Structure–anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives

The aim of present research was investigation of anticancer activity of 4-azolidinone-3-carboxylic acids derivatives, and studies of structure–activity relationships (SAR) aspects. Methods. Organic synthesis; spectral methods; anticancer screening was performed according to the US NCI protocol (Deve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2010
Hauptverfasser: Kaminskyy, D.V., Lesyk, R.B.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут молекулярної біології і генетики НАН України 2010
Schriftenreihe:Вiopolymers and Cell
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/153871
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Structure–anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives / D.V. Kaminskyy, R.B. Lesyk // Вiopolymers and Cell. — 2010. — Т. 26, № 2. — С. 136-145. — Бібліогр.: 35 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-153871
record_format dspace
spelling irk-123456789-1538712019-07-06T20:27:47Z Structure–anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives Kaminskyy, D.V. Lesyk, R.B. Bioorganic Chemistry The aim of present research was investigation of anticancer activity of 4-azolidinone-3-carboxylic acids derivatives, and studies of structure–activity relationships (SAR) aspects. Methods. Organic synthesis; spectral methods; anticancer screening was performed according to the US NCI protocol (Developmental Therapeutic Program). Results. The data of new 4-thiazolidinone-3-alkanecarboxylic acids derivatives in vitro anticancer activity were described. The most active compounds which belong to 5-arylidene-2,4- thia(imida)zolidinone-3-alkanecarboxylic acids; 5-aryl(heteryl)idenerhodanine-3-succinic acids derivatives were selected. Determination of some SAR aspects which allowed to determine directions in lead-compounds structure optimization, as well as desirable molecular fragments for design of potential anticancer agents based on 4-azolidinone scaffold were performed. 5-Arylidenehydantoin-3-acetic acids amides were identified as a new class of significant selective antileukemic agents. Possible pharmacophore scaffold of 5-ylidenerhodanine-3-succinic acids derivatives was suggested. Conclusions. The series of active compounds with high anticancer activity and/or selectivity levels were selected. Some SAR aspects were determined and structure design directions were proposed. Мета даного дослідження полягала у вивченні протиракової активності 4-азолідон-3-карбонових кислот та їхніх похідних, встановленні особливостей взаємозв’язку «структура–активність». Методи. Органічний синтез, спектральні методи, скринінг протипухлинної активності (US NCI-методології, Developmental Therapeutic Program). Результати. Представлено результати тестування in vitro протиракової активності нових похідних 4-азолідон-3-алканкарбонових кислот. Виділено високоактивні сполуки, які належать до похідних 5-ариліден-2,4-тіа(іміда)золідон-3-алканкарбонових кислот та 5-арил(гетерил)іденроданін-3-сукцинатних кислот. Встановлені закономірності залежності «структура–активність» дозволяють окреслити напрямки оптимізації структур-лідерів і ідентифікувати молекулярні фрагменти для дизайну потенційних протиракових агентів на основі 4-азолідонового скаффолду. Аміди 5-ариліденгідантоїн-3-оцтових кислот визначено як новий клас протилейкемічних агентів. Для 5-іліденроданін-3-сукцинатних кислот ідентифіковано ймовірний фармакофор. Висновки. Одержано низку активних сполук з високим рівнем протиракової активності та/або селективності. Запропоновано напрямки дизайну структури потенційних протиракових агентів на основі встановлених закономірностей «структура–активність». Цель данного исследования состояла в изучении противоопухолевой активности 4-азолидон-3-карбоновых кислот и их производных, а также в установлении некоторых особенностей взаимосвязи «структура–активность». Методы. Органический синтез, спектральные методы, скрининг противоопухолевой активности (US NCI-методология, Developmental Therapeutic Program). Результаты. Представлены результаты тестирования in vitro противоопухолевой активности новых производных 4-азолидон-3-аланкарбоновых кислот. Отобраны наиболее активные соединения, которые относятся к производным 5-арилиден-2,4-тиа(имида)золидон-3-алканкарбоновых кислот и 5-арил(гетерил)иденроданин-3-сукцинатных кислот. На основании выявленных закономерностей взаимосвязи «структура–активность» определены направления оптимизации структур-лидеров, идентифицированы молекулярные фрагменты для дизайна потенциальных противоопухолевых агентов на основании 4-азолидонового скаффолда. Амиды 5- арилиденгидантоин-3-уксусных кислот рассматриваются как новый класс противолейкемических агентов. Для ряда 5-илиденроданин-3-сукцинатных кислот установлен вероятный фармакофор. Выводы. Выделен ряд активных соединений с высоким уровнем противоопухолевой активности и/или селективности. Предложены направления дизайна структуры потенциальных противоопухолевых агентов на основе установленных закономерностей «структура–активность». 2010 Article Structure–anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives / D.V. Kaminskyy, R.B. Lesyk // Вiopolymers and Cell. — 2010. — Т. 26, № 2. — С. 136-145. — Бібліогр.: 35 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.000150 http://dspace.nbuv.gov.ua/handle/123456789/153871 615.012.1.076:547.789.1 en Вiopolymers and Cell Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Bioorganic Chemistry
Bioorganic Chemistry
spellingShingle Bioorganic Chemistry
Bioorganic Chemistry
Kaminskyy, D.V.
Lesyk, R.B.
Structure–anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives
Вiopolymers and Cell
description The aim of present research was investigation of anticancer activity of 4-azolidinone-3-carboxylic acids derivatives, and studies of structure–activity relationships (SAR) aspects. Methods. Organic synthesis; spectral methods; anticancer screening was performed according to the US NCI protocol (Developmental Therapeutic Program). Results. The data of new 4-thiazolidinone-3-alkanecarboxylic acids derivatives in vitro anticancer activity were described. The most active compounds which belong to 5-arylidene-2,4- thia(imida)zolidinone-3-alkanecarboxylic acids; 5-aryl(heteryl)idenerhodanine-3-succinic acids derivatives were selected. Determination of some SAR aspects which allowed to determine directions in lead-compounds structure optimization, as well as desirable molecular fragments for design of potential anticancer agents based on 4-azolidinone scaffold were performed. 5-Arylidenehydantoin-3-acetic acids amides were identified as a new class of significant selective antileukemic agents. Possible pharmacophore scaffold of 5-ylidenerhodanine-3-succinic acids derivatives was suggested. Conclusions. The series of active compounds with high anticancer activity and/or selectivity levels were selected. Some SAR aspects were determined and structure design directions were proposed.
format Article
author Kaminskyy, D.V.
Lesyk, R.B.
author_facet Kaminskyy, D.V.
Lesyk, R.B.
author_sort Kaminskyy, D.V.
title Structure–anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives
title_short Structure–anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives
title_full Structure–anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives
title_fullStr Structure–anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives
title_full_unstemmed Structure–anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives
title_sort structure–anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives
publisher Інститут молекулярної біології і генетики НАН України
publishDate 2010
topic_facet Bioorganic Chemistry
url http://dspace.nbuv.gov.ua/handle/123456789/153871
citation_txt Structure–anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives / D.V. Kaminskyy, R.B. Lesyk // Вiopolymers and Cell. — 2010. — Т. 26, № 2. — С. 136-145. — Бібліогр.: 35 назв. — англ.
series Вiopolymers and Cell
work_keys_str_mv AT kaminskyydv structureanticanceractivityrelationshipsamong4azolidinone3carboxylicacidsderivatives
AT lesykrb structureanticanceractivityrelationshipsamong4azolidinone3carboxylicacidsderivatives
first_indexed 2025-07-14T05:18:33Z
last_indexed 2025-07-14T05:18:33Z
_version_ 1837598311837597696
fulltext BIOORGANIC CHEMISTRY Structure–anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives D. V. Kaminskyy, R. B. Lesyk Danylo Halytsky Lviv National Medical University 69, Pekarska, Lviv, Ukraine, 79010 dr_r_lesyk@org.lviv.net; dankaminskyy@gmail.com The aim of present research was investigation of anticancer activity of 4-azolidinone-3-carboxylic acids derivatives, and studies of structure–activity relationships (SAR) aspects. Methods. Organic synthesis; spectral methods; anticancer screening was performed according to the US NCI protocol (Developmental Therapeutic Program). Results. The data of new 4-thiazolidinone-3-alkanecarboxylic acids derivatives in vitro anticancer activity were described. The most active compounds which belong to 5-arylidene-2,4- thia(imida)zolidinone-3-alkanecarboxylic acids; 5-aryl(heteryl)idenerhodanine-3-succinic acids deriva- tives were selected. Determination of some SAR aspects which allowed to determine directions in lead- compounds structure optimization, as well as desirable molecular fragments for design of potential anticancer agents based on 4-azolidinone scaffold were performed. 5-Arylidenehydantoin-3-acetic acids amides were identified as a new class of significant selective antileukemic agents. Possible pharmacophore scaffold of 5-ylidenerhodanine-3-succinic acids derivatives was suggested. Conclusions. The series of active compounds with high anticancer activity and/or selectivity levels were selected. Some SAR aspects were determined and structure design directions were proposed. Keywords: 4-azolidinone-3-carboxylic acids, anticancer activity, SAR. Introduction. Design of «small molecules» as innova- tive anticancer agents based on well-known scaffolds is one of the most commonly employed approaches in drug discovery. Nowadays the anticancer potential of 4-azolidinone-3-carboxylic acids (derivatives of rho- danine, 2,4-thiazolidindione or hydantoin with carbo- xylic acids in position N3) realized via influence on various metabolic pathways of cancer cells is described based on traditional and high-throughput screening [1, 2] (Fig. 1). The large group of mentioned heterocycles with known pharmacological activity (such as antioxi- dant, anti-inflammatory, hypoglycemic, immunomo- dulative, etc.) was established as promising anticancer agents as well. Another approach to search of anti- cancer substances is target-oriented drug design, which allows to identify anticancer hit-compounds among 4-azolidinone-3-carboxylic acids derivatives [6]. Con- sequently, the row of 4-azolidinone-3-carboxylic acids derivatives with high affinity to «anticancer biotar- gets» was discovered. 5-Arylidenerhodanine-3-carbo- xylic acids are known as inhibitors of antiapoptic pro- tein–protein interaction between Bcl-2 and Bax family and their interaction with receptors’ domains [7–10]; inhibitors of JSP-1 – «atypical» dual-specific phospha- tases family member (JNK-stimulating phosphatase-1) [11]. Among 4-azolidinone-3-carboxylic acids COX inhibitors are selected [12] because of their potential anticancer activity [6]. Hydantoin-carboxylic acids are inhibitors of Ras farnesyl transferase [13] and are con- sidered to be perspective anticancer agents [14]. The ligands of neuroimunofiline FK506-binding protein (FKBP) are structurally analogous to mentioned series 136 ISSN 0233-7657. Biopolymers and Cell. 2010. Vol. 26. N 2 Ó Institute of Molecular Biology and Genetics NAS of Ukraine, 2010 of compounds. Functionalized 4-imidazolidinone-3- alkancarboxylic acids belong to a new group of non- covalent inhibitors of Human Leukocyte Elastase [16] . There is known antiproliferative potential of 5- substituted N-derivatives of hydantoin [17] and 5-ary- lidene-2,4-imidazolidinediones [18], which are related to EGFR-kinase (epidermal growth factor receptor) inhibition [19–21]. Among amides of latter acids the inhibitors of cyclin-depended kinase (CDK2/Cyclin A) [22] are selected. One of the discovered molecular me- chanisms of 4-azolidinone-3-carboxylic acids is anta- gonism to avb3-receptors. Inhibitor possibility was im- proved based on correlation between expression fac- tor progression and cancer development [23]. Also anticancer activity of 5-substituted 4-azoli- dinone-carboxylic acids are associated with p53 depen- dent pathways of apoptotic and neoplastic trans- formation [24] and inhibition of necroptosis (regulated caspase-independent cell death mechanism) [25]. Extensive research has been directed towards hypoxia- based strategies for anticancer agents [6]. 5-Ylidene- rhodanines, which may be interpreted as synthetic pre- cursors of rhodanine-3-carboxylic acids, modulate pro- liferation and apoptosis of cancer cells via influence on NO-related pathways [5]. There is an interesting fact of combined anti-inflammatory, antioxidant, and other related activities established for some compounds [26, 27], which is extremely important within the classical progression triad: stress–inflammation–cancer. In the light of search for new 4-azolidinone-3- carboxylic acids derivatives as potential anticancer agents the present work was aimed to investigation of anticancer activity of newly synthesized compounds and studies of some structure-activity relationships aspects. Materials and methods. For anticancer activity screening the library of 4-azolidinone-3-carboxylic acids was previously synthesized [1, 28–30] using kno- wn synthetic methods. Synthetic approaches to target compounds differed and depended on nature of core heterocycles (rhodanine, 2,4-thiazolidinedione, hydan- toin). Compounds of rhodanine row were synthesized by modification of rhodanine-3-carboxylic acids. Deri- vatives of acids belonged to 2,4-thia(imida)zolidinedi- one series were synthesized on the assumption of 2,4- thiazolidinedione or hydantoin rings. 5-Ylidenederiva- tives of mentioned compounds were obtained by dif- ferent modifications of Knoevenagel reaction (Fig. 2). The structures and purity of synthesized compo- unds were elucidated by spectral data (1H NMR, IR, EI- MS, LC-MS). Newly synthesized compounds were selected by the National Cancer Institute (NCI) Developmental Therapeutic Program (www.dtp.nci.nih.gov) for the in 137 STRUCTURE-ANTICANCER ACTIVITY OF 4-AZOLIDINONE-3-CARBOXYLIC ACIDS DERIVATIVES SS N O OH O Ar Me Me S N O S COOH NH N Cl O O N H N R O O N H R1 N N O O N NO O Et X N O A OH O Y Inhibitors of interaction of Bcl-Xl and BH3 protein [7, 8] JSP-1 inhibitors [11] EGFR inhibitor [16] Necroptosis inhibitors [24] Farnesyl tranferase inhibitor [12] X = S, NH; Y = S, O Direction of chemical modification Lead-compounds among 4-azolidineone-carboxylic acids derivatives with anticancer activity General structure of target compounds Fig. 1. Structure of 4-azolidinone derivatives with anticancer activity 138 KAMINSKYY D. V., LESYK R. B. N S N + S O O O O Cl OH N S S N H O O SO 2 NH 2 N S O O O N H CF 3 N S O O O N H S N N S O O O N O NS O O O Me O Me OMe N H O SO 2 NH 2 N N H O O N H O O Me F 3 C N H N N H O O O O Me CF 3 Cl N H N N H O O O O Me O Me N S O S N OH O OH O N S O S Me N O O OH O N S O S N O O N H O SO 2 NH 2 N S O N O O N H OS OH N S O S N O O N H O OH N S O S N O O NH O SO 2 NH 2 N S O S Me N O O SO 2 NH 2 N S O S N O O OH O N S O S N O O OH O N S O S N O O OH O N S O S N O O Me Me OH O N N H O O N H O Cl Cl NS O O Me N H O F N N H O O N H O N N H O O Cl N H O CF3 N NH O O N H O CF3 Cl 1 2 3 4 5 7 10 11 12 15 18 19 20 21 22 16 17 23 24 25 9 6 13 14 8 Fig. 3. Structure of selected samples for advanced anticancer screening (against the full panel of about 60 human tumor cell lines at 10-fold dilutions of five concentrations ranging from 10–4 to 10–8 M) X O O N H O ClR X N HO O R2 R1 X NO O A N H O R R1 R2 N H O ClR A N H O R X O O N A OH OS O Y N A OH O S O Y N R1 R2 O S N N O O R S N O O N S N N N R N N N NH2 HS R 2. R-NH2 1. KOH 2. 1. KOH 2. X = S, NH DCC, THF 1. SOCl2 Y = S, O X = S, NH Y = S, O A = CHCH2COOH 1. POCl3 2. 1. SOCl2 R1 = H; R2 = Ar, Het, PhCHCH; R1 = R2 = CH3; R1 + R2 = (CH2)n; R = Ar; (CH2)nCOOH; A = (CH2)n R-NH2 2. R-NH2 N H Fig. 2. General synthetic scheme vitro cell line screening to investigate their anticancer activity. Anticancer assays were performed according to the US NCI protocol as described elsewhere [31– 34]. The compounds were first evaluated at one dose primary anticancer assay towards three cell lines (panel consisting of three types of human cancers: breast (MCF7), lung (NCI-H460) and CNS (SF-268) – con- centration 10–4 M) or towards approximately 60 cell li- nes (concentration 10–5 M). The human tumor cell lines were derived from nine different cancer types: leuke- mia, melanoma, lung, colon, CNS, ovarian, renal, pro- state and breast cancers. In the screening protocol, each cell line was inoculated and pre-incubated for 24–48 h on a microtiter plate. Test agents were then added at a single concentration and the culture was incubated for further 48 h. End point determinations were made with a protein binding dye, sulforhodamine B (SRB). Re- sults for each test agent were reported as the percent growth of the treated cells when compared to the un- treated control cells. A 48 h continuous drug exposure protocol was used with a SRB protein assay to estimate cell viability and growth. The cytotoxic and/or growth inhibitory effects of the most active selected compounds were tested in vitro against the full panel of about 60 human tumor cell lines at 10-fold dilutions of five concentrations ranging from 10–4 to 10–8 M. Using the seven absorbance measu- rements [time zero (Tz), control growth in the absence of drug (C), and test growth in the presence of drug at the five concentration levels (Ti)], the percentage gro- wth was calculated at each of the drug concentrations levels. Percentage growth inhibition was calculated as: [Ti – Tz/C – Tz] × 100 for concentrations for which Ti ³ Tz; [Ti – Tz/Tz] × 100 for concentrations for which Ti < Tz. Three dose response parameters were calculated for each compound. Growth inhibition of 50 % (GI50) was calculated from [(Ti – Tz)/(C – Tz)] × 100 = 50, which is the drug concentration resulting in a 50 % lower net protein increase in the treated cells (measured by SRB staining) as compared to the net protein increase seen in the control cells. The drug concentration resulting in total growth inhibition (TGI) was calculated from Ti = = Tz. The LC50 (concentration of drug resulting in a 50 % reduction in the measured protein at the end of the drug treatment as compared to that at the beginning) indicating a net loss of cells following treatment was calculated from [(Ti – Tz)/Tz] × 100 = –50. Values were calculated for each of these three parameters if the level of activity is reached; however, if the effect was not reached or was exceeded, the value for that parameter was expressed as greater or less than the maximum or minimum concentration tested. The lgGI50, lgTGI, lgLC50 were then determined, defined as the mean of the log’s of the individual GI50, TGI, LC50 values. The lowest values are obtained with the most sensitive cell lines. Furthermore, mean graph midpoints (MG_MID) were calculated for each of the parameters, giving an average activity parameter over all cell lines for each compound. For the calculation of the MG_MID, in- sensitive cell lines were included with the highest concentration tested. Results and discussion. During the first step of screening (using one concentration) on 3 cancer cell lines (MCF7, NCI-H460, SF-268) 49 compounds were tested. For mentioned samples different levels of anti- mitotic activity were established, thought in the majority of cases the maximum influence was observed against NCI-H460 line Non-small cell lung cancer line. 32 Compounds were tested using 60 cancer cell lines panel. Average values of panel cancer lines growth per- cent lay within 100 %, which provides evidence that nonspecific antimitotic action for studied 4-thiazoli- dinone derivatives. However, tested compounds pos- sessed specific influence on some individual cell lines without influencing others. This fact may be related to effect on some metabolic pathways or biotarget of certain cell lines (www.dtp.nci.nih.gov; http://www.lg cpromochem-atcc.com). UO-31 and 786-O renal can- cer cell lines have been found to be the most sensitive to testing compounds. For example 3-[3-(3-trifluoro- methylphenyl)-[1,2,4]-triazolo-[3,4-b][1,3,4]-thiadia- zol-6-yl-methyl]-thiazolidine-2,4-dione, 2-[2,4-dioxo- 5-(3,4,5-trimethoxybenzylidene)-thiazolidin-3-yl]-N- (4-sulfamoylphenyl)-acetamide, 3-[5-(4-methoxyben- zylidene)-4-oxo-2-thioxothiazolidin-3-yl]-1-(3-triflu- oromethylphenyl)-pyrrolidine-2,5-dione and 2-(4-ben- zylidene-2,5-dioxoimidazolidin-1-yl)-N-(4-chloro- phenyl)-acetamide provided not only growth inhibition but also death of UO-31 cells. The same effect was ob- 139 STRUCTURE-ANTICANCER ACTIVITY OF 4-AZOLIDINONE-3-CARBOXYLIC ACIDS DERIVATIVES 140 KAMINSKYY D. V., LESYK R. B. Com- pound logGI50 logGI50 logGI50 N 1 Rangea MG_MID N 2 Rangea MG_MID N 3 Rangea MG_MID 1 2 3 4 5 6 7 8 9 10 1 50 <–8.00 ̧–5.17 –6.26 50 –6.85 ̧–4.70 –5.31 29 –5.73 ̧–4.08 –4.37 Most sensitive cell lines (logGI50/logTGI): MOLT-4 –7,80/–6,85; SR < –8,00/–6,85 (L); SW-620 < –8,00/–6,57 (CC); SF 539 < –8,00/–6,57 (CNS) 2 28 –5.22 ̧–4.36 4.60 9 –4.63 ̧> –4.30 –4.34 – > –4.30 4.30 Most sensitive cell lines (logGI50/logTGI): HL-60 (TB) –5.22/–4.32; K-562 –5.16/–4.59; RPMI-8226 –5.10/–4.47 (L); NCI-H460 –5.20/–4.49; NCI-H522 –5.12/> –4.30 (NSCLC); KM12 –5.07/> –4.30 (CC); LOX IMVI –5.00/–4.51 (M); OVCAR-3 –5.14/–4.50 (OC); MDA-MB-435 –5.02/–4.51 (BC) 3 28 –6.21 ̧> –4.30 –4.64 4 –5.39 ̧> –4.30 –4.35 – > –4.30 –4.30 Most sensitive cell lines (logGI50/logTGI): A549/ATTC –5.41/> –4.30; NCI-H460 –5.30/> –4.30 (NSCLC); HCT-116 –5.38/> –4.30 (CC); U251 –5.36/> –4.30 (CNS); SK-MEL5 –6.21/–5.39 (M); ACHN –5.08/> –4.30; SN12C –5.20/> –4.30 (RC); MCF-7 –5.06/> –4.30; MDA-MB-231/ATTC –5.19/> –4.30 (BC) 4 46 –5.88 ̧> –4.30 –4.77 17 –5.53 ̧> –4.30 –4.38 1 –4.43 ̧> –4.30 –4.30 Most sensitive cell lines (logGI50/ logTGI): CCRF-CEM –4.95/> –4.30 (L); SF 539 –5.88/–5.53; U251 –5.34/–4.74 (CNS); LOX IMVI –5.10/–4.48; SK-MEL2 –5.25/–4.52; UACC62 –5.02/–4.46 (M); OVCAR-8 –5.05/> –4.30 (OC); ACHN –5.00/–4.45; UO31 –5.01/–4.36 (RC); DU-145 –5.03/> –4.30 (PC); MDA-MB-231/ATTC –5.09/–4.57 (BC) 5 49 <–8.30 ̧> –4.30 –4.78 24 –6.45 ̧> –4.30 –4.42 4 –4.62 ̧> –4.30 –4.31 Most sensitive cell lines (logGI50/logTGI): RPMI-8226 –4.99/> –4.30 (L); NCI-H23 –4.97/–4.69; NCI-H522 –4.90/–4.56 (NSCLC); HCT-116 –4.94/–4.58 (CC); U251 –4,95/> –4.30 (CNS); SK-MEL5 < –8.30/–6.45 (M); OVCAR-8 –4.92/–4.47 (OC); ACHN –4.99/–4.69 (RC) 6 19 –6.08 ̧> –4.30 –4.55 5 –5.79 ̧> –4.30 –4.36 – > 4.30 –4.30 Most sensitive cell lines(logGI50/logTGI): SR –5.21/> –4.30 (L); NCI-H23 –5.09/–4.35 (NSCLC); U-251 –4.82/> –4.30 (CNS); LOX IMVI –5.93/–5.53 (M); UO-31 –6.08/–5.79 (RC) 7 38 –6.17 ̧–4.02 –4.47 17 –5.41 ̧–4.18 –4.14 8 –4.30 ̧–4.05 –4.03 Most sensitive cell lines (logGI50/logTGI): CCRF-CEM –5.36/–5.41; RPMI8226 –6.17/–5.41; MOLT-4 –5.41/–4.00 (L); OVCAR-8 –5.16/> –4.00 (OC) 8 8 10* –6.05 ̧–4.01 –7.71 ̧–4.10* –4.26 –4.17* 5 3* –5.85 ̧–4.01 –5.51 ̧–4.62* –4.09 –4.05* 3 2* –5.02 ̧–4.53 –4.28 ̧–4.09* –4.05 –4.01* Most sensitive cell lines (logGI50/logTGI): CCRF-CEM –6.06 (5.92*)/> –4.00 (–5.51*); HL-60 (TB) –6.53/––5.70; K-562 –5.68 (–5.27*)/> –4.00 (> –4.00*); MOLT-4 –6.52 (–5.34*)/–5.49 (–4.62*); SR –6.51 (–7.71*)/–5.85 (–4.90*) (L); HOP-92 –4.74/–4.01 (NSCLC) 9 53 –5.15 ̧–4.04 –4.57 29 –4.55 ̧–4.09 –4.16 6 –4.22 ̧–4.14 –4.01 Most sensitive cell lines (logGI50/logTGI): CCRF-CEM –4.83/–4.50; HL-60 (TB) –4.71/–4.33; MOLT-4 –4.96/–4.55; RPMI-8226 –4.68/–4.17; SR –5.15/–4.47 (L); HOP-62 –4.82/–4.36; HOP-92 –4.76/–4.38; NCI-H226 –4.80/–4.35 (NSCLC); SF-268 –4.98/–4.53, SF-539 –4.78/–4.41: SNB –4.88/–4.44; U251 –4.83/–4.53 (CNS); LOX-IMVI –4.81/–4.49 (M); OVCAR-4 –4.88/–4.19; SK-OV-3 –4.71/–4.29 (OC); SN-12C –4.77/–4.32; TK-10 –4.77/–4.37 (RC); MDA-MB-231/ATTC –4.79/–4.37; HS-578T –4.97/–4.42 (BC) 10 16 –5.55 ̧–4.11 –4.12 5 –4.23 ̧–4.02 –4.01 0 – –4.00 Most sensitive cell lines (logGI50/logTGI): NCI NCI-H23 –4.58/–4.05 (NSCLC); HCT-116 –4.52/> –4.00 (CC); U251 –4.59/–4.16 (CNS); OVCAR-3 –4.51/–4.02 (OC); MCF-7 –5.55/> –4.00; MDA-MB-231/ATTC –4.63/–4.23 (BC) Summary of anticancer activity of the compounds in different concentrations (10–4–10–8 M) towards 60 cancer cell lines 141 STRUCTURE-ANTICANCER ACTIVITY OF 4-AZOLIDINONE-3-CARBOXYLIC ACIDS DERIVATIVES 1 2 3 4 5 6 7 8 9 10 11 22 –5.57 ̧–4.07 –4.28 7 –4.78 ̧–4.04 –4.04 2 –4.31 ̧–4.16 –4.01 Most sensitive cell lines (logGI50/logTGI): CCRF-CEM –4.66/> –4.00; SR –5.14/–4.70 (L); HOP-92 –5.22/–4.62; NCI-H226 –4.58/> –4.00 (NSCLC); SF-295 –4.51/> –4.00; SNB-75 –5.57/–4.78; U251 –5.03/–4.20 (CNS); SK-OV-3 –4.71/–4.09 (OC); 786-O –4.66/> –4.00 (RC); MDA-MB-231/ATTC –4.80/> –4.00; HS-578 –4.73/–4.04 (BC) 12 11 –6.71 ̧–4.15 –4.11 1 – –4.00 0 – 4.00 Most sensitive cell lines (logGI50/logTGI): CCRF-CEM –6.71/> –4.00 (L); U251 –4.51/> –4.00 (CNS) 13 20 –4.66 ̧> –4.06 –4.13 2 –4.43 ̧–4.28 –4.01 1 –4.11 ̧–4.00 –4.00 Most sensitive cell lines (logGI50/logTGI): SR –4,47/> –4.00 (L); NCI-H23 –4.50/> –4.00; A-498 –4.75/–4.43 (NSCLC); MDA-MB-231/ATTC –4.58/> –4.00; HS-578T –4.66/–4.28 (BC) 14 36 –8.00 ̧–4.03 –4.53 11 –5.16 ̧–4.11 –4.10 4 –4.55 ̧–4.05 –4.02 Most sensitive cell lines (logGI50/ logTGI): CCRF-CEM –4.87/> –4.00; MOLT–4 –5.60/> –4.00; RPMI-8226 –8.00/–5.16 (L); A549/ATTC –4.97/> –4.00; HOP-62 –4.90/–4.53. HOP-92 –5.27/–4.54; NCI-H226 –4.88/–4.33 (NSCLC); HCT-116 –4.86/–4.18 (CC); M14 –4.84/> –4.00 (M); 786-O –4.86/–4.45; ACHN –4.84/–4.54. SN12C –4.92/–4.46 (RC); MDA-MB-231/ATTC –5.34/–4.64; HS578T –4.98/–4.11 (BC) 15 1 –8.00 ̧–4.00 –4.07 1 –4.02 –4.00 – – –4.00 Most sensitive cell lines (logGI50/logTGI): HOP-92 < –8.00/–4.02 (NSCLC) 16 48 –5.55 ̧–4.30 –4.66 36 –4.65 ̧–4.30 –4.26 18 –4.33 ̧–4.03 –4.07 Most sensitive cell lines (logGI50/logTGI): NCI-H522 –5.55/> –4.00 (NSCLC); U251 –4.91/–4.61(CNS); PC-3 –4.87/–4.52 (PC) 17 40 –5.39 ̧–4.20 –4.41 13 –4.30 ̧–4.06 –4.04 1 –4.26 ̧–4.00 –4.00 Most sensitive cell lines (logGI50/logTGI): CCRF-CEM –5.39/> –4.00; K-562 –5.04/> –4.00; MOLT-4 –5.33/> –4.00 (L) 18 46 –6.30 ̧–4.06 –4.55 23 –4.55 ̧–4.04 –4.16 8 –4.27 ̧–4.10 –4.03 Most sensitive cell lines (logGI50/logTGI): NCI-H23 –4.89/–4.55 (NSCLC); NCI-H522 –6.30/> –4.00 19 8 –4.54 ̧–4.16 –4.04 – – –4.00 – – –4.00 Most sensitive cell lines (logGI50/logTGI): MALME-3M –4.54/> –4.00 (M) 20 55 –4.78 ̧–4.10 –4.56 31 –4.39 ̧–4.07 –4.13 5 –4.19 ̧–4.03 –4.01 Most sensitive cell lines (logGI50/logTGI): SK-MEL-5 –4.78/–4.48; UACC-62 –4.74/–4.39 (M) 21 56 –5.78 ̧–4.87 –5.31 52 –5.38 ̧–4.02 –4.67 22 –4.80 ̧–4.04 –4.12 Most sensitive cell lines (logGI50/ logTGI): HL-60(TB) –5.66/–5.23; K-562 –5.43/–4.77 (L); NCI-H522 –5.78/–5.38 (NSCLC); KM12 –5.62/–5.18 (CC) 22 56 –5.29 ̧–4.03 –4.74 43 –4.63 ̧–4.12 –4.28 13 –4.18 ̧–4.04 –4.03 Most sensitive cell lines (logGI50/ logTGI): CCRF-CEM –5.18/–4.34; SR –5.18/–4.49 (L); KM12 –5.11/–4.63 (CC); U251 –5.10/–4.61 (CNS); ÐÑ-3 –5.29/–4.56 (PC) 23 21 –4.90 ̧–4.30 –4.42 3 –4.47 ̧–4.30 –4.31 – > –4.30 –4.30 Most sensitive cell lines (logGI50/ logTGI): EKVX –4.83/–4.39; NCI-H23 –4.75/> –4.30 (NSCLC); SF-268 –4.86/–4.32 (CNS); LOX IMVI –4.90/–4.47 (M) 8 Continuation of Table served for 6-[5-(4-nitrobenzylidene)-4-oxo-2-thioxo- thiazolidin-3-yl]-hexanoic acid, 2-(5-isopropylidene- 2,4-dioxothiazolidin-3-yl)-N-(3-trifluoromethylphe- nyl)-acetamide influence on 786-O cell. Moreover, high sensitivity of all leukemia cell lines to studied 4- azolidinone derivatives was detected. As the next step 25 compounds were selected for advanced assays on 60 cell lines panel (at five 10-fold dilutions – concentrations ranging from 10–4 to 10–8 M) (Fig. 3). Tested compounds belonged to the following groups (5-aryl(heteryl)idenerhodanine-3-alkanemo- no(di)carboxylic acids, 5-arylidene-2,4-thiazolidinedi- one-3-alkanecarboxylic acids and 5-arylidene-2,4-imi- dazolidinedione-3-acetic acids) and showed different strength of anticancer activity – from practically absent to expressive action on all tested cell lines (Table). Ob- tained data allowed us to summarize some aspects of structure – anticancer activity relationships in testing row of 4-azolidinone derivatives. The presence of yli- dene moiety in position 5 of core heterocycles plays 142 KAMINSKYY D. V., LESYK R. B. 1 2 3 4 5 6 7 8 9 10 24 47 –5.32 ̧–4.16 –4.55 20 –4.35 ̧–4.16 –4.13 8 –4.21 ̧–4.02 –4.02 Most sensitive cell lines (logGI50/ logTGI): NCI-H522 –5.32/> –4.00 (NSCLC); SN12C –5.14/–4.08 (RC) 25 45 –5.24 ̧–4.44 –4.88 32 –4.88 ̧–4.34 –4.50 12 –4.56 ̧–4.34 –4.33 Most sensitive cell lines (logGI50/ logTGI): SR –5.16/–4.72 (L); NCI-H322M –5.03/–4.53; NCI-H522 –5.01/–4.55 (NSCLC); UACC-62 –5.12/–4.84 (M); OVCAR-8 –5.14/–4.67 (OC); MDA-MB-435 –5.07/–4.74; MDA-MB-231/ATTC –5.16/–4.64; BT-549 –5.24/–4.88 (BC) Ending of Table aThe value > –4.00 (or > –4.30) was excluded; *data of double assay; N 1, N 2, N 3 – number of sensitive cell lines; L – Leukemia; CC – Colon Cancer; CNS – CNS Cancer; NSCLC – Non–Small Cell Lung Cancer; M – Melanoma; OC – Ovarian Cancer; BC – Breast Cancer; RC – Renal Cancer; PC – Prostate Cancer. NCI-H460 – 99 % MCF6 – 100 % SF-268 – 110 % NCI-H460 – 1 % MCF6 – 7 % SF-268 – 39 % NCI-H460 – 108 % MCF6 – 92 % SF-268 – 98 % NCI-H460 – 4 % MCF6 – 58 % SF-268 – 108 % N N H O O N H O ClN S O O N H O Cl N H N O O O N HCl F FF 14 S N O O O N HCl F FF S N O O O N HCl Cl N H N O O O N HCl Cl 9 N H N O O O N H CF 3 N H N O O O N H F3C Cl N H N O O O N H F3C OMe 10 14 NCI-H460 – 106 % MCF6 – 111 % SF-268 – 113 % NCI-H460 – 4 % MCF6 – 58 % SF-268 – 108 % NCI-H460 – 5 % MCF6 – 6 % SF-268 – 30 % Fig. 4. Some structure-anticancer activity relationships aspects (in square grow percent for definite cancer cell lines) crucial role for achieving anticancer activity (Fig. 4). Presence of certain arylidene or phenylpropenylidene fragments is also desirable. This confirms our hypo- thesis about critical influence of the moiety in position 5 of core heterocycles on realization of biological ef- fects, as it was previously established for another gro- ups of 4-azolidinone and related heterocyclic systems derivatives [1, 28]. Comparison of anticancer activity of free acids and their derivatives (namely amides) shows that latter are more active than corresponding acids as well as the results of [35]. CF3-Substituted anilines and sulfanilamide moieties are desirable as «privileged» fragments. Comparison of anticancer activity of isosters of rhodanine and 2,4-thiazolidinedione derivatives or homologs of mentioned substances didn’t allow us to establish any relation. However, substitution of S-atom of thiazolidinone ring for N-atom (transfer from 2,4- thiazolidinedione to 2,4-imidazolidinedione) contribu- tes to increase in anticancer activity and appearing of selectivity. Hydantoin-3-acetic acids derivatives (14, 8, 9, 11, 12) possess the distinct selective influence on Leukemia cell lines comparing to the other groups of cancer cell lines. This fact allows us to interpret the 5- arylidene-2,4-imidazolidinedione-3-acetic acids ami- des as lead-compounds in search of antileukemic agents. In addition, mentioned group is more active in comparison to other 2,4-thia(imida)zolidinedione deri- vatives [28]. Analysis of anticancer activity data of 5-ylide- nerhodanine-3-succinic acids derivatives allowed to summarize some structure-activity correlations (Fig. 5). Modification of free dicarboxylic acids to their diamides caused increase in anticancer activity, which was the most prominent for cyclic imides. Based on the interpretation of obtained data 3-(4-oxo-2-thioxothia- 143 STRUCTURE-ANTICANCER ACTIVITY OF 4-AZOLIDINONE-3-CARBOXYLIC ACIDS DERIVATIVES N N H SO2NH2 O N S O S O O N N H SO2NH2 O S O S 22 2 N N O O OH O N N O O OH O N N O O OH O N N O O Me Me OH O 17 23 24 25 Combining of thiazolidinone and pyrrolidinedione cycles Desirable elongation or complicate of carbonic chain in N of pyrrolidinedione moiety N S O S N O O Possible «pharmacophore» Direction of optimization Direction of optimization Fig. 5. Directions of lead optimization among 5-ylidenerhodanine-3-succinic acids derivatives zolidine-3-yl)-pyrrolidine-2,5-dione fragment was as- sumed as possible pharmacophore within investigated samples row [29]. Consequently, we showed the direc- tions of this fragment chemical modification aimed at structure optimization, namely: position C5 of rhodani- ne cycle and N-atom of pyrrolidine. Conclusion. The present study describes in vitro anticancer activity of new 5-ylidene-4-thiazolidinone- 3-alkanecarboxylic acids derivatives. The series of active compounds with high activity and/or selectivity levels were selected. Some aspects of structure–an- ticancer activity relationships were determined and structure design directions were proposed. 5-Ary- lidenehydantoin-3-acetic acids derivatives were iden- tified as a new class of potent antileukemic agents. Possible pharmacophore scaffold of 5-ylidenerhoda- nine-3-succinic acids derivatives was suggested. Acknowledgements. We are grateful to Dr. V. L. Narayanan from Drug Synthesis and Chemistry Branch, National Cancer Institute, Bethesda, MD, USA, for in vitro evaluation of anticancer activity. Ä. Â. Êàìiíñüêèé, Ð. Á. Ëå ñèê Âçàºìîç â’ÿ çîê «ñòðóê òó ðà–ïðî òè ðà êî âà àê òèâí³ñòü» â ðÿäó 4- àçîë³äîí-3-êàð áî íî âèõ êèñ ëîò òà ¿õí³õ ïîõ³äíèõ Ðå çþ ìå Ìåòà äà íî ãî äîñë³äæåí íÿ ïî ëÿ ãà ëà ó âèâ ÷åíí³ ïðî òè ðà êî âî¿ àê òèâ íîñò³ 4-àçîë³äîí-3-êàð áî íî âèõ êèñ ëîò òà ¿õí³õ ïîõ³äíèõ, âñòà íîâ ëåíí³ îñîá ëè âîñ òåé âçàºìîç â’ÿç êó «ñòðóê òó ðà–àê - òèâí³ñòü». Ìå òî äè. Îðãàí³÷íèé ñèí òåç, ñïåê òðàëüí³ ìå òî äè, ñêðèí³íã ïðî òè ïóõ ëèí íî¿ àê òèâ íîñò³ (US NCI-ìå òî äî ëî㳿, Developmental Therapeutic Program). Ðå çóëü òà òè. Ïðåä ñòàâ - ëå íî ðå çóëü òà òè òåñ òó âàí íÿ in vitro ïðî òè ðà êî âî¿ àê òèâ - íîñò³ íî âèõ ïîõ³äíèõ 4-àçîë³äîí-3-àë êàí êàð áî íî âèõ êèñ ëîò. Âèä³ëåíî âè ñî êî àê òèâí³ ñïî ëó êè, ÿê³ íà ëå æàòü äî ïîõ³äíèõ 5-àðèë³äåí-2,4-ò³à(³ì³äà)çîë³äîí-3-àë êàí êàð áî íî âèõ êèñ ëîò òà 5-àðèë(ãå òå ðèë)³äåí ðî äàí³í-3-ñóê öè íàò íèõ êèñ ëîò. Âñòà - íîâ ëåí³ çà êî íîì³ðíîñò³ çà ëåæ íîñò³ «ñòðóê òó ðà–àê òèâí³ñòü» äîç âî ëÿ þòü îêðåñ ëè òè íà ïðÿì êè îïòèì³çàö³¿ ñòðóê òóð- ë³äåð³â ³ ³äåí òèô³êó âà òè ìî ëå êó ëÿðí³ ôðàã ìåí òè äëÿ äèç àé íó ïî òåíö³éíèõ ïðî òè ðà êî âèõ àãåíò³â íà îñíîâ³ 4-àçîë³äî íî âî ãî ñêàô ôîë äó. Àì³äè 5-àðèë³äåíã³äàí òî¿í-3-îöòî âèõ êèñ ëîò âè- çíà ÷å íî ÿê íî âèé êëàñ ïðî òè ëåé êåì³÷íèõ àãåíò³â. Äëÿ 5-³ë³äåí - ðî äàí³í-3-ñóê öè íàò íèõ êèñ ëîò ³äåí òèô³êî âà íî éìîâ³ðíèé ôàð ìà êî ôîð. Âèñ íîâ êè. Îäåð æà íî íèç êó àê òèâ íèõ ñïî ëóê ç âè - ñî êèì ð³âíåì ïðî òè ðà êî âî¿ àê òèâ íîñò³ òà/àáî ñå ëåê òèâ íîñò³. Çàï ðî ïî íî âà íî íà ïðÿì êè äèç àé íó ñòðóê òó ðè ïî òåíö³éíèõ ïðî - òè ðà êî âèõ àãåíò³â íà îñíîâ³ âñòà íîâ ëå íèõ çà êî íîì³ðíîñ òåé «ñòðóê òó ðà–àê òèâí³ñòü». Êëþ ÷îâ³ ñëî âà: 4-àçîë³äîí-3-êàð áî íîâ³ êèñ ëî òè, ïðî òè ðà êî âà àê òèâí³ñòü, âçàºìîç â’ÿ çîê «ñòðóê òó ðà–àê òèâí³ñòü». Ä. Â. Êà ìèí ñêèé, Ð. Á. Ëå ñûê Âçà è ìîñ âÿçü «ñòðóê òó ðà–ïðî òè âî î ïó õî ëå âàÿ àê òèâ íîñòü» â ðÿäó 4-àçî ëè äîí-3-êàð áî íî âûõ êèñ ëîò è èõ ïðî èç âîä íûõ Ðå çþ ìå Öåëü äàí íî ãî èñ ñëå äî âà íèÿ ñî ñòî ÿ ëà â èç ó÷å íèè ïðî òè âî î ïó - õî ëå âîé àê òèâ íîñ òè 4-àçî ëè äîí-3-êàð áî íî âûõ êèñ ëîò è èõ ïðî - èç âîä íûõ, à òàê æå â óñòà íîâ ëå íèè íå êî òî ðûõ îñî áåí íîñ òåé âçà è ìîñ âÿ çè «ñòðóê òó ðà–àê òèâ íîñòü». Ìå òî äû. Îðãà íè ÷åñ - êèé ñèí òåç, ñïåê òðàëü íûå ìå òî äû, ñêðè íèíã ïðî òè âî î ïó õî ëå - âîé àê òèâ íîñ òè (US NCI-ìå òî äî ëî ãèÿ, Developmental The- rapeutic Program). Ðå çóëü òà òû. Ïðåä ñòàâ ëå íû ðå çóëü òà òû òåñ òè ðî âà íèÿ in vitro ïðî òè âî î ïó õî ëå âîé àê òèâ íîñ òè íî âûõ ïðî èç âîä íûõ 4-àçî ëè äîí-3-àëàí êàð áî íî âûõ êèñ ëîò. Îòîá ðà íû íà è áî ëåå àê òèâ íûå ñî å äè íå íèÿ, êî òî ðûå îò íî ñÿò ñÿ ê ïðî èç - âîä íûì 5-àðè ëè äåí-2,4-òèà(èìè äà)çî ëè äîí-3-àë êàí êàð áî íî - âûõ êèñ ëîò è 5-àðèë(ãå òå ðèë)èäåí ðî äà íèí-3-ñóê öè íàò íûõ êèñ ëîò. Íà îñíî âà íèè âû ÿâ ëåí íûõ çà êî íî ìåð íîñ òåé âçà è ìîñ - âÿ çè «ñòðóê òó ðà–àê òèâ íîñòü» îïðå äå ëå íû íà ïðàâ ëå íèÿ îïòè - ìè çà öèè ñòðóê òóð-ëè äå ðîâ, èäåí òè ôè öè ðî âà íû ìî ëå êó ëÿð íûå ôðàã ìåí òû äëÿ äèç àé íà ïî òåí öè àëü íûõ ïðî òè âî î ïó õî ëå âûõ àãåí òîâ íà îñíî âà íèè 4-àçî ëè äî íî âî ãî ñêàô ôîë äà. Àìèäû 5- àðè ëè äåí ãè äàí òî èí-3-óêñóñ íûõ êèñ ëîò ðàñ ñìàò ðè âà þò ñÿ êàê íî âûé êëàññ ïðî òè âî ëåé êå ìè ÷åñ êèõ àãåí òîâ. Äëÿ ðÿäà 5-èëè - äåí ðî äà íèí-3-ñóê öè íàò íûõ êèñ ëîò óñòà íîâ ëåí âå ðî ÿò íûé ôàð ìà êî ôîð. Âû âî äû. Âû äå ëåí ðÿä àê òèâ íûõ ñî å äè íå íèé ñ âû - ñî êèì óðîâ íåì ïðî òè âî î ïó õî ëå âîé àê òèâ íîñ òè è/èëè ñå ëåê - òèâ íîñ òè. Ïðåä ëî æå íû íà ïðàâ ëå íèÿ äèç àé íà ñòðóê òó ðû ïî òåí öè àëü íûõ ïðî òè âî î ïó õî ëå âûõ àãåí òîâ íà îñíî âå óñòà - íîâ ëåí íûõ çà êî íî ìåð íîñ òåé «ñòðóê òó ðà–àê òèâ íîñòü». Êëþ ÷å âûå ñëî âà: 4-àçî ëè äîí-3-êàð áî íî âûå êèñ ëî òû, ïðî - òè âî î ïó õî ëå âàÿ àê òèâ íîñòü, âçà è ìîñ âÿçü «ñòðóê òó ðà–àê òèâ - íîñòü». REFERENCES 1. Lesyk R. B., Zimenkovsky B. S. 4-Thiazolidones: Centenarian history, current status and perspectives for modern organic and medicinal chemistry // Curr. Org. Chem.–2004.–8, N 16.–P. 1547–1577. 2. Prabhakar Y. S., Solomon V. R., Gupta M. K., Katti S. B. QSAR studies on thiazolidines: biologically privileged scaf- fold // Top. Heterocycl. Chem.–2006.–4.–P. 161–249. 3. Ottana R., Carotti S., Maccari R., Landini I., Chiricosta G., Caciagli B., Vigorita M. G., Mini E. In vitro antiproliferative activity against human colon cancer cell lines of represen- tative 4-thiazolidinones. Part I // Bioorg. Med. Chem. Lett.– 2005.–15, N 17.–P. 3930–3933. 4. Shih M. H., Ke F. Y. Synthesis and evaluation of antioxidant activity of sydnonyl substituted thiazolidinone and thiazoline derivatives // Bioorg. Med. Chem.–2004.–12, N 17.–P. 4633– 4643. 5. Kesel A. S., Sonnenbicher I., Polborn K., Gurtler L., Klinkert W. E. F., Modolell M., Nussler A. K., Oberthur W. A new anti- oxidative vitamine B6-analogue modulates pathophysiolo- gical cell proliferation and demage // Bioorg. Med. Chem.– 1999.–7, N 2.–P. 359–367. 6. Avendano C., Menendez J. C. Medicinal chemistry of anti- cancer drugs.–Amsterdam: Elsevier, 2008.–400 p. 144 KAMINSKYY D. V., LESYK R. B. 7. Liu W. J., Bulgaru A., Haigentz M., Stein C. A., Perez-Soler R., Mani S. The BCL2-family of protein ligands as cancer drugs: the next generation of therapeutics // Curr. Med. Chem. Anti Cancer Agents.–2003.–3, N 3.–P. 217–223. 8. Degterev A., Lugovskoy A., Cardone M., Mulley B., Wagner G., Mitchison T., Yuan J. Identification of small-molecule in- hibitors of interaction between the BH3 domain and Bcl-xl // Nat. Cell Biol.–2001.–3, N 2.–P. 173–182. 9. Lugovskoy A. A., Degterev A. I., Fahmy A. F., Zhou P., Gross J. D., Yuan J., Wagner G. A Novel approach for characteri- zing protein ligand complexes: molecular basis for specificity of small-molecule Bcl-2 inhibitors // J. Am. Chem. Soc.– 2002.–124, N 7.–P. 1234–1240. 10. Xing C., Wang L., Tang X. H., Sham Y.Y. Development of se- lective inhibitors for anti-apoptotic Bcl-2 proteins from BHI- 1 // Bioorg. Med. Chem.–2007.–15, N 5.–P. 2167–2176. 11. Cutshall N. S., O’Day C., Prezhdo M. Rhodanine derivatives as inhibitors of JSP-1 // Bioorg. Med. Chem. Lett.–2005.–15, N 14.–P. 3374–3379. 12. Look G. C., Shuilck J. R., Holmes Ch. P., Chinn J. P., Gordon E. M., Gallop M. A. The identification of cyclooxygenase-1 inhibitors from 4-thiazolidinone combinatorial library // Bio- org. Med. Chem. Lett.–1996.–6, N 6.–P. 707–712. 13. Lee J., Kim J., Koh J. S., Chung H. H., Kim K. H. Hydantoin derivatives as non-peptidic inhibitors of Ras farnesyl trans- ferase // Bioorg. Med. Chem. Lett.–2006.–16, N 7.–P. 1954– 1956. 14. Mazieres J., Pradines A., Favre G. Perspectives on farnesyl transferase inhibitors in cancer therapy // Cancer Lett.– 2004.–206, N 2.–P. 159–164. 15. Zhao L., Huang W., Liu H., Wang L., Zhong W., Xiao J., Hu Y., Li S. FK506-binding protein ligands: structure-based des- ign, synthesis, and neurotrophic/neuroprotective properties of substituted 5,5-dimethyl-2-(4-thiazolidine) carboxylates // J. Med. Chem.–2006.–49, N 14.–P. 4059–4071. 16. Liuqing W., Gan X., Zhong J., Alliston K. R., Groutas W. C. Noncovalent inhibitors of human leukocyte elastase based on the 4-imidazolidinone scaffold // Bioorg. Med. Chem.– 2003.–11, N 23.–P. 5149–5153. 17. Carmi C., Cavazzoni A., Zuliani V., Lodola A., Bordi F., Plazzi P. V., Alfieri R. R., Petronini P. G., Mor M. 5-Benzyli- dene-hydantoins as new EGFR inhibitors with antiproliferati- ve activity // Bioorg. Med. Chem. Lett.–2006.–16, N 15.– P. 4021–4025. 18 Rajic Z., Zorc B., Raic-Malic S., Ester K., Kralj M., Pavelic K., Balzarini J., Clercq E. D., Mintas M. Hydantoin derivati- ves of L- and D-amino acids: synthesis and evaluation of their antiviral and antitumoral activity // Molecules.–2006.–11, N 11.–P. 837–848. 19. Gibbs J. B., Oliff A. The potential of farnesyltransferase inhi- bitors as cancer chemotherapeutics // Ann. Rev. Pharmacol. Toxicol.–1997.–37.–P. 143–166. 20. Haluska P., Dy G. K., Adjei A. A. Farnesyl transferase inhibi- tors as anticancer agents // Eur. J. Cancer.–2002.–38, N 13.– P. 1685–1700. 21. Lv P. C., Zhou C. F., Chen J., Liu P. G., Wang K. R., Mao W. J., Li H. Q., Yang Y., Xiong J., Zhu H. L. Design, synthesis and biological evaluation of thiazolidinone derivatives as po- tential EGFR and HER-2 kinase inhibitors // Bioorg. Med. Chem.–2010.–18, N 1.–P. 314–319. 22. Pevarello P., Brasca M. G., Orsini P., Traquandi G., Longo A., Nesi M., Orzi F., Piutti C., Sansonna P., Varasi M., Came- ron A., Vulpetti A., Roletto F., Alzani R., Ciomei M., Albanese C., Pastori W., Marsiglio A., Pesenti E., Fiorentini F., Bischoff J. R., Mercurio C. 3-Aminopyrazole inhibitors of CDK2/cyclin A as antitumor agents. 2. Lead optimization // J. Med. Chem.–2005.–48, N 8.–P. 2944–2956. 23. Dayam R., Aiello F., Deng J., Wu Y., Garofalo A., Chen X., Neamati N. Discovery of small molecule integrin avb3 anta- gonists as novel anticancer agents // J. Med. Chem.–2006.– 49, N 15.–P. 4526–4534. 24. Pat. US2003/0119894, IPC A 61K31/404, N 09/9106291. Methods for treatment of cancer or neoplastic disease and for inhibiting growth of cancer cells and neoplastic cellsmurthy / M. S. R. Murthy, G. C. Shore, J. Bajorath, F. L. Stahura // Publ. 26.06.2003. 25. Teng X., Degterev A., Jagtap P., Xing X., Choi S., Denu R., Yuan J., Cuny G. D. Structure-activity relationship study of novel necroptosis inhibitors // Bioorg. Med. Chem. Lett.– 2005.–15, N 22.–P. 5039–5044. 26. Lesyk R., Zimenkovsky B., Lukyanchuk V., Atamanyuk D., Vovk O. Chemistry and ðharmacology of 4-thiazolidone de- rivatives // Ann. Polish Chem. Soc.–2003.–2.–P. 293–298. 27. Zimenkovsky B. S., Lesyk R. B. Purposeful synthesis of biolo- gical active compound base on 4-azolidinone // J. Org. Pharm. Chem.–2003.–1, N 1–2.–P. 24–30 (in Ukrainian). 28. Kaminskyy D., Zimenkovsky B., Lesyk R. Synthesis and in vit- ro anticancer activity of 2,4-azolidinedione-acetic acids deri- vatives // Eur. J. Med. Chem. – 2009.–44, N 9.–P. 3627–3636. 29. Kaminskyy D. V., Roman O. M., Atamanyuk D. V., Lesyk R. B. 5-Ylidene-2-thioxo-4-thiazolidinone-3-succinic acids and their derivatives: synthesis, anticancer activity, QSAR-ana- lysis // J. Org. Pharm. Chem.– 2006.–4, N 1(13).–P. 41–48. 30. Êaminskyy D. V., Lesyk R. B. Synthesis and biological activi- ty of 4-thiazolidinone-3-acetic acids derivatives // Farma- cevt. Zhur. (Kyiv).–2008.–3.–P. 70–78. 31. Monks A., Scudiero D., Skehan P., Shoemaker R., Paull K., Vistica D., Hose C., Langley J., Cronise P., Vaigro-Wolff A., Gray-Goodrich M., Campbell H., Mayo J., Boyd M. Feasibi- lity of a high-flux anticancer drug screen using a diverse pa- nel of cultured human tumor cell lines // J. Nat. Cancer Inst.–1991.–83, N 11.–P. 757–766. 32. Boyd M. R., Paull K. D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen // Drug Develop. Res.–1995.–34, N 2.– P. 91–109. 33. Boyd M. R. Anticancer drug development guide: preclinical screening, clinical trials, and approval in: cancer drug disco- very and development / Ed. A. Teicher.–Totowa: Humana Press, 1997.–P. 23–43. 34. Shoemaker R. H. The NCI60 human tumour cell line antican- cer drug screen // Nat. Rev. Cancer.–2006.–6, N 10.–P. 813– 823. 35. Gududuru V., Hurh E., Dalton J. T., Miller D. D. Synthesis and antiproliferative activity of 2-aryl-4-oxo-thiazolidin-3- yl-amides for prostate cancer // Bioorg. Med. Chem. Lett.– 2004.–14, N 21.–P. 5289–5293. UDC 615.012.1.076:547.789.1 Received 10.01.10 145 STRUCTURE-ANTICANCER ACTIVITY OF 4-AZOLIDINONE-3-CARBOXYLIC ACIDS DERIVATIVES