisen D. J. Telomere length and psychological well-being in patients with chronic heart failure // Age Ageing.–2010.–39, N 2.–P. 223–227. 135. Wong L. S., Oeseburg H., de Boer R. A., van Gilst W. H., van Veldhuisen D. J., van der Harst P. Telomere biology in cardio- vascular disease: the TERC–/– mouse as a model for heart failure and ageing // Cardiovasc. Res.–2009.–81, N 2.–P. 244–252. 136. Lee K. S., Song E. K., Lennie T. A., Frazier S. K., Chung M. L., Heo S., Wu J.-R., Rayens M. K., Riegel B., Moser D. K. Symp- tom clusters in men and women with heart failure and their im- pact on cardiac event-free survival // J. Cardiovasc. Nurs.– 2010.–25, N 4.–P. 263–272. 137. Neckelmann D., Mykletun A., Dahl A. A. Chronic insomnia as a risk factor for developing anxiety and depression // Sleep.– 2007.–30, N 7.–P. 873–880. 138. Hayes D. Jr., Anstead M. I., Ho J., Phillips B. A. Insomnia and chronic heart failure // Heart Fail. Rev.–2009.–14, N 3.–P. 171– 182. 139. Cocco G., Chu D. Stress-induced cardiomyopathy: a review // Eur. J. Intern. Med.–2007.–18, N 5.–P. 369–379. 140. Primetshofer D., Agladze R., Kratzer H., Reisinger J., Siostr- zonek P. Tako-Tsubo syndrome: an important differential diag- nosis in patients with acute chest pain // Wien. Klin. Wo- chenschr.–2010.–122, N 1.–P. 37–44. UDC 616.1 + 612.176 Received 10.01.11 106 HEFFER M. ET AL.