Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group

The aim was analysis of 4-thiazolidinones and related heterocyclic systems anticancer activity data and formation of some rational design directions of potential anticancer agents. Synthetic research carried out in Danylo Halytsky Lviv National Medical University (DH LNMU) allowed us to propose a w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2011
Hauptverfasser: Lesyk, R. B., Zimenkovsky, B. S., Kaminskyy, D. V., Kryshchyshyn, A. P., Havryluk, R. B. LD. Ya., Atamanyuk, D. V., Subtel’na, I. Yu., Khyluk, D. V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут молекулярної біології і генетики НАН України 2011
Schriftenreihe:Вiopolymers and Cell
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/153707
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group / R. B. Lesyk, B. S. Zimenkovsky, D. V. Kaminskyy, A. P. Kryshchyshyn, D. Ya. Havryluk, D. V. Atamanyuk, I. Yu. Subtel’na, D. V. Khyluk // Вiopolymers and Cell. — 2011. — Т. 27, № 2. — С. 107-117. — Бібліогр.: 49 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-153707
record_format dspace
spelling irk-123456789-1537072019-06-15T01:30:22Z Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group Lesyk, R. B. Zimenkovsky, B. S. Kaminskyy, D. V. Kryshchyshyn, A. P. Havryluk, R. B. LD. Ya. Atamanyuk, D. V. Subtel’na, I. Yu. Khyluk, D. V. Structure and Function of Biopolymers The aim was analysis of 4-thiazolidinones and related heterocyclic systems anticancer activity data and formation of some rational design directions of potential anticancer agents. Synthetic research carried out in Danylo Halytsky Lviv National Medical University (DH LNMU) allowed us to propose a whole number of new molecular design directions of biological active 4-thiazolidinones and related heterocyclic systems, as well as obtain directed library that numbers over 5000 of novel compounds. At the present time in vitro anticancer activity screening was carried out for more than 1000 compounds (US NCI protocol (Developmental Therapeutic Program), among them 167 compounds showed high antitumor activity level. For the purpose of optimization and rational design of highly active molecules with optimal «drug-like» characteristics and discovering of possible mechanism of action SAR, QSAR analysis and molecular docking were carried out. The ultimate aim of the project is creating of innovative synthetic drug with special mechanism of action and sufficient pharmacological and toxicological features. Some aspects of structure–activity relationships were determined and structure design directions were proposed. The series of active compounds with high anticancer activity and/or selectivity levels were selected. Key words: synthesis, 4-thia(imida)zolidinones, thiopyrano[2,3-d]thiazoles, anticancer activity, (Q)SAR. Метою роботи був аналіз результатів дослідження протипухлинної активності 4-азолідонів і споріднених гетероциклічних сполук та формування деяких напрямків раціонального дизайну потенційних протипухлинних агентів. Синтетичні дослідження, проведені у ЛНМУ імені Данила Галицького, дозволили запропонувати низку нових спрямувань молекулярного дизайну біологічно активних 4-тіазолідинонів та споріднених гетероциклічних систем, а також одержати сфокусовану бібліотеку, яка нараховує понад 5000 нових сполук. На цей час здійснено in vitro скринінг протипухлинної активності понад 1000 сполук (US NCI протокол Developmental Therapeutic Program), з-поміж яких 167 ідентифіковано як такі, що мають високу протиракову активність. Для оптимізації і раціонального дизайну високоактивних молекул з оптимальними «лікоподібними» характеристиками та визначення можливого механізму біологічної дії проведено SAR- і QSAR-аналіз і молекулярний докінг. Кінцевою метою проекту є створення інноваційного синтетичного лікарського препарату з оригінальним механізмом дії та достатнім фармакологічним і токсикологічним профілем. Ключові слова: синтез, 4-тіа(іміда)золідинони, тіопірано[2, 3-d]тіазоли, протипухлинна активність, (Q)SAR. Цель работы состояла в анализе результатов исследования противоопухолевой активности 4-азолидонов и родственных гетероциклических систем и формировании некоторых направлений рационального дизайна потенциалных противоопухолевых агентов. Синтетические исследования, проведенные в ЛНМУ имени Данила Галицкого, позволили предложить ряд новых направлений молекулярного дизайна биологически активных 4-тиазолидинонов и родственных гетероциклических систем, а также получить сфокусированную библиотеку, насчитывающую более 5000 новых соединений. На данный момент осуществлен in vitro скрининг противоопухолевой активности (US NCI протокол Developmental Therapeutic Program) более 1000 соединений, позволивший идентифицировать 167 соединений с высоким противораковым эффектом. Для оптимизации и рационального дизайна высокоактивных молекул с оптимальными «drug-like» характеристиками и установления вероятного механизма биологического действия проведен SAR- и QSAR-анализ и молекулярный докинг. Конечная цель проекта – создание инновацинного синтетического лекарственного сресдтва с оригинальным механизмом действия, достаточным фармакологическим и токсикологическим профилем. Ключевые слова: синтез, 4-тиа(имида)золидиноны, тиопирано[2,3-d]тиазолы, противоопухолевая активность, (Q)SAR. 2011 Article Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group / R. B. Lesyk, B. S. Zimenkovsky, D. V. Kaminskyy, A. P. Kryshchyshyn, D. Ya. Havryluk, D. V. Atamanyuk, I. Yu. Subtel’na, D. V. Khyluk // Вiopolymers and Cell. — 2011. — Т. 27, № 2. — С. 107-117. — Бібліогр.: 49 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.000089 http://dspace.nbuv.gov.ua/handle/123456789/153707 615.012.1.076:547.789.1 en Вiopolymers and Cell Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Structure and Function of Biopolymers
Structure and Function of Biopolymers
spellingShingle Structure and Function of Biopolymers
Structure and Function of Biopolymers
Lesyk, R. B.
Zimenkovsky, B. S.
Kaminskyy, D. V.
Kryshchyshyn, A. P.
Havryluk, R. B. LD. Ya.
Atamanyuk, D. V.
Subtel’na, I. Yu.
Khyluk, D. V.
Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group
Вiopolymers and Cell
description The aim was analysis of 4-thiazolidinones and related heterocyclic systems anticancer activity data and formation of some rational design directions of potential anticancer agents. Synthetic research carried out in Danylo Halytsky Lviv National Medical University (DH LNMU) allowed us to propose a whole number of new molecular design directions of biological active 4-thiazolidinones and related heterocyclic systems, as well as obtain directed library that numbers over 5000 of novel compounds. At the present time in vitro anticancer activity screening was carried out for more than 1000 compounds (US NCI protocol (Developmental Therapeutic Program), among them 167 compounds showed high antitumor activity level. For the purpose of optimization and rational design of highly active molecules with optimal «drug-like» characteristics and discovering of possible mechanism of action SAR, QSAR analysis and molecular docking were carried out. The ultimate aim of the project is creating of innovative synthetic drug with special mechanism of action and sufficient pharmacological and toxicological features. Some aspects of structure–activity relationships were determined and structure design directions were proposed. The series of active compounds with high anticancer activity and/or selectivity levels were selected. Key words: synthesis, 4-thia(imida)zolidinones, thiopyrano[2,3-d]thiazoles, anticancer activity, (Q)SAR.
format Article
author Lesyk, R. B.
Zimenkovsky, B. S.
Kaminskyy, D. V.
Kryshchyshyn, A. P.
Havryluk, R. B. LD. Ya.
Atamanyuk, D. V.
Subtel’na, I. Yu.
Khyluk, D. V.
author_facet Lesyk, R. B.
Zimenkovsky, B. S.
Kaminskyy, D. V.
Kryshchyshyn, A. P.
Havryluk, R. B. LD. Ya.
Atamanyuk, D. V.
Subtel’na, I. Yu.
Khyluk, D. V.
author_sort Lesyk, R. B.
title Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group
title_short Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group
title_full Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group
title_fullStr Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group
title_full_unstemmed Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group
title_sort thiazolidinone motif in anticancer drug discovery. experience of dh lnmu medicinal chemistry scientific group
publisher Інститут молекулярної біології і генетики НАН України
publishDate 2011
topic_facet Structure and Function of Biopolymers
url http://dspace.nbuv.gov.ua/handle/123456789/153707
citation_txt Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group / R. B. Lesyk, B. S. Zimenkovsky, D. V. Kaminskyy, A. P. Kryshchyshyn, D. Ya. Havryluk, D. V. Atamanyuk, I. Yu. Subtel’na, D. V. Khyluk // Вiopolymers and Cell. — 2011. — Т. 27, № 2. — С. 107-117. — Бібліогр.: 49 назв. — англ.
series Вiopolymers and Cell
work_keys_str_mv AT lesykrb thiazolidinonemotifinanticancerdrugdiscoveryexperienceofdhlnmumedicinalchemistryscientificgroup
AT zimenkovskybs thiazolidinonemotifinanticancerdrugdiscoveryexperienceofdhlnmumedicinalchemistryscientificgroup
AT kaminskyydv thiazolidinonemotifinanticancerdrugdiscoveryexperienceofdhlnmumedicinalchemistryscientificgroup
AT kryshchyshynap thiazolidinonemotifinanticancerdrugdiscoveryexperienceofdhlnmumedicinalchemistryscientificgroup
AT havrylukrbldya thiazolidinonemotifinanticancerdrugdiscoveryexperienceofdhlnmumedicinalchemistryscientificgroup
AT atamanyukdv thiazolidinonemotifinanticancerdrugdiscoveryexperienceofdhlnmumedicinalchemistryscientificgroup
AT subtelnaiyu thiazolidinonemotifinanticancerdrugdiscoveryexperienceofdhlnmumedicinalchemistryscientificgroup
AT khylukdv thiazolidinonemotifinanticancerdrugdiscoveryexperienceofdhlnmumedicinalchemistryscientificgroup
first_indexed 2025-07-14T05:12:02Z
last_indexed 2025-07-14T05:12:02Z
_version_ 1837597901243547648
fulltext Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group R. B. Lesyk, B. S. Zimenkovsky, D. V. Kaminskyy, A. P. Kryshchyshyn, D. Ya. Havryluk, D. V. Atamanyuk, I. Yu. Subtel’na, D. V. Khyluk Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University 69, Pekarska St., Lviv, Ukraine, 79010 dr_r_lesyk@org.lviv.net; dankaminskyy@gmail.com The aim was analysis of 4-thiazolidinones and related heterocyclic systems anticancer activity data and for- mation of some rational design directions of potential anticancer agents. Synthetic research carried out in Danylo Halytsky Lviv National Medical University (DH LNMU) allowed us to propose a whole number of new molecular design directions of biological active 4-thiazolidinones and related heterocyclic systems, as well as obtain directed library that numbers over 5000 of novel compounds. At the present time in vitro anti- cancer activity screening was carried out for more than 1000 compounds (US NCI protocol (Developmental Therapeutic Program), among them 167 compounds showed high antitumor activity level. For the purpose of optimization and rational design of highly active molecules with optimal «drug-like» characteristics and discovering of possible mechanism of action SAR, QSAR analysis and molecular docking were carried out. The ultimate aim of the project is creating of innovative synthetic drug with special mechanism of action and sufficient pharmacological and toxicological features. Some aspects of structure–activity relationships were determined and structure design directions were proposed. The series of active compounds with high anticancer activity and/or selectivity levels were selected. Key words: synthesis, 4-thia(imida)zolidinones, thiopyrano[2,3-d]thiazoles, anticancer activity, (Q)SAR. Introduction. Thiazolidinone derivatives are well known class of biological active substances [1–3] that became basic for the whole number of innovative medicinal agents, such as hypoglycemic thiazolidine- diones (Pioglitazone and its analogues) [4], aldose re- ductase inhibitors (Epalrestat) [5], dual inhibitors of COX-2/5-LOX (Darbufelon) [6], modern diuretics (Etozoline) [7], Mur family inhibitors (UDP-MurNAc/ L-Ala ligases) etc. [8]. Recently thiazolidinone rese- arch area unexpectedly became interesting and promi- sing for oncology. In-depth study of PPARs allowed to put forward and validate the concept of anticancer po- tential existence of PPAR agonists including thiazoli- dinediones [9, 10]. In addition, inhibitors of antiapop- totic proteins Bcl-XL and ВН3 [11] which contribute to modulation of programmed cell death (apoptosis), as well as inhibitors of tumor necrosis factor TNFα [12], necroptosis inhibitors [13], integrin antagonists [14], inhibitors of JSP-1 [15], Pim-2 and Рim-1 protein kina- ses [16], COX-2 [17] etc. were identified among 4-thia- zolidinones. Biological active thiazolidinones and related hete- rocycles refer to one of the most successful scientific projects in the area of pharmacy of DH LNMU (Fig. 1). It is based on three strategic vectors: а) organic syn- thesis; b) pharmacological research; c) rational design of «drug-like» molecules (virtual screening: QSAR- analysis, molecular docking etc.) [1, 18]. 107 ISSN 0233–7657. Biopolymers and Cell. 2011. Vol. 27. N 2. P. 107–117  Institute of Molecular Biology and Genetics NAS of Ukraine, 2011 In the starting stages of the project anti-inflamma- tory [19–21], antimicrobial [22, 23], anticonvulsant, choleretic [24] and antioxidant [25] activities were identified. In spite of the series of perspective results, progress of the project brings to some research direc- tions changes, notably it has focused on the search of new anticancer agents. Taking into account global processes in the world science and the necessity of planning the tactics of narrowly defined groups deve- lopment in competition environment of the biological active molecules market, screening research are carried out within the National Cancer Institute (NCI) of Nati- onal Institute of Health (NIH) scientific programs (De- velopmental Therapeutic Program, Bethezda, USA, http:/dtp.nci.nih.gov) [26–30]. The ultimate aim of the project is creating of innovative synthetic drug with special mechanism of action and sufficient pharmaco- logical and toxicological features. Results and discussion. Synthetic research in the area of 4-thiazolidinones derivatives. Synthetic stra- tegy consists in structure modification of azolidinone ring formed in different [2 + 3]-cyclocondensation re- actions and modifying it in the positions 2, 3, 4 and 5. Six key types of the reactions were generally used (Knoevenagel reaction, [2 + 3]-cyclocondensation, N- alkylation, acylation, heterodiene synthesis, «domino» reactions) that allowed to obtain directed library with over 5000 new thiazolidinones and related heterocyclic systems (Fig. 2) [1, 21, 23, 31–40]. While applying the research strategy through the past few years we succeeded in gaining a number of in- teresting synthetic results that make possible to extend the field of the chemistry of thiazolidinone and related heterocycles, especially in the scope of «drug-like» molecules design. Anticancer activity evaluation of 4-thiazolidi- nones and related heterocyclic systems and efficient approaches to interpretation of «structure–activi- ty» correlation. Obtained real library of heterocyclic compounds became an object for study concerning an- ticancer activity identifying according to the standard NCI procedure. On the first stage high-performance in vitro prescreening was held on 3 tumor cell lines (NCI- H460, MCF-7 and SF-268) in concentration 10–4 М. 108 LESYK R. B. ET AL. Synthetic investigation Chemical library (over 5000 compounds) Pharmacological study Early stages of research anti-inflammatory, antioxidant, antimicrobial, anticonvulsant and choleretic activities Modern project stage NCI DTP anticancer screening QSAR-analysis, docking etc In silico approaches in "drug-like" molecules design testing in single concentration 10–4M (MCF-7, NCI-H460, SF-268 cell lines) 482 compounds testing in single concentration 10–5 M (60 cancer cell lines) 594 compounds testing in range of concentration 10–4 – 10–8M (60 cancer cell lines) 402 compounds Biological Evaluation Committee NCI 14 lead-compounds In-depth preclinical investigation 7 lead-compounds since 2005 I phase II phase III phase IV phase 167 hit- compounds Fig. 1. Scheme of the De- partment of Pharmaceu- tial, Organic and Bioor- gaic Chemistry project design Since 2005 the prescreening criteria became strict and the procedure of prescreening consists in testing of compounds activity on 60 tumor cell lines in con- centration 10–5 M. On the second stage of prescre- ening active compounds are tested in vitro at 10-fold dilutions of five concentrations (10–4–10–8M) on 60 tu- mor cell lines including lines of leukemia, non-small sell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, prostate cancer and breast cancer. In this assay three dose-response parameters are obtained: 1) growth inhibition of 50 % – GI50; 2) total growth inhibition – TGI; 3) LC50. Whereas the GI50 may be vie- wed as a growth-inhibitory level of effect, the TGI signifies a «total growth inhibition» or cytostatic level of effect. The LC50 is the lethal concentration, «net cell killing» or cytotoxity parameter. If the tested parame- ters (pGI50, pTGI and pLC50) specified in negative log10 units are less then < 4.00 these compounds are assigned as active. Now among 1076 tested compounds 402 (37.4 %) have successfully passed prescreening phase (Fig. 1). After passing the second testing phase 14 compounds were submitted for consideration of NCI Biological Committee, among them 7 compounds are affirmed for the in-depth in vivo preclinical trials as potential anti- cancer agents. Tested compounds introduce all the sub- libraries (Fig. 2) of obtained derivatives and accor- ding to the data of NCI specialists most of the highly active compounds don’t belong to any class of known anticancer agents that is weighty argument for their in- depth investigation. When analyzing the in-depth in vitro research re- sults [18] it is worth to mention that in the anticancer selectivity rating the most sensitive to 4-thiazolidino- nes and related heterocyclic systems was the line of leukemia. Level of selectivity on the cell lines of non- small sell lung cancer, CNS cancer and breast cancer are approximately the same. Series of cell lines, such as leukemia lines (CCRF-CEM, HL-60(TB), RPMI- 8226, SR, K-562, MOLT-4), CNS cancer line (U251), non-small cell lung cancer line (HOP-92), renal cancer cell lines (UO-31, 786-O), colon cancer line (HCT- 116) as well as breast cancer line (MDA-MB 231) have been found to be the most sensitive to testing com- pounds. The ranking is given in decreasing order of high antitumor effect frequency for tested compounds. Thus based on the obtained results the hypotheses of specific anti-leukemia activity of heterocycles contai- ning «thiazolidinone matrix» may be put forward. Obtained results allowed to form a number of struc- ture-anticancer activity relations and outline the ratio- nal design directions. SAR analysis was carried out wi- thin each of the presented sub-libraries of azolidinone derivatives (Fig. 3–5). 109 THIAZOLIDINONE MOTIF IN ANTICANCER DRUG DISCOVERY X N HS N S Y R N A O R Y O N N O R2 R1 N O R R2 R1N O N H S R N N O R2 R1 S N NN O N N Y O O O R N N R R2 R1 O X O X Y H R X O R O X O X Y N NHR X Y O(N)H R N H N HO O S N HO O S N HO S S N HS O X = S, NH A Y = O, NH Y = O, S Hydantoin 2,4-Thiazolidinedione Rhodanine Isorhodanine Fig. 2. Structure of compounds sub-libraries, synthesized at the Department of Pharmaceutical, Organic and Bioorganic Chemistry Anticancer effect realization of 2-substituted 4- thiazolidinones (1, 2) (Fig. 3) depends on the nature of substituents in the positions С2 and N3, moreover rela- tion between activity levels of the derivatives 2 and 3 wasn’t established. Retrospective analysis of these compounds showed that anticancer activity increases while transition from cycloalkyl moiety to heteryl moi- ety in position C2 and the moieties of amino acid or aromatic amine are eligible in position N3. Instead of this compounds of row 1 with the 2-imino fragment are characterized by the higher activity, while presence of substituent in the position N3 is not always desirable (3). Imidazolidinone isosters (X = NH) of sub-libraries 1, 3 posses lower activity level than compounds based on thiazolidinone (X = S) [39]. Suggested and confir- med by us hypotheses about the crucial role of the pre- sence and the nature of the substituent in the position C5 in anticancer effects realization [1, 36] is abso- lutely confirmed in the case of 2-substituted 4-thiazoli- done derivatives 4. In this number of heterocycles the compounds with aryl(heteryl)idene fragments are cha- racterized by the maximum level of anticancer activity. One of the effective and frequently used directions of new biological active substances research in modern medical chemistry is the direction based on the phar- macophore hybrid approach usage [41]. This approach 110 LESYK R. B. ET AL. 3711 O N (CH2)nCONR N Ar N Het X = S X = NH A + B = Het A = H, B = Ar A + B = CyclAlk R2 = H, R1 = Ar R2 + R1 = Het or X O R2 R1 4 X N N H Ar (Het) 3 Desirable molecular fragment Increase of activity level X N O N (NH) 1 Ar (Het) Ar (Het) N S S O N H S N N S O N H N S S N N N Ar Ph O N S O N N Ar Ar' S O S Ar S N N N O S NO N R N S N H O N H S O X N S O N H S N N H O R R Modification of C5 position - most effective direction 8 9 10 5 6 S N O A B 2 Ar (Het) Fig. 3. Some features of structure–anticancer activity relationships in synthesized 2,3-disubstituted-4-thiazolidinones and heterylsubstituted thiazolidinones sub-libraries provides combination of different pharmacophore cyc- les with equal biological activity and affinity to diffe- rent biotargets in one molecule. Such combination of- ten allows to reach the potantiation of action (synergic effect). The results of our research work confirm this hypothesis and help us to identify high antitumor effect of heteryl substituted 2(4)-thiazolidinones. Study of the «structure–anticancer activity» rela- tionship makes possible to establish that antimitotic ef- fect displaying depends on the nature of heterocyclic fragment. Moving from non-condensed bis-thiazolidi- nones 5 to 2-pyrazolin substituted 10 and 2-benzthia- zolamine-4-thiazolidinones 6 is characterized by the increasing of activity [35, 38]. It is worth to mention that position of heterocyclic fragment relative to the ba- sic (thiazolidinone) cycle has ambiguous influence on the activity appearance. In the row of non-condensed systems with thiazolidinone and benzthiazole frag- ments moderate activity intension is traced when chan- ging the position of benzthiazole cycle from С2 (6) to N3 (7), while changing the position of pyrazoline cycle from С2 (10) to С4 (9) doesn’t influence the antimitotic effect realization [37]. It is established that 4-pyrazo- line substituted 2-thiazolidones 9 are more active than 4-arylamine-2-thiazolidinones 8, at the same time 2- arylamine-4-thiazolidinones isomers 3 possess higher or equal activity than 2-heteryl substituted derivatives 6, 10. In general, structure of the substituent in position C5 of thiazolidinone cycle is determinative for the anti- cancer activity realization for all the heteryl substitu- ted thiazolidinones. That’s why modification of men- tioned position is the key concept of directed synthesis of novel anticancer agents in described class of com- pounds. When moving from thiazolidinone scaffold to condensed thiazolo[3,2-b][1,2,4]triazol-6-one system light activity increasing occurs [32], though C5-sub- stituent remains the determining factor. The group of 4-thiazolidinone-3(5)-alkanecarbo- xylic acids is one of the most studied groups of thiazoli- dinone derivatives with the determined molecular me- chanism of biological activity realization, including anticancer activity [42]. Comparison of anticancer acti- vity of 4-thia(imida)zolidinone-5-carboxylic acids (12) and 4-thia(imida)zolidinone-3-carboxylic acids (13) indicates that the latter show higher antitumor activity level (Fig. 4). In the series of presented derivatives the- re is no significant difference between the levels of an- titumor activity of thiazolidinone (X = O) and rhoda- nine (X = S) derivatives. However, the substitution of a sulfur atom in thiazolidinone cycle for the atom of nit- rogen (transition from 2,4-thiazolidinediones to 2,4- imidazolidinediones) in compounds 13 contributes to the intensification of anticancer activity and appea- rance of selectivity of 4-imidazolidinone-3-carboxylic acids effects. Thus for the hydantoin-3-acetic acids the significant effect on the leukemia lines was observed, though there was almost no influence on the other can- cer cell lines [36]. This fact allows to consider 5-aryl- idene-2,4-imidazolidinedione-3-acetic acids amides as «hit-structures» for the anti-leukemia agents search. Si- multaneous presence of substituents in the positions C5 and N3 of the basic heterocycle is desirable and is pro- ved by the higher anticancer activity level of 4-thiazo- lidinone-3,5-alkanecarboxylic acids (14, 15) and 5- arylidene-4-thiazolidinone-3-alkanecarboxylic acids (16) [43]. Comparison of the activity of the compounds 14–16 points an advantage of ylidene moiety, namely the aryl(heteryl)idene fragment. Also, it is found that amides are more active than esters and free acids ir- respective of the presented acids series they belong to. Antitumor activity evaluation of 5-ylidenerhodani- ne-3-succinic acids (17) proved presented relation and allowed us to make a suggestion that 3-(4-oxo-2-thi- oxothiazolidine-3-yl)-pyrrolidine-2,5-dione fragment is probable pharmacophore for this series of compo- unds [44]. The position C-5 of rhodanine cycle and nit- rogen atom of pyrrolidine cycle are considered to be the main directions of its chemical modification. Utiliza- tion of thiazolidinone-alkanecarboxylic acids for the structure optimization of other scaffolds is effective approach in novel antitumor agents design; it is eluci- dated by the example of triterpenoid structure modifi- cation (18) and may be taken as the variant of hybrid pharmacophore approach. Annealing of heterocyclic fragments as widespread method used for conformational flexibility limitation, is perspective and not sufficiently studied direction of biological active substances search. Possibility of fu- sed thiazole heterocyclic systems 20 (Fig. 5) to imitate some biophore fragments of their synthetic precursors, namely 5-ylidene-4-thiazolidinones 19, allowed us to put forward the hypothesis about activity remaining in 111 THIAZOLIDINONE MOTIF IN ANTICANCER DRUG DISCOVERY their condensed derivatives [31, 34]. Based on antitu- mor activity retrospective analysis we established that activity level, mainly, depends on the surroundings of thiopyrane fragment. Basing on the comparison of thiopyrano[2,3-d]thiazoles derivatives activity we can’t determine precise structure–activity relation- ship. Though it should be noted that antitumor effect increases when moving from isothiochromeno[4a,4-d] [1,3]thiazole derivatives (21) to chromeno[4',3':4,5] thiopyrano[2,3-d]thiazoles (22), the same tendency is observed in the series 23–25 and 26–28. The optimal surroundings of thiopyrane fragment in thiopyrano [2,3-d]thiazole-2-ones is naphtoquinone moiety (25) or unsubstituted norbornane fragment (28). In all series of mentioned derivatives isorhodanine isosters (Х = О) are more active than thiorhodanine derivatives (X = S) and the main direction of highly active anticancer agents rational design is introduction of the substituent in position N3. Realization of this method presented by the example of chromeno[4',3':4,5]thiopyrano[2,3-d] thiazoles (22) [45, 46] allows achieving significant in- creasing of the level and/or selectivity of studied sub- stances anticancer activity in comparison with N-un- substituted analogues, moreover presence of N-aryl- acetamide fragments is desirable. The optimal mole- cular fragments that cause increasing of the activity le- vel of thiopyrano[2,3-d]thiazole-2-ones and fragments are presented at the Fig. 5. The Fig. 6 presents «hit-compounds» from diffe- rent groups that possess high antimitotic effect in vitro in submicromolar concentrations (10–5–10–7 М) and are characterized by the low in vivo toxicity level. In silico method of anticancer activity data ana- lysis. The COMPARE analysis was performed for the active compounds in order to investigate the similarity of their cytotoxicity pattern (mean graph fingerprints) with those of known anticancer standard agents, NCI active synthetic compounds and natural extracts, which are present in public available databases. Such in silico analysis consists in the comparison of the patterns of 112 LESYK R. B. ET AL. Desirable molecular fragment Increase of activity level Y N H N O X A O R H A N O R O O O X = O; Y = S, N X = S, O; Y = S 12 13 Y N O X A N O R 14 Y N O X A N H O R S N O O A N H O N H O Ar R O O R O N R S N S or O N N O O OH Y N HO X X = S, O; Y = S, N Comparison of acids row Modification of triterpenoids 15 16 X O N N O O A OH O A Ar (Het) N S O N O R X = O, S Chain elongation or branching N O OS N O X 1817 Ar (Het) Ar (Het) H Y N H XA N O R H H H HH H Fig. 4. Some features of structure–anticancer activity relationships in sub-library of synthesized azolidinone-carboxylic acids derivatives differential growth inhibition for cultured cell lines and can potentially gain insight into the mechanism of the cytotoxic action. It is accessible for the practical usage on the web portal of NCI (USA, http://dtp.nci.nih.gov/ docs/compare/compare.html) [47, 48] and may indi- rectly indicates possible mechanism of cytotoxic acti- on. If the data pattern correlates well with that of com- pounds belonging to a standard agent database (Pear- son’s correlation coefficient (PCC) >0.6), the compo- und of interest may have the same mechanism of ac- tion. On the other hand, if the activity pattern does not correlate with any standard agent, it is possible that the compound has a novel/another mechanism of action. Standard COMPARE analysis was performed at the GI50 and TGI levels. For synthesized heterocyclic substances was estab- lished correlation with the inhibitors of tubulin poly- merization, RNA polymerase, p-glycoprotein or topo- isomerase II, inductors of apoptosis, activators of cas- pases, that allow prediction of mentioned mechanism of anticancer action for 4-thiazolidinone derivatives and related heterocyclic systems. It is worth to mention interesting fact of significant values of correlation co- efficients of thiazolidinone derivatives from different sub-libraries [35, 39] to the S-trityl-L-cysteine (NSC 83265, r = 0.702), aminoacyl-tRNA synthetases inhibi- tor with antiproliferative effect against leukemia [49]. In silico methods, such as molecular docking and QSAR-analysis are widely used in our research work for rational design of potential anticancer agents. Cur- rently for highly active substances from different gro- ups is performed flexible molecular docking (using Glide and Fred programs) to «classical» for 4-thia- zolidinones biotargets, such as PPARγ (codes 1FM6 and 1NYX), protein complex Bcl-XL-BH3 (1BXL) and tubulin (1SA1). We chose tubulin because of high va- lues of Pearson’s correlation coefficient of synthesized compounds and classical tubulin polymerization inhi- bitors. QSAR-analysis of antitumor activity parameter lgGI50 with the usage of docking scoring functions and molecular descriptors (Mr, lgP, TPSA, HOMO and LUMO, µ, qmin, and qmax) allowed obtaining series of re- 113 THIAZOLIDINONE MOTIF IN ANTICANCER DRUG DISCOVERY S N O R1 X R R2 S N S R X R2 R1 S H H H R S O O H R S N O O H H R H H H R S H R N O O R SN H S O R R S O H H S H Me R S R OHC R S S N O N H O R S S N O O O R X = S X = O -CH2CO- Modification of N3 position - most effective direction 25 24 23 22 21 20 26 27 28 19 Direction of chemical modification Hal- Aryl, Het Fig. 5. Some features of structure–anticancer activity relationships in sub-library of synthesized thiopyrano[2.3-d]thiazole derivatives liable QSAR models. So, in the case of thiopyrano[2, 3- d]thiazole-2-ones, models 1–4 indicate the highest cor- relation of lgGI50 parameter for leukemnia, prostate and CNS cancer cell lines with LUMO (energy of the low- est unoccupied molecular orbital) and scoring func- tions values to tubulin molecules and protein complex Bcl-XL-ВН3 which may be used as potential targets for the anticancer agents design and virtual screening [31]: lgGI50 (Breast Cancer /T-47D) = 34.787 ⋅ LUMO + 0.002 ⋅ ZB (tubuline) (1) N = 11; r2 = 0.91; S = 0.13; F = 43; q2 = 0.82; lgGI50 (Breast Cancer/T-47D) = 35.259 ⋅ LUMO – 0.015 ⋅ PLP (1BLX) – 0.029 ⋅ CS (1BLX) (2) N = 11; r2 = 0.93; S = 0.11; F = 33; q2 = 0.88; lgGI50 (Colon Cancer/HCT-116) = 0.611 ⋅ µ – 2.294 ⋅ qmin + + 0.046 ⋅ CS (1FM6) (3) N = 10; r2 = 0.93; S = 0.07; F = 32; q2 = 0.81; lgGI50 (CNS Cancer/SNB-19) = –0.388 ⋅ lgP – 5.008 ⋅ qmin – – 0.035 ⋅ PLP (1BLX) (4) N = 11; r2 = 0.91; S = 0.09; F = 24; q2 = 0.81. Series of valid QSAR models 5–8 were calculated for 5-ylidene-2-thioxo-4-oxothiazolidinone-3-succinic acids derivatives [44]: lgGI50 (Lung Cancer/NCI-H322M) = –0,507 ⋅ lgP – 18.598 × × LUMO – 0,046 ⋅ ZB (1FM6) (5) N = 10; r2 = 0.96; S = 0.05; F = 48; q2 = 0.91; lgGI50 (Lung Cancer/HOP-92) = –0,636 ⋅ qmax + 0,006 ⋅ ZB (1SA1) (6) N = 13; r2 = 0.95; S = 0.20; F = 95; q2 = 0.91; lgGI50 (Lung Cancer/A549/ATCC) = –0,003 ⋅ MW + 0.012 × × TPSA + 0,052 ⋅ ZB (1BXL) (7) N = 13; r2 = 0.93; S = 0.09; F = 40; q2 = 0.86; lgGI50 (Ovarian Cancer/MD_mean) = –0,185 ⋅ lgP + 0,064 × × ZB (1BXL) – 0,004 ⋅ SG (1BXL) (8) N = 13; r2 = 0.93; S = 0,07; F = 40; q2 = 0,86. Docking functions comparison in the model range 5–8 shows that the best is correlation of Zapbind func- tions values (Fred) and E-model (Glide). In determined models values of lgP, LUMO, HOMO and docking 114 LESYK R. B. ET AL. S N O S N H S N Cl ONH O O CH 3 N H N O O N H O F FF Cl S N N N+ O− O N O O CH 3 Ph N S O N H OH N+ O− O Cl S N O N H O Cl N N S N H O O NH S S O Cl Cl O N O OF F F NS S O OH H H H H S N N N O N H O N S S O O O N F F F NCS 745159 pGI50 = 5,27 – 5,81 NCS 731910 pGI50 = 4,47 – 5,78 NCS 740765 pGI50 = 6,06 – 6,53 (Leukemia) NCS 740763 pGI50 = 4,22 – 6,10 NCS 745116 pGI50 = 4,30 – 6,34 NCS 728398 pGI50 = 4,72 – 6,74 pTGI = 4,13 – 6,36 pLC50 = 4,12 – 5,98 NCS 741029 pGI50 = 4,00 – 5,41 NCS 729567 pGI50 = 4,14 – 6,94 pTGI = 4,07 – 7,04 pLC50 = 4,01 –5,23 NCS 735629 pGI50 = 4,84 – 5,67 H H H H H H H H Fig. 6. Structures of some synthesized hit-compounds with high in vitro antitumor level ratings to Bcl-XL-BH3 protein complex, PPARγ, as well as to tubulin protein predominate. However, it should be noted that if there is docking function for Bcl-XL-BH3 protein complex in the model, its partial contribution in the PLS model is more essential, than if docking is performed to other biotargets. In consequ- ence of performed studies in silico it can be assumed that the most probable mechanism of anticancer activi- ty of 5-ylidene-4-thiazolidinone-3-succinic acids may be binding with the anti-apoptotic protein complex Bcl-XL-BH3. Thus, based on the complex use of molecular do- cking, COMPARE analysis and QSAR analysis we put forward a hypothesis about probable 4-thiazolidinones and related heterocycles influence on the apoptotic bisystem. Currently we continue with complex studies using molecular biology methods to confirm our hypothesis. Project outline. The ultimate aim of scientific pro- ject of the DH LNMU department of pharmaceutical, organic and bioorganic chemistry is creating of drug prototype with unique mechanism of action for the in- depth preclinical and clinical trials. So, besides going on with synthetic and pharmacological studies such tasks are privileged for our group: optimization of «hit-compounds» biopharmaceuti- cal characteristics; «hit-compounds» improvement using rational de- sign methods; experimental confirmation and identification of biotargets to anticancer 4-thiazolidinones and related heterocyclic systems; usage of modern delivery systems (drug delivery system) for the drug candidates as actual approach in drug technology and biopharmacy. Conclusions. Novel methods for sulfur- and nitro- gen containing heterocycles synthesis are worked out that allow to obtain over 5000 of new substances for pharmacological screening, as well as broaden out the field of thiazolidinone and related heterocycles stu- dying in the context of original «drug-like» molecules design. Based on systematic combination of pharmacolo- gical screening methods and in silico data the antican- cer activity is determined as privileged for thiazolidi- nones and related heterocyclic systems that allowed identification of «hit-compounds» series. Some aspects of structure–activity relationships were determined and structure rational design directi- ons were proposed. Among tested compounds 167 samples showed high antitumor activity level and their in-depth preclinical studies are in progress. Acknowledgements. We are grateful to Dr. V. L. Na- rayanan from Drug Synthesis and Chemistry Branch, National Cancer Institute, Bethesda, MD, USA, for in vitro evaluation of anticancer activity. Р. Б. Ле сик, Б. С. Зімен ко вський, Д. В. Камінський, А. П. Кри щи шин, Д. Я. Гав ри люк, Д. В. Атаманюк, І. Ю. Суб тель на, Д. В. Хи люк Тіазоліди но ни як лей тмо тив у ство ренні про ти ра ко вих ліка рських за собів. Досвід на уко вої гру пи з ме дич ної хімії ЛНМУ імені Да ни ла Га лиць ко го Ре зю ме Ме тою ро бо ти був аналіз ре зуль татів досліджен ня про ти пух - лин ної ак тив ності 4-азолідонів і спорідне них ге те ро циклічних спо лук та фор му ван ня де я ких на прямків раціональ но го диз ай ну по тенційних про ти пух лин них агентів. Син те тичні досліджен - ня, про ве дені у ЛНМУ імені Да ни ла Га лиць ко го, доз во ли ли за - про по ну ва ти низ ку но вих спря му вань мо ле ку ляр но го диз ай ну біологічно ак тив них 4-тіазоліди нонів та спорідне них ге те ро - циклічних сис тем, а та кож одер жа ти сфо ку со ва ну бібліот е - ку, яка на ра хо вує по над 5000 но вих спо лук. На цей час здійсне но in vitro скринінг про ти пух лин ної ак тив ності по над 1000 спо лук (US NCI про то кол Developmental Therapeutic Program), з-по- між яких 167 іден тифіко ва но як такі, що ма ють ви со ку про - ти ра ко ву ак тивність. Для оптимізації і раціональ но го диз ай ну ви со ко ак тив них мо ле кул з опти маль ни ми «ліко подібни ми» ха - рак те рис ти ка ми та виз на чен ня мож ли во го ме ханізму біоло- гічної дії про ве де но SAR- і QSAR-аналіз і мо ле ку ляр ний докінг. Кінце вою ме тою про ек ту є ство рен ня інно ваційно го син те - тич но го ліка рсько го пре па ра ту з оригіна льним ме ханізмом дії та дос татнім фар ма ко логічним і ток си ко логічним профілем. Клю чові сло ва: син тез, 4-тіа(іміда)золіди но ни, тіопірано[2, 3-d]тіазо ли, про ти пух лин на ак тивність, (Q)SAR. Р. Б. Ле сык, Б. С. Зи мен ков ский, Д. В. Ка мин ский, А. П. Кри щи шин, Д. Я. Гав ри люк, Д. В. Атаманюк, И. Ю. Суб тель ная, Д. В. Хи люк Ти а зо ли ди но ны как лей тмо тив в со зда нии про ти во о пу хо ле вых ле ка рствен ных средств. Опыт на учной груп пы ме ди цин ской хи мии ЛНМУ имени Да ни ла Га лиц ко го Ре зю ме Цель ра бо ты со сто я ла в ана ли зе ре зуль та тов ис сле до ва ния про ти во о пу хо ле вой ак тив нос ти 4-азо ли до нов и ро дствен ных ге те ро цик ли чес ких сис тем и фор ми ро ва нии не ко то рых на - прав ле ний ра ци о наль но го диз ай на по тен ци ал ных про ти во о пу - хо ле вых аген тов. Син те ти чес кие ис сле до ва ния, про ве ден ные в ЛНМУ име ни Да ни ла Га лиц ко го, по зво ли ли пред ло жить ряд но - вых на прав ле ний мо ле ку ляр но го диз ай на би о ло ги чес ки ак тив - ных 4-ти а зо ли ди но нов и ро дствен ных ге те ро цик ли чес ких сис- 115 THIAZOLIDINONE MOTIF IN ANTICANCER DRUG DISCOVERY тем, а так же по лу чить сфо ку си ро ван ную биб ли о те ку, на счи - тыва ю щую бо лее 5000 но вых со е ди не ний. На дан ный мо мент осу ще ствлен in vitro скри нинг про ти во о пу хо ле вой ак тив нос ти (US NCI про то кол Developmental Therapeutic Program) бо лее 1000 со е ди не ний, по зво лив ший иден ти фи ци ро вать 167 со е ди - не ний с вы со ким про ти во ра ко вым эф фек том. Для опти ми за - ции и ра ци о наль но го диз ай на вы со ко ак тив ных мо ле кул с опти- маль ны ми «drug-like» ха рак те рис ти ка ми и уста нов ле ния ве ро - ят но го ме ха низ ма би о ло ги чес ко го де йствия про ве ден SAR- и QSAR-ана лиз и мо ле ку ляр ный до кинг. Ко неч ная цель проекта – со зда ние ин но ва цин но го син те ти чес ко го ле ка рствен но го сресдтва с ори ги наль ным ме ха низ мом де йствия, до ста точ - ным фар ма ко ло ги чес ким и ток си ко ло ги чес ким про фи лем. Клю че вые сло ва: син тез, 4-тиа(ими да)зо ли ди но ны, ти о пи ра - но[2,3-d]ти а зо лы, про ти во о пу хо ле вая ак тив ность, (Q)SAR.. REFERENCES 1. Lesyk R. B., Zimenkovsky B. S. 4-Thiazolidones: centenarian history, current status and perspectives for modern organic and medicinal chemistry // Curr. Org. Chem.–2004.–8, N 16.– P. 1547–1577. 2. Prabhakar Y. S., Solomon V. R., Gupta M. K., Katti S. B. QSAR studies on thiazolidines: a biologically privileged scaffold // Top. Heterocycl. Chem.–2006.–4.–P. 161–249. 3. Tomasic T., Masic L. P. Rhodanine as a privileged scaffold in drug discovery // Curr. Med. Chem.–2009.–16, N 13.–P. 1596–1629. 4. Reginato M. J., Bailey S. T., Krakow S. L., Minami C., Ishii S., Tanaka H., Lazar M. A. A potent antidiabetic thiazolidinedione with unique peroxisome proliferator-activated receptor gamma- activating properties // J. Biol. Chem.–1998.–273, N 49.– P. 32679–32684. 5. Kador P. F., Kinoshita J. H., Sharpless N. E. Aldose reductase inhibitors: a potential new class of agents for the pharmaco- logical control of certain diabetic complications // J. Med. Chem.–1985.–28, N 7.–P. 841–849. 6. Charlier C., Mishaux C. Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to pro- vide safer non-steroidal anti-inflammatory drugs // Eur. J. Med. Chem.–2003.–38, N 7–8.–P. 645–659. 7. The Merck Index / Eds M. J. O'Neil et al.: 13th ed.–New Jersey, 2001.–1818 p. 8. Sim M. M., Ng S. B., Buss A. D., Crasta S. C., Goh K. L., Lee S. K. Benzylidene rhodanines as novel inhibitors of UDP-N-ace- tylmuramate/L-alanine ligase // Bioorg. Med. Chem. Lett.– 2002.–12, N 4.–P. 697–699. 9. Theocharisa S., Margeli A., Kouraklis G. Peroxisome prolifera- tor activated receptor-gamma ligands as potent antineoplastic agents // Curr. Med. Chem. Anticancer Agents.–2003.–3, N 3.– P. 239–251. 10. Murphy G. J., Holder J. C. PPAR-gamma agonists: therapeutic role in diabetes, inflammation and cancer // Trends Pharmacol. Sci.–2000.–21, N 12.–P. 469–474. 11. Degterev A., Lugovskoy A., Cardone M., Mulley B., Wagner G., Mitchison T., Yuan J. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL // Nat. Cell Biol.–2001.–3, N 2.–P. 173–182. 12. Carter P. H., Scherle P. A., Muckelbauer J. K., Voss M. E., Liu R.-Q., Thompson L. A., Tebben A. J., Solomon K. A., Lo Y. C., Li Z., Strzemienski P., Yang G., Falahatpisheh N., Xu M., Wu Z., Farrow N. A., Ramnarayan K., Wang J., Rideout D., Yalamoori V., Domaille P., Underwood D. J., Trzaskos J. M., Friedman S. M., Newton R. C., Decicco C. P. Photochemically enhanced bin- ding of small molecules to the tumor necrosis factor receptor-1 inhibits the binding of TNF-alpha // Proc. Natl Acad. Sci. USA.–2001.–98, N 21.–P. 11879–11884. 13. Zheng W., Degterev A., Hsu E., Yuan J., Yuan C. Structure-acti- vity relationship study of a novel necroptosis inhibitor, necro- statin-7 // Bioorg. Med. Chem. Lett.–2008.–18, N 18.– P. 4932– 4935. 14. Dayam R., Aiello F., Deng J., Wu Y., Garofalo A., Chen X., Nea- mati N. Discovery of small molecule integrin αvβ3 antagonists as novel anticancer agents / // J. Med. Chem.–2006.–49, N 15.– P. 4526–4534. 15. Cutshall N. S., O’Day C., Prezhdo M. Rhodanine derivatives as inhibitors of JSP-1 // Bioorg. Med. Chem. Lett.–2005.–15, N 14.–P. 3374–3379. 16. Xia Z., Knaak C., Ma J., Beharry Z. M., McInnes C., Wang W., Kraft A. S., Smith C. D. Synthesis and evaluation of novel inhi- bitors of Pim-1 and Pim-2 protein kinases // J. Med. Chem.– 2009.–52, N 1.–P. 74–86. 17. Ottana R., Maccari R., Barreca M. L., Bruno G., Rotondo A., Rossi A., Chiricosta G., Di Paola R., Sautebin L., Cuzzocrea S., Vigorita M. G. 5-Arylidene-2-imino-4-thiazolidinones: design and synthesis of novel anti-inflammatory agents // Bioorg. Med. Chem.–2005.–13, N 13.–P. 4243–4252. 18. Lesyk R., Zimenkovsky B., Kaminskyy D., Holota S., Atamanyuk D., Havryluk D., Nektegayev I., Kazmirchuk G., Subtel’na I., Roman O., Kryshchyshyn A., Khyluk D. Anticancer potential of 4-azolidones and related heterocycles // Annal. UMCS. Sectio DDD.–2006.–19, N 1.–P. 107–110. 19. Lesyk R., Vladzimirska O., Zimenkovsky B., Horishny V., Nektegayev I., Solyanyk V., Vovk O. New thiazolidones-4 with pyrazolone-5 substituent as the potential NSAIDs // Bol. Chim. Farm.–1998.–137, N 6.–P. 210–217. 20. Lesyk R. B., Artemenko A. G., Zimenkovsky B. S., Kuz’min V. E., Nektegayev I. O., Roman O. M., Atamanyuk D. V. Pharmaco- logical screening and 2D-QSAR analysis of anti-inflammatory activity of 4-thiazolidone derivatives // Farmacevtychnyj Zhur.– 2003.–N 3.–P. 58–61. 21.Lesyk R., Zimenkovsky B., Subtelna I., Nektegayev I., Kazmir- chuk G. Synthesis and antinflammatory activity of some 2-aryl- amino-2-thiazoline-4-ones // Acta Pol. Pharm.–2003.–60, N 6.– P. 457–466. 22. Lesyk R., Zimenkovsky B., Kutsyk R. V., Atamanyuk D. V., Se- menciv G. M. Synthesis and studing of antimicrobial activity of azolidine derivatives with 2-(2-chlorobenzyloxy)-5-nitrophe- nyl fragment in molecules // Farmacevtychnyj Zhur.–2003.– N 2.–P. 52–56. 23. Zimenkovskii B. S., Kutsyk R. V., Lesyk R. B., Matyichuk V. S., Obushak N. D., Klyufinska T. I. Synthesis and antimicrobial ac- tivity of 2,4-dioxothiazolidine-5-acetic acid amides // Pharm. Chem. J.–2006.–40, N 6.–P. 303–306. 24. Nektegayev I., Lesyk R. 3-Oxyarylthiazolidones-4 and their choleretic activity // Sci. Pharm.–1999.–67.–P. 227–230. 25. Lukyanchuk V. D., Zimenkovsky B. S., Lesyk R. B., Nemyatykh O. D., Nektegayev I. O. Antioxidant activity of 5-arylidene-2,4- thazolidinedione-3-alkanoic acid derivatives // J. Pharm. Phar- macol.–2002.–54, Suppl.–S. 1. 26. Boyd M. R., Paull K. D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen // Drug Dev. Res.–1995.–34, N 2.– P. 91–109. 27. Alley M. C., Scudiero D. A., Monks A., Hursey M. L., Czerwinski M. J., Fine D. L., Abbott B. J., Mayo J. G., Shoemaker R. H., 116 LESYK R. B. ET AL. Boyd M. R. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay // Cancer Res.–1988.–48, N 3.–P. 589–601. 28. Monks A., Scudiero D., Skehan P., Shoemaker R., Paull K., Vis- tica D., Hose C., Langley J., Cronise P., Vaigro-Wolff A., Gray- Goodrich M., Campbell H., Mayo J., Boyd M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultu- red human tumor cell lines // J. Natl Cancer. Inst.–1991.–83, N 11.–P. 757–766. 29. Boyd M. R. Anticancer drug development guide: preclinical screening, clinical trials, and approval // Cancer drug discovery and development / Ed. A. Teicher.–New Jersey: Humana press, 1997.–Ch. 2.–P. 23–43. 30. Shoemaker R. H. The NCI60 human tumour cell line anticancer drug screen // Nat. Rev. Cancer.–2006.–6, N 10.–P. 813–823. 31. Lesyk R., Zimenkovsky B., Atamanyuk D., Jensen F., Kiec-Ko- nonowicz K., Gzella A. Anticancer thiopyrano[2,3-d][1,3]thia- zol-2-ones with norbornane moiety. Synthesis, cytotoxicity, physico-chemical properties, and computational studies // Bio- org. Med. Chem.–2006.–14, N 15.–P. 5230–5240. 32. Lesyk R., Vladzimirska O., Holota S., Zaprutko L., Gzella A. New 5-substituted thiazolo[3,2-b][1,2,4]triazol-6-ones: synthe- sis and anticancer evaluation // Eur. J. Med. Chem.–2007.–42, N 5.–P. 641–648. 33. Atamanyuk D., Zimenkovsky B., Lesyk R. Synthesis and anti- cancer activity of novel thiopyrano[2,3-d]thiazole-based com- pounds containing norbornane moiety // J. Sulf. Chem.–2008.– 29, N 2.–P. 151–162. 34. Matiychuk V. S., Lesyk R. B., Obushak M. D., Gzella A., Atama- nyuk D. V., Ostapiuk Y. V., Kryshchyshyn A. P. A new domino- Knoevenagel-hetero-Diels-Alder reaction // Tetrahedron Lett.– 2008.–49, N 31.–P. 4648–4651. 35. Havrylyuk D., Zimenkovsky B., Vasylenko O., Zaprutko L., Gzella A., Lesyk R. Synthesis of novel thiazolone-based com- pounds containing pyrazoline moiety and evaluation of their an- ticancer activity // Eur. J. Med. Chem.–2009.–44, N 4.–Р. 1396– 1404. 36. Kaminskyy D., Zimenkovsky B., Lesyk R. Synthesis and in vitro anticancer activity of 2,4-azolidinedione-acetic acids deriva- tives // Eur. J. Med. Chem.–2009.–44, N 9.–Р. 3627–3636. 37. Mosula L., Zimenkovsky B., Havrylyuk D., Missir A.-V., Chirita I. C., Lesyk R. Synthesis and antitumor activity of novel 2-thi- oxo-4-thiazolidinones with benzothiazole moieties // Farma- cia.– 2009.– 57, N 3.–P. 321–330. 38. Havrylyuk D., Zimenkovsky B., Lesyk R. Synthesis and antican- cer activity of novel nonfused bicyclic thiazolidinone derivati- ves // Phosphorus, Sulfur, and Silicon and the Related Ele- ments.–2009.– 184, N 3.–Р. 638–650. 39. Subtel'na I., Atamanyuk D., Szymanska E., Kiec-Kononowicz K., Zimenkovsky B., Vasylenko O., Gzella A., Lesyk R. Synthesis of 5-arylidene-2-amino-4-azolones and evaluation of their anti- cancer activity // Bioorg. Med. Chem.–2010.–18, N 14.– P. 5090–5102. 40. Havrylyuk D., Mosula L., Zimenkovsky B., Vasylenko O., Gzella A., Lesyk R. Synthesis and anticancer activity evaluation of 4- thiazolidinones containing benzothiazole moiety // Eur. J. Med. Chem.–2010.–45, N 11.–P. 5012–5021. 41. Solomon V. R., Hu C., Lee H. Hybrid pharmacophore design and synthesis of isatin-benzothiazole analogs for their anti-breast can- cer activity // Bioorg. Med. Chem.–2009.–17, N 21.–P. 7585– 7592. 42. Kaminskyy D. V., Lesyk R. B. Structure-anticancer activity rela- tionships among 4-azolidinone-3-carboxylic acids derivatives // Biopolym. Cell.–2010.–26, N 2.–P. 136–145. 43. Каminskyy D. V., Lesyk R. B. Synthesis and biological activity of 4-thiazolidinone-3-acetic acids derivatives // Farmacevtych- nyj Zhur.–2008.–N 3.–P. 70–78. 44. Каminskyy D. V., Roman O. M., Atamanyuk D. V., Lesyk R. B. 5-Ylidene-2-thioxo-4-thiazolidinone-3-succinic acids and their derivatives: synthesis, anticancer activity, QSAR-analysis // J. Org. Pharm. Chem.– 2006.–4, N 1 (13).–P. 41–48. 45. Kryshchyshyn A. P., Zimenkovsky B. S., Zaprutko L., Lesyk R. B. Synthesis and antitumor activity evaluation of 3,5a,6,11b-tetra- hydro-2H,5H-chromeno[4',3':4,5]thiopyrano[2,3-d]thiazole de- rivatives // J. Org. Pharm. Chem.– 2010.–8, N 1 (29).–P. 37–43. 46. Kryshchyshyn A., Zimenkovsky B., Lesyk R. Synthesis and anti- cancer activity in vitro of isothiochromеno[3,4-d]thiazole derivatives // Annal. UMCS. Sectio DDD.–2008.–21, N 1.– P. 247–251. 47. Zaharevitz D. W., Holbeck S. L., Bowerman C., Svetlik P. A. COMPARE: a web accessible tool for investigating mecha- nisms of cell growth inhibition // J. Mol. Graph. Model.–2002.– 20, N 4.–P. 297–303. 48. Paull K. D., Shoemaker R. H., Hodes L., Monks A., Scudiero D. A., Rubinstein L., Plowman J., Boyd M. R. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algo- rithm // J. Natl Cancer Inst.–1989.–81, N 14.–P. 1088–1092. 49. Brier S., Lemaire D., Debonis S., Forest E., Kozielski F. Identi- fication of the protein binding region of S-trityl-L-cysteine, a new potent inhibitor of the mitotic kinesin Eg5 // Biochemist- ry.–2004.–43, N 41.–P. 13072–13082. UDC 615.012.1.076:547.789.1 Received 10.01.11 117 THIAZOLIDINONE MOTIF IN ANTICANCER DRUG DISCOVERY