The quest for the ganglioside functions; what did we learn more from «evo-devo» or signaling of long-term maintenance?
Gangliosides are characteristic extracellular-facing plasma membrane determinants in vertebrate brain. The four major gangliosides (GM1, GD1a, GD1b and GT1b) dominate among more than one hundred glycolipid structures in nervous tissue. During brain development the expression of simple gangliosides s...
Збережено в:
Дата: | 2010 |
---|---|
Автори: | , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут молекулярної біології і генетики НАН України
2010
|
Назва видання: | Вiopolymers and Cell |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/153874 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The quest for the ganglioside functions; what did we learn more from «evo-devo» or signaling of long-term maintenance? / M. Heffer-Lauc, A. Mojsovic-Cuic, P. Hrabac, B. Viljetic, D. Dikic // Вiopolymers and Cell. — 2010. — Т. 26, № 2. — С. 105-114. — Бібліогр.: 88 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-153874 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1538742019-07-06T20:25:29Z The quest for the ganglioside functions; what did we learn more from «evo-devo» or signaling of long-term maintenance? Heffer-Lauc, M. Mojsovic-Cuic, A. Hrabac, P. Viljetic, B. Dikic, D. Reviews Gangliosides are characteristic extracellular-facing plasma membrane determinants in vertebrate brain. The four major gangliosides (GM1, GD1a, GD1b and GT1b) dominate among more than one hundred glycolipid structures in nervous tissue. During brain development the expression of simple gangliosides shifts toward more complex ones, accompanied by a multiple increase in their total amount. The shift is precisely regulated and some specific structures represent well established neurodevelopmental milestones. From the evolutionary perspective, the ganglioside content in fish and amphibian brain is significantly lower than in mammalian brain, but the general variability is greater. More-polar structures, abundant in Antarctic fishes, are rare in higher vertebrates or expressed only in a narrow developmental frame. Reptiles, birds and mammals share identical common structures expressed in similar patterns with minor interspecies differences. On the contrary, fish and amphibian brains show significant interspecies differences in amount, structure and expression patterns. The initial assumption of evolutionary studies was that the variations in lipid content, particularly the glycolipid content, during temperature adaptations in ectothermic and hibernating heterothermic animals, represent an efficient molecular mechanism of the membrane function preservation. Studies of ordered lipid domains in the last decade verified the ganglioside-mediated regulation of membrane proteins (receptor kinases, neurotransmitter receptors and ion channels) as well as receptor-ligand interaction important for cell signaling. Гангліозиди – характеристичні детермінанти, які локалізовані на зовнішній поверхні мембран клітин мозку хребетних. Чотири основних гангліозиди (GM1, GD1a, GD1b i GT1b) переважають серед сотень інших сполук гліколіпідів нервової тканини. У процесі розвитку мозку експресія простих гангліозидів зміщується у бік синтезу більш складних сполук, що супроводжується багаторазовим зростанням їхньої загальної кількості. Зміщення експресії – строго регульований процес, за якого поява деяких специфічних структур репрезентує добре відомі стадії розвитку нервової тканини. З точки зору еволюції вміст гангліозидів у мозку риб та амфібій значно нижчий, ніж у мозку ссавців, проте загальна їхня варіабельність суттєво вища. Більш полярні сполуки, які широко представлені у антарктичних риб, є рідкісними для ссавців або характерними для певного короткотривалого етапу онтогенезу. Плазуни, птахи і ссавці зберігають ідентичні спільні структури, що мають подібні патерни експресії з незначними міжвидовими відмінностями. Навпаки, для мозку риб та амфібій відзначено істотну міжвидову відмінність щодо кількості, структури та патерну експресії. Першочерговим припущенням еволюційного дослідження стало те, що варіації у вмісті ліпідів, зокрема гліколіпідів, під час температурної адаптації у холоднокровних і гетеротермних тварин, які впадають у сплячку, є високоефективним молекулярним механізмом захисту функціонування мембран. Вивчення впорядкованих доменів ліпідів за останнє десятиліття підтверджує гангліозид-опосередковану регуляцію мембранних білків (рецептори з кіназною активністю, рецептори нейротрансмітерів та іонні канали), так само як і взаємодію рецептор–ліганд, важливу для передачі позаклітинного сигналу. Ганглиозиды – характеристические детерминанты, локализованные на внешней поверхности мембран клеток мозга хребетных. Четыре основных ганглиозида (GM1, GD1a, GD1b и GT1b) преобладают среди сотень других соединений гликолипидов нервной ткани. В процессе развития мозга экспрессия простых ганглиозидов замещается синтезом более сложных соединений, что сопровождается многократным увеличением их общего количества. Смещение экспрессии – строго регулированный процесс, при котором появление некоторых специфических структур представляет хорошо известные стадии развития нервной ткани. Содержание ганглиозидов в мозге рыб и амфибий значительно ниже, чем в мозге млекопитающих, однако их общая вариабельность существенно выше. Более полярные соединения, широко представленные у антарктических рыб, являются редкими для млекопитающих или характерными для определенного кратковременного этапа онтогенеза. Пресмыкающиеся, птицы и млекопитающие сохраняют общие идентичные структуры с подобными паттернами экспрессии, имеющими незначительные межвидовые отличия. Наоборот, для мозга рыб и амфибий отмечены существенные межвидовые отличия, касающиеся количества, структуры и паттерна экспрессии. Первоочередным предположением эволюционного исследования стало то, что вариации в содержании липидов, в частности гликолипидов, во время температурной адаптации у хладнокровных и гетеротермных животных, впадающих в спячку, являются высокоэффективным молекулярным механизмом защиты функционирования мембран. Изучение упорядоченных доменов липидов за последнее десятилетие подтверждает ганглиозид-опосредованную регуляцию мембранных белков (рецепторы с киназной активностью, рецепторы нейротрансмиттеров и ионные каналы), так же как и взаимодействие рецептор–лиганд, важное для передачи внеклеточного сигнала. 2010 Article The quest for the ganglioside functions; what did we learn more from «evo-devo» or signaling of long-term maintenance? / M. Heffer-Lauc, A. Mojsovic-Cuic, P. Hrabac, B. Viljetic, D. Dikic // Вiopolymers and Cell. — 2010. — Т. 26, № 2. — С. 105-114. — Бібліогр.: 88 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.00014C http://dspace.nbuv.gov.ua/handle/123456789/153874 577.114.5:57.017.2 en Вiopolymers and Cell Інститут молекулярної біології і генетики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Reviews Reviews |
spellingShingle |
Reviews Reviews Heffer-Lauc, M. Mojsovic-Cuic, A. Hrabac, P. Viljetic, B. Dikic, D. The quest for the ganglioside functions; what did we learn more from «evo-devo» or signaling of long-term maintenance? Вiopolymers and Cell |
description |
Gangliosides are characteristic extracellular-facing plasma membrane determinants in vertebrate brain. The four major gangliosides (GM1, GD1a, GD1b and GT1b) dominate among more than one hundred glycolipid structures in nervous tissue. During brain development the expression of simple gangliosides shifts toward more complex ones, accompanied by a multiple increase in their total amount. The shift is precisely regulated and some specific structures represent well established neurodevelopmental milestones. From the evolutionary perspective, the ganglioside content in fish and amphibian brain is significantly lower than in mammalian brain, but the general variability is greater. More-polar structures, abundant in Antarctic fishes, are rare in higher vertebrates or expressed only in a narrow developmental frame. Reptiles, birds and mammals share identical common structures expressed in similar patterns with minor interspecies differences. On the contrary, fish and amphibian brains show significant interspecies differences in amount, structure and expression patterns. The initial assumption of evolutionary studies was that the variations in lipid content, particularly the glycolipid content, during temperature adaptations in ectothermic and hibernating heterothermic animals, represent an efficient molecular mechanism of the membrane function preservation. Studies of ordered lipid domains in the last decade verified the ganglioside-mediated regulation of membrane proteins (receptor kinases, neurotransmitter receptors and ion channels) as well as receptor-ligand interaction important for cell signaling. |
format |
Article |
author |
Heffer-Lauc, M. Mojsovic-Cuic, A. Hrabac, P. Viljetic, B. Dikic, D. |
author_facet |
Heffer-Lauc, M. Mojsovic-Cuic, A. Hrabac, P. Viljetic, B. Dikic, D. |
author_sort |
Heffer-Lauc, M. |
title |
The quest for the ganglioside functions; what did we learn more from «evo-devo» or signaling of long-term maintenance? |
title_short |
The quest for the ganglioside functions; what did we learn more from «evo-devo» or signaling of long-term maintenance? |
title_full |
The quest for the ganglioside functions; what did we learn more from «evo-devo» or signaling of long-term maintenance? |
title_fullStr |
The quest for the ganglioside functions; what did we learn more from «evo-devo» or signaling of long-term maintenance? |
title_full_unstemmed |
The quest for the ganglioside functions; what did we learn more from «evo-devo» or signaling of long-term maintenance? |
title_sort |
quest for the ganglioside functions; what did we learn more from «evo-devo» or signaling of long-term maintenance? |
publisher |
Інститут молекулярної біології і генетики НАН України |
publishDate |
2010 |
topic_facet |
Reviews |
url |
http://dspace.nbuv.gov.ua/handle/123456789/153874 |
citation_txt |
The quest for the ganglioside functions; what did we learn more from «evo-devo» or signaling of long-term maintenance? / M. Heffer-Lauc, A. Mojsovic-Cuic, P. Hrabac, B. Viljetic, D. Dikic // Вiopolymers and Cell. — 2010. — Т. 26, № 2. — С. 105-114. — Бібліогр.: 88 назв. — англ. |
series |
Вiopolymers and Cell |
work_keys_str_mv |
AT hefferlaucm thequestforthegangliosidefunctionswhatdidwelearnmorefromevodevoorsignalingoflongtermmaintenance AT mojsoviccuica thequestforthegangliosidefunctionswhatdidwelearnmorefromevodevoorsignalingoflongtermmaintenance AT hrabacp thequestforthegangliosidefunctionswhatdidwelearnmorefromevodevoorsignalingoflongtermmaintenance AT viljeticb thequestforthegangliosidefunctionswhatdidwelearnmorefromevodevoorsignalingoflongtermmaintenance AT dikicd thequestforthegangliosidefunctionswhatdidwelearnmorefromevodevoorsignalingoflongtermmaintenance AT hefferlaucm questforthegangliosidefunctionswhatdidwelearnmorefromevodevoorsignalingoflongtermmaintenance AT mojsoviccuica questforthegangliosidefunctionswhatdidwelearnmorefromevodevoorsignalingoflongtermmaintenance AT hrabacp questforthegangliosidefunctionswhatdidwelearnmorefromevodevoorsignalingoflongtermmaintenance AT viljeticb questforthegangliosidefunctionswhatdidwelearnmorefromevodevoorsignalingoflongtermmaintenance AT dikicd questforthegangliosidefunctionswhatdidwelearnmorefromevodevoorsignalingoflongtermmaintenance |
first_indexed |
2025-07-14T05:18:40Z |
last_indexed |
2025-07-14T05:18:40Z |
_version_ |
1837598319457599488 |
fulltext |
The quest for the ganglioside functions; what did we
learn more from «evo-devo» or signaling of long-term
maintenance?
M. Heffer-Lauc, A. Mojsovic-Cuic1, P. Hrabac2, B. Viljetic, D. Dikic3
School of Medicine, Josip Juraj Strossmayer University of Osijek
4, Huttlerova, Osijek, Croatia, 31000
1University of Applied Health Studies, University of Zagreb
38, Mlinarska, Zagreb, Croatia, 10000
2Croatian Institute for Neuroscience, University of Zagreb
11, Salata, Zagreb, Croatia, 10000
3Faculty of Science, University of Zagreb
6, Rooseveltov trg, Zagreb, Croatia, 10000
mheffer@mefos.hr
Gangliosides are characteristic extracellular-facing plasma membrane determinants in vertebrate brain.
The four major gangliosides (GM1, GD1a, GD1b and GT1b) dominate among more than one hundred
glycolipid structures in nervous tissue. During brain development the expression of simple gangliosides
shifts toward more complex ones, accompanied by a multiple increase in their total amount. The shift is
precisely regulated and some specific structures represent well established neurodevelopmental
milestones. From the evolutionary perspective, the ganglioside content in fish and amphibian brain is
significantly lower than in mammalian brain, but the general variability is greater. More-polar structures,
abundant in Antarctic fishes, are rare in higher vertebrates or expressed only in a narrow developmental
frame. Reptiles, birds and mammals share identical common structures expressed in similar patterns with
minor interspecies differences. On the contrary, fish and amphibian brains show significant interspecies
differences in amount, structure and expression patterns. The initial assumption of evolutionary studies was
that the variations in lipid content, particularly the glycolipid content, during temperature adaptations in
ectothermic and hibernating heterothermic animals, represent an efficient molecular mechanism of the
membrane function preservation. Studies of ordered lipid domains in the last decade verified the
ganglioside-mediated regulation of membrane proteins (receptor kinases, neurotransmitter receptors and
ion channels) as well as receptor-ligand interaction important for cell signaling.
Keywords: gangliosides, brain, evolution, development, cell-signaling, lipid rafts.
Introduction Lipids constitute 50 % of brain dry we-
ight [1]. Gangliosides contribute in the total lipid
content with 10–12 % [2]. They are present in some
intracellular structures, but prevail in external leaflet of
plasma membrane, which gives them a role of the ma-
jor cell surface determinants on vertebrate nerve cells
[3]. Amphiphatic in nature, they consist of lipophilic
ceramide moiety and hydrophilic sugar chain. Diffe-
rently from other glycosphingolipids, the ganglioside
sugar chain carries one or more sialic acid residues. At
105
ISSN 0233-7657. Biopolymers and Cell. 2010. Vol. 26. N 2
Ó Institute of Molecular Biology and Genetics NAS of Ukraine, 2010
the moment 188 ganglioside structures in vertebrate
tissues have been described merely based on a variety
of sugar chains, but heterogeneity is considerably wi-
der when the variety in lipophilic components is taken
into consideration [4].
Such a variety would be very difficult to handle if
brains of mammals and birds did not express the same
four major structures (GM1, GD1a, GD1b and GT1b)
which make up high 97 % of gangliosides in, for exam-
ple, human brain [5].
Gangliosides biosynthesis starts in the endoplas-
matic reticulum and finishes by stepwise addition of
single carbohydrate residues by glycosylation machi-
nery in the Golgi complex [6]. Glycosyltransferases act
in succession along Golgi-compartments (Fig. 1). Some
of them compete for common specific acceptors and/or
generate more than one product. The cellular pattern of
gangliosides is dependent on available activated sugars,
expression and the balance between the activities of the
competing glycosyltransferases [7]. Changes in the ste-
ady state concentration of cellular gangliosides can be
predicted by the multienzyme kinetic analysis [8, 9].
Gangliosides bind side by side to different receptors
[10, 11] as a part of lipid shell [12], performing «chape-
rone-like» effect, probably already in Golgi apparatus.
Once transported to the cell surface gangliosides
become a privileged partner of cholesterol in lipid rafts
modulating activities of plasma membrane proteins or
participating in intercellular interactions [13].
Gangliosides in vertebrate evolution. Since glyco-
sphingolipids are present in ten times higher concen-
trations in the brain than in any other extraneural tissue,
it was assumed that nervous tissues require some par-
ticular functions served by each known ganglioside. It
was likewise assumed that the functions were intro-
duced with some order during the evolution. The first
surveys of interspecies differences described a great
variation in quantity and pattern of gangliosides in
vertebrates [14, 15], particularly between different spe-
cies of fish [16]. The most pronounced differences
were in the quantity of lipid bound sialic acid per gram
of fresh tissue between lower and higher vertebrates.
While in fish brain quantities were between 110 and
750 mg/g of fresh tissue [17], in mammals they were
between 650 and 1200 mg/g [18]. If species of fish were
correlated according to preferred ambient temperature,
then species living in warm tropical waters, like Tilapia
and Pseudotrophaeus, had three times higher concen-
trations of lipid bound sialic acid [17, 19] apart from the
ones living in cold waters like carp and trout [20].
The pattern of brain gangliosides is also signi-
ficantly different between warm and cold-blooded ani-
mals and can be correlated to the state of thermal adap-
tation [21] – the lower environmental or body tempera-
ture is, the more polar is the composition of brain gan-
gliosides. The drastic change in brain gangliosides pat-
tern between warm and cold-blooded animals was ac-
companied with a difference in activities of sialotrans-
ferases in ganglioside biosynthesis [22]. On the other
hand the pattern of brain gangliosides in related species
of teleostea, anurans, urodela or mammals, was similar
[19, 23, 24]. Variations were greater between different
genera than between species of the same genus. The
highest quantity (34–39 %) of the most polar tetra, pen-
ta and hexasialogangliosides in a vertebrate brain have
been found in Antartic pearch and other Notothenoidea
living below freezing point (–1.5 °C) [25], while in
mammals it was between 1 and 9 % [26]. Another im-
portant difference between warm and cold acclimated
species was quantity of alkali-labile gangliosides.
Mammalian brains had minor quantity of alkali-label
gangliosides (about 5 %), warm-stenothermic cichlid
fish acclimated to an ambient temperature of 28 °C
have 34 %, European temperate species like carp have
53–59 %, while red-blooded Antarctic fish living be-
low 0 °C could have 61–67 % [27].
Most of this biochemical data have never been fur-
ther investigated with immunohistochemical methods.
One recent immunohistochemical study showed an
interspecies difference in the expression of GD1a in
olfactory bulb and olfactory pathways of frog [28] (data
in press). While Ranidae sp. from all complex gang-
liosides had only GD1a expressed in the main and ac-
cessory olfactory tract throughout telencephalic struc-
tures transmitting olfactory clue toward amygdala (Fig.
2), the expression of the same molecule in Bufidae sp.
was limited to the mitral and granule cell layer of the
main olfactory tract (Fig. 3). Myelin associated glyco-
protein (MAG), a possible ligand for GD1a, was exp-
ressed in a different subset of fibers, which suggested
the unrelated function of these molecules in the frog
brain. Previous biochemical studies of Rana sp. also
HEFFER-LAUC M. ET AL.
106
found GD1a [29], but migrating differently on TLC-
plates than GD1a from mammalian brain, possibly be-
cause of a different ceramide anchor. The same bio-
chemical study found also GT1b, which was not
supported with immunochemistry. Another charac-
teristic of the GD1a expression in Ranidae is staining of
fiber tracts, which is uncommon in mammals (compare
Fig. 2 and 4).
The problem of all future comparative immuno-
histochemical interspecies studies would be similar: a
107
THE QUEST FOR THE GANGLIOSIDE FUNCTIONS
Fig. 1. Metabolic pathways and structures of glycosphingolipids. The names of enzymes participating in biosynthesis are written below ar-
rows, while the names of enzymes and proteins participating in ganglioside degradation are written above arrows. List of abbreviations: AR-
SA – arylsulfatase; b-gal – lysosomal acid b-galactosidase; Cer – ceramide; CST – cerebroside sulfotransferase (sulfatide synthase); GALC –
galactosylceramidase; GalNAc-T – N-acetylgalactosaminyltransferase I (GA2/GM2/GD2/GT2-synthase); GalT-I – galactosyltransferase I
(lactosylceramide synthase); GalT-II – galactosyltransferase II (GA1/GM1/GD1b/GT1c-synthase); GalT-III – galactosyltransferase III
(galactosylceramide synthase); GLCC – glucosylceramidase; GlcT – glycosiltransferase (glucosylceramide synthase); GM2A – GM2 activa-
tor protein; HEX – b-N-acetylhexosaminidase; SA – sialic acid; SAP – saposin; ST-I – sialyltransferase I (GM3-synthase); ST-II – sialyltrans-
ferase II (GD3-synthase); ST-III – sialyltransferase III (GT3-synthase); ST-IV – sialyltransferase IV (GM1b/GD1a/GT1b/GQ1c-synthase);
ST-V – sialyltransferase V (GD1c/GT1a/GQ1b/GP1c-synthase); ST-VII – sialyltransferase VII (GD1a/GT1a a/GQ1ba/GP1ca-synthase)
lack of antibodies toward rare ganglioside structures
synthesized in different species, a difference in anti-
body binding to the ganglioside epitop with a different
ceramide anchor [30], alkali-labile modifications in
some species [31], accessibility of epitop due to diffe
rent density in the membrane and just a few well des-
cribed model organisms for a big taxa like Teleostea.
The role of gangliosides in the evolutionary pers-
pective, after the discovery of lipid rafts [32], became
more interesting than ever. Lipid rafts have been des-
cribed as transient membrane domains enabling ga-
thering together molecules that are taking part in recei-
ving, transmitting and amplifying incoming signals
[33], while sphingolipids are master regulators of their
dynamics [34]. It is very likely that the most common
complex ganglioside structures serve the same func-
tions in the rafts of all homothermic mammals [18],
because they share the same pattern of distribution (Fig.
4, unpublished results of our laboratory). The interes-
ting open questions come from hibernating mammals,
like dormice and hamster, who change the ration of
GD1a and GT1b in favor of GT1b during winter season
[35], while the change was limited just to basal brain
and cortex, circumventing cerebellum. The maintenan-
ce of membrane properties in Teleostea is achieved by
different mechanisms, considerably varying between
genera. During cold-acclimation from 20 °C to 4 °C in
HEFFER-LAUC M. ET AL.
108
Fig. 3. Distribution of gangliosides GM1, GD1a, GD1b and GT1b in horizontal sections of Bufo bufo. (partially published results from our
group). Expression of gangliosides was studied qualitatively using highly specific monoclonal antibodies to gangliosides GM1, GD1a,
GD1b and GT1b (Seikagaku, Tokyo, Japan). The negative control was performed by omitting primary antibody (control).
There were no staining with anti-GM1, anti-GD1b and anti-GT1b. The strong expression of ganglioside GD1a was just in the main olfactory
tract. Black arrow points to the main olfactory tract.
Fig. 2. Distribution of gangliosides GM1, GD1a, GD1b and GT1b
in coronal sections of Rana esculenta brain (published results, with
permission of authors). Expression of gangliosides was studied
qualitatively using highly specific monoclonal antibodies to gang-
liosides GM1, GD1a, GD1b and GT1b (Seikagaku, Tokyo, Japan).
The negative control was performed by omitting primary antibody
(control). There were no staining with anti-GM1, anti-GD1b and
anti- GT1b. The strong expression of ganglioside GD1a was in the
main and accessory olfactory bulb. The major projections from
mitral cell layer of the main olfactory bulb i. e. medial and lateral
olfactory tract strongly expressed GD1a and could be followed
through medial and lateral cortices to medial septal nuclei and
amygdale. List of abbreviations: Ob – olfactory bulb; aob –
accessory olfactory bulb; mot – medial olfactory tract; lot – lateral
olfactory tract; amy – amygdala
the carp brain the concentration of phosphatidylethano-
lamin in cost of phosphatidylcholine increased and the
ratio of cholesterol to phospholipids decreased in just
two weeks [21], but changes in the quantity of poly-
sialogangliosides took six weeks [19]. In trout brain
cold-acclimation produced a very different shift in gan-
glioside biosynthesis – decrease of monosialoganglio-
sides, slight increase in di- and trisialogangliosides and
no changes in polysialogangliosides [36]. Lipid rafts in
thermal acclimation of trout pass through a composi-
tional change not just varying in sphingolipids but also
cholesterol, receptors and signaling molecules [37, 38].
When these changes happen in the brain changes in be-
havior or alterations in complex processes like regene-
ration might occur. Recent cloning of enzymes invol-
ved in ganglioside biosynthesis in fish and amphibian
brain could be the first step into this interesting field
[39–41].
The role of gangliosides in brain development. The
first studies of gangliosides expression in developing
mammalian brain were based on lipid extraction, me-
thod of variable sensitivity, producing conflicting re-
sults [42–45]. The few basic concepts emerged from all
studies: brain development starts with low concen-
trations of simple gangliosides GM3 and GD3, comp-
lex gangliosides appear with the first cortical neurons,
their concentration multiplies a few times during axo-
nogenesis and synaptogenesis, reaches the plateau with
myelination and then is maintained through adulthood
[46]. Early studies also showed that while the quantity
of simple gangliosides like GM3 and GD3 decreases
rapidly during development, the quantity of complex
gangliosides increases with complex gangliosides of
«c-pathway» and shifts toward «b» and finally «a-
pathway» [46].
The observed shift in the synthesis is not connected
with the exchange in the expression of two key gly-
cosyltransferases (Fig. 1), ST-II (GD3-synhase) and
N-acetylgalactosaminyltransferase (GalNAcT, GM2/
GD2 synthase), but with a posttranslational proces-
sing and complex formation between existing trasfera-
ses [9].
In that time biochemical studies were poor in
distinguishing the classes of neurons or even layers of
the cortex, but studies of adult brain at least established
the idea of a regional pattern identity [47, 48]. There
were a few attempts to understand laminar distribution
of gangliosides like inventive study of a particularly en-
larged «subplate layer» in the human fetal neopallium
at 28 weeks of gestation [49] and developmental studi-
109
THE QUEST FOR THE GANGLIOSIDE FUNCTIONS
Fig. 4. Distribution of gangliosides GM1, GD1a, GD1b and GT1b in
sagittal sections of selected mammalian brains: bat, ferret, rabbit
and cat (unpublished results from our group). Expression of gangli-
osides was studied qualitatively using highly specific monoclonal
antibodies to gangliosides GM1, GD1a, GD1b and GT1b (Seika-
gaku, Tokyo, Japan). In all studied animals anti-GM1 stains fiber
tracts. In ferret and cat brain GM1 is also in all or just deep layers of
cortex. All studied mammals express GD1b in layers of cortex and
fiber tracts, while GD1a and GT1b give mostly neuronal staining
Fig. 5. Distribution of c-series gangliosides stained with Q211 anti-
body in horizontal sections of 23-week-old human fetal cerebrum
(published results, reproduced with permission of authors): A – im-
munoreactivity was within thalamocortical fibers (asterix) exten-
ding from the thalamus through the internal capsule into the inter-
mediate zone; B – enlargement of cortical wall. Immunoreactivity
was localized to intermediate and subplate zones, just below nega-
tive cortical plate. The arrowhead marks the border between the in-
termediate and subplate zone and arrow marks the border between
the intermediate and subventricular zone. List of abbreviations: cp –
cortical plate; ge – ganglionic eminence; ic – internal capsule; iz –
intermediate zone; p – putamen; t – thalamus; sp – subplate zone
es of mutant mice missing particular neuronal subpopu-
lation [50, 51]. More precise determination of regional
and cellular distribution had to wait for the production
of anti-ganglioside antibodies, which turned out to be a
very challenging task because ubiquitously presented
gangliosides were not highly immunogenic.
Beside dramatic changes in the synthesis of com-
plex gangliosides development is accompanied with
the appearance of some minor structures like «c-series»
polysialogangliosides [52, 53], lactotetraose series [54]
and 9-O-acetylated gangliosides [55]. These minor
structures are much more immunogenic and the first
high affinity antibody was raised against «c-series» po-
lysialogangliosides [56]. Immunohistochemical studies
[56] and particularly the use of this antibody in cell
cultures [57] suggested the role of polysialoganglio-
sides in axon fasciculation, migration and aggregation.
The same series is present in the human brain (Fig. 5) in
a transient fetal structure [58] characteristically enlar-
ged in humans [59].
In the next few years antibodies against all major
[60] and some of minor gangliosides [61, 62] of the bra-
in were raised. Finally, it was possible to see distribu-
tion of each ganglioside in adult [62–64] and develo-
ping brain [65]. However, the results were providing
vague clues about a distinct function. The misunder-
standing was partially caused by the specificity of in-
dividual antibodies [66–68], other in the difference of
fixation methods [69] and one, much unexpected, came
from the use of detergents [70–72]. It seemed that the
problem of specificity was finally solved with the
production of highly specific mouse IgG antibodies for
complex gangliosides raised in Galgt1 knockout mouse
[73], deficient in synthesis of complex gangliosides.
Antibodies were highly specific, but still inefficient in
some cases. In the case of ganglioside antibodies target
recognition is defined by fine specificity of antibody
and ganglioside orientation/exposure in the tissue [74].
Recently it is possible to overcome the limitations of
immunohystochemistry using imaging mass spectro-
metry technology [75].
As the quantity and the pattern of gangliosides in
brain by itself does not imply the function, researchers
turn to a more flexible model – neuronal cell cultures.
In 1995 a group of researchers [76] noted that the
inhibition of sphingolipid synthesis with the inhibitor
of glucosyceramide synthetase D-threo-1-phenyl-2-de-
canoylamino-3-morpholino-1-propanol (PDMP) wo-
uld affect the length of axons and branching. Their later
work showed that major changes in ganglioside syn-
thesis occurred during axonogenesis and axon elon-
gation, but not during dendrite growth or synaptoge-
nesis [77]. At the same time the first glycosphingolipid
receptors of axonal membrane, GD1a and GT1b, were
discovered interacting with MAG on oligodendrocyte
[78]. Differently from gangliosides, MAG appears at
the final stages of development and its biding to gan-
gliosides promotes axon-myelin stability and inhibits
axon outgrowth after injury [79]. Such a developmen-
tally late interaction has no impact on brain develop-
ment and even has very mild neurological progress,
which caused confusion when the first B4galnt1 or
GM2/GD2 synthase knockout mice appeared with a
block in the synthesis of complex gangliosides [80]. To
make it even more complicated, the total brain gan-
glioside concentration in these mice is the same as in
the wild-type mice and one of simple gangliosides
(GM3) interacts with MAG, further protracting onset
of Wallerian degeneration [81, 82].
The story of B4galnt1 mice made researchers more
alert to the unexpected knockout mouse phenotype.
Just one of all generated knockout mice for ganglioside
biosynthesis, UDP-glucose ceramide glucosyltransfe-
rase, was embryonic lethal [83]. It was not surprising
because it is the enzyme leading to the synthesis of all
major complex gangliosides, but deserved closer look
to understand if lethality was caused by neurological
reasons. It turned out that conditional knockouts for the
same gene in neuronal and glial cells were not embryo-
nicaly lethal, but either displayed abnormal behavior by
2–3 months of age [84] or died after the onset of
myelination [85], both with abnormalities and a loss of
Purkinje cells. Knockouts defective for «b-series»
gangliosides (GD3 synthase) are without phenotype,
while double knockout of this mice and B4galnt1 have
high mortality rate due to audiogenic seizures [86].
The major role of gangliosides in the nervous sys-
tem is maintenance of the neuronal function in the
adulthood. Such a role does not seem to be of high im-
portance, but in fact maintenance makes all complex
systems sustainable. Imagine a house without mainte-
nance, how long would it last. Imagine how much ener-
HEFFER-LAUC M. ET AL.
110
gy would be lost if you had to rebuild the house on
regular basis just because you are not able to perform
maintenance. In case of perfectly operational mainte-
nance, you are able to give up some expensive, com-
plicated or very slow functions, like for example rege-
neration. Gangliosides are just one of cellular mecha-
nisms serving at cell membranes in maintenance of
lipid rafts [87], lubricating signaling pathways [88] and
chaperoning a number of cell proteins [11].
Ì. Õåô ôåð-Ëàóê, À. Ìîæ ñî âè÷-×ó³ê, Á. ³ëüæå òè÷, Ä. Äè êè÷
Ïî øóê ôóíêö³é ãàíãë³îçèä³â; ùî íî âî ãî ìè ä³çíà ëè ñÿ
ç «evo-devo», àáî ñèã íàë³íã äîâ ãîò ðè âà ëî ãî çáå ðå æåí íÿ
Ðåçþìå
Ãàíãë³îçè äè – õà ðàê òå ðèñ òè÷í³ äå òåðì³íà íòè, ÿê³ ëî êàë³çî -
âàí³ íà çîâí³øí³é ïî âåðõí³ ìåì áðàí êë³òèí ìîç êó õðå áåò íèõ.
×î òè ðè îñíîâ íèõ ãàíãë³îçè äè (GM1, GD1a, GD1b i GT1b) ïå ðå -
âà æà þòü ñå ðåä ñî òåíü ³íøèõ ñïî ëóê ãë³êîë³ï³ä³â íå ðâî âî¿ òêà -
íè íè. Ó ïðî öåñ³ ðîç âèò êó ìîç êó åêñïðåñ³ÿ ïðî ñòèõ ãàíãë³îçèä³â
çì³ùóºòüñÿ ó á³ê ñèí òå çó á³ëüø ñêëàä íèõ ñïî ëóê, ùî ñóï ðî âîä -
æóºòüñÿ áà ãà òî ðà çî âèì çðîñ òàí íÿì ¿õíüî¿ çà ãàëü íî¿ ê³ëü-
êîñò³. Çì³ùåí íÿ åêñïðåñ³¿ – ñòðî ãî ðå ãóëü î âà íèé ïðî öåñ, çà
ÿêîãî ïî ÿ âà äå ÿ êèõ ñïå öèô³÷íèõ ñòðóê òóð ðåï ðå çåí òóº äîá ðå
â³äîì³ ñòà䳿 ðîç âèò êó íå ðâî âî¿ òêà íè íè. Ç òî÷ êè çîðó åâî -
ëþö³¿ âì³ñò ãàíãë³îçèä³â ó ìîç êó ðèá òà àìô³á³é çíà÷ íî íèæ-
÷èé, í³æ ó ìîç êó ññàâö³â, ïðî òå çà ãàëü íà ¿õíÿ âàð³àáåëüí³ñòü
ñóòòºâî âèùà. Á³ëüø ïî ëÿðí³ ñïî ëó êè, ÿê³ øè ðî êî ïðåä ñòàâ ëåí³
ó àí òàð êòè÷ íèõ ðèá, º ð³äê³ñíè ìè äëÿ ññàâö³â àáî õà ðàê òåð íè -
ìè äëÿ ïåâ íî ãî êî ðîò êîò ðè âà ëî ãî åòà ïó îíòî ãå íå çó. Ïëà çó íè,
ïòà õè ³ ññàâö³ çáåð³ãà þòü ³äåí òè÷í³ ñï³ëüí³ ñòðóê òó ðè, ùî ìà -
þòü ïîä³áí³ ïà òåð íè åêñïðåñ³¿ ç íå çíà÷ íè ìè ì³æâè äî âè ìè
â³äì³ííîñ òÿ ìè. Íàâ ïà êè, äëÿ ìîç êó ðèá òà àìô³á³é â³äçíà ÷å íî
³ñòîò íó ì³æâè äî âó â³äì³íí³ñòü ùîäî ê³ëüêîñò³, ñòðóê òó ðè
òà ïà òåð íó åêñïðåñ³¿. Ïåð øî ÷åð ãî âèì ïðè ïó ùåí íÿì åâî ëþ-
ö³éíî ãî äîñë³äæåí íÿ ñòà ëî òå, ùî âàð³àö³¿ ó âì³ñò³ ë³ï³ä³â, çîê -
ðå ìà ãë³êîë³ï³ä³â, ï³ä ÷àñ òåì ïå ðà òóð íî¿ àäàï òàö³¿ ó õî ëîä íîê -
ðîâ íèõ ³ ãå òå ðî òåð ìíèõ òâà ðèí, ÿê³ âïà äà þòü ó ñïëÿ÷ êó, º âè-
ñî êî å ôåê òèâ íèì ìî ëå êó ëÿð íèì ìå õàí³çìîì çà õèñ òó ôóíêö³î-
íó âàí íÿ ìåì áðàí. Âèâ ÷åí íÿ âïî ðÿä êî âà íèõ äî ìåí³â ë³ï³ä³â çà
îñòàííº äå ñÿ òèë³òòÿ ï³äòâåð äæóº ãàíãë³îçèä-îïî ñå ðåä êî âà -
íó ðå ãó ëÿö³þ ìåì áðàí íèõ á³ëê³â (ðå öåï òî ðè ç ê³íà çíîþ àê -
òèâí³ñòþ, ðå öåï òî ðè íå é ðîò ðàíñì³òåð³â òà ³îíí³ êà íà ëè),
òàê ñàìî ÿê ³ âçàºìîä³þ ðå öåï òîð–ë³ãàíä, âàæëèâó äëÿ ïå ðå -
äà÷³ ïî çàêë³òèí íî ãî ñèã íà ëó.
Êëþ ÷îâ³ ñëî âà: ãàíãë³îçè äè, ãî ëîâ íèé ìî çîê, åâî ëþö³ÿ, ðîç -
âè òîê, êë³òèí íà ñèã íàë³çàö³ÿ, lipid rafts.
Ì. Õåô ôåð-Ëàóê, À. Ìîæ ñî âè÷-×óèê, Á. Âèëü æå òè÷, Ä. Äè êè÷
Ïîèñê ôóíê öèé ãàí ãëè î çèäîâ; ÷òî íî âî ãî ìè óçíà ëè
èç «evo-devo», èëè ñèã íà ëèíã äëè òåëü íî ãî ñî õðà íå íèÿ
Ðå çþ ìå
Ãàí ãëè î çè äû – õà ðàê òå ðèñ òè ÷åñ êèå äå òåð ìè íàí òû, ëî êà ëè çî -
âàí íûå íà âíåø íåé ïî âåð õíîñ òè ìåì áðàí êëå òîê ìîç ãà õðå áåò -
íûõ. ×å òû ðå îñíîâ íûõ ãàí ãëè î çè äà (GM1, GD1a, GD1b è GT1b)
ïðå îá ëà äà þò ñðå äè ñî òåíü äðó ãèõ ñî å äè íå íèé ãëè êî ëè ïè äîâ
íå ðâíîé òêà íè. Â ïðî öåñ ñå ðàç âè òèÿ ìîç ãà ýêñ ïðåñ ñèÿ ïðî ñòûõ
ãàí ãëè î çè äîâ çà ìå ùà åò ñÿ ñèí òåçîì áî ëåå ñëîæ íûõ ñî å äè íå -
íèé, ÷òî ñî ïðî âîæ äà åò ñÿ ìíî ãîê ðàò íûì óâå ëè ÷å íè åì èõ îá -
ùå ãî êî ëè ÷åñ òâà. Ñìå ùå íèå ýêñ ïðåñ ñèè – ñòðî ãî ðå ãó ëè ðî âàí-
íûé ïðî öåññ, ïðè êî òî ðîì ïî ÿâ ëå íèå íå êî òî ðûõ ñïå öè ôè ÷åñ -
êèõ ñòðóê òóð ïðåä ñòàâ ëÿ åò õî ðî øî èç âåñ òíûå ñòà äèè ðàç âè -
òèÿ íå ðâíîé òêà íè. Ñîäåð æà íèå ãàí ãëè î çè äîâ â ìîç ãå ðûá è
àì ôè áèé çíà ÷è òåëü íî íèæå, ÷åì â ìîç ãå ìëå êî ïè òà þ ùèõ,
îäíà êî èõ îá ùàÿ âà ðè à áåëü íîñòü ñó ùåñ òâåí íî âûøå. Áî ëåå ïî -
ëÿð íûå ñî å äè íå íèÿ, øè ðî êî ïðåä ñòàâ ëåí íûå ó àí òàð êòè ÷åñ êèõ
ðûá, ÿâ ëÿ þò ñÿ ðåä êè ìè äëÿ ìëå êî ïè òà þ ùèõ èëè õà ðàê òåð íû -
ìè äëÿ îïðå äå ëåí íî ãî êðàò êîâ ðåìåí íî ãî ýòà ïà îíòî ãå íå çà.
Ïðåñ ìû êà þ ùè å ñÿ, ïòè öû è ìëå êî ïè òà þ ùèå ñî õðà íÿ þò îá ùèå
èäåí òè÷ íûå ñòðóê òó ðû ñ ïî äîáíûìè ïàò òåð íà ìè ýêñ ïðåñ ñèè,
èìå þ ùè ìè íå çíà ÷è òåëü íûå ìåæ âè äî âûå îò ëè ÷èÿ. Íà î áî ðîò,
äëÿ ìîç ãà ðûá è àì ôè áèé îò ìå ÷å íû ñó ùåñ òâåí íûå ìåæ âè äî -
âûå îò ëè ÷èÿ, êà ñà þ ùè å ñÿ êî ëè ÷åñ òâà, ñòðóê òó ðû è ïàò òåð íà
ýêñ ïðåñ ñèè. Ïåð âî î ÷åðåäíûì ïðåä ïî ëî æå íè åì ýâî ëþ öè îí íî ãî
èñ ñëå äî âà íèÿ ñòà ëî òî, ÷òî âà ðè à öèè â ñî äåð æà íèè ëè ïè äîâ, â
÷àñ òíîñ òè ãëè êî ëè ïè äîâ, âî âðå ìÿ òåì ïå ðà òóð íîé àäàï òà öèè
ó õëàä íîê ðîâ íûõ è ãå òå ðî òåð ìíûõ æè âîò íûõ, âïà äà þ ùèõ â
ñïÿ÷ êó, ÿâ ëÿ þò ñÿ âûñî êî ýô ôåê òèâ íûì ìî ëå êó ëÿð íûì ìå õà -
íèç ìîì çà ùè òû ôóíê öè î íè ðî âà íèÿ ìåì áðàí. Èçó ÷å íèå óïî ðÿ -
äî ÷åí íûõ äî ìå íîâ ëè ïè äîâ çà ïî ñëåä íåå äå ñÿ òè ëå òèå
ïîä òâåð æäà åò ãàí ãëè î çèä-îïîñ ðå äî âàí íóþ ðå ãó ëÿ öèþ ìåì -
áðàí íûõ áåë êîâ (ðå öåï òî ðû ñ êè íàç íîé àê òèâ íîñ òüþ, ðå öåï -
òî ðû íå é ðîò ðàí ñìèò òå ðîâ è èîí íûå êà íà ëû), òàê æå êàê è
âçà è ìî äå éñòâèå ðå öåï òîð–ëè ãàíä, âàæ íîå äëÿ ïå ðå äà ÷è âíåê -
ëå òî÷ íî ãî ñèã íà ëà.
Êëþ ÷åâûå ñëî âà: ãàí ãëè î çèäû, ãî ëîâíîé ìîçã, ýâî ëþ öèÿ, ðàç -
âèòèå, êëåòî÷íàÿ ñèã íà ëè çàöèô, lipid rafts.
REFERENCES
1. Woods A. S., Jackson S. N. Brain tissue lipidomics: direct pro-
bing using matrix-assisted laser desorption/ionization mass
spectrometry // AAPS. J.–2006.–8, N 2.–P. E391–395.
2. Tettamanti G. Ganglioside/glycosphingolipid turnover: new
concepts // Glycoconj. J.–2004.–20, N 5.–P. 301–317.
3. Schnaar R. Neural function of glycolipids // Comprehensive
glycoscience / Ed. J. P. Kamerling.–Amsterdam: Elsevier,
2007.–P. 323–337.
4. Yu R. K., Ariga T. Glycosphingolipid structures // Compre-
hensive glycoscience / Ed. J. P. Kamerling.–Amsterdam: El-
sevier, 2007.–P. 73–122.
5. Tettamanti G., Bonali F., Marchesini S.Zambotti V. A new
procedure for the extraction, purification and fractionation of
brain gangliosides // Biochim. Biophys. Acta.–1973.–296,
N 1.–P. 160–170.
6. Maccioni H. J. Glycosylation of glycolipids in the Golgi com-
plex // J. Neurochem.–2007.–103, Suppl 1.–P. 81–90.
7. Maxzud M. K., Daniotti J. L., Maccioni H. J. Functional co-
upling of glycosyl transfer steps for synthesis of gangliosides
in Golgi membranes from neural retina cells // J. Biol.
Chem.–1995.–270, N 34.–P. 20207–20214.
8. Bieberich E., MacKinnon S., Silva J., Li D. D., Tencomnao T.,
Irwin L., Kapitonov D., Yu R. K. Regulation of ganglioside
biosynthesis by enzyme complex formation of glycosyl-
transferases // Biochemistry.–2002.–41, N 38.–P. 11479–
11487.
111
THE QUEST FOR THE GANGLIOSIDE FUNCTIONS
9. Yu R. K., Bieberich E., Xia T., Zeng G. Regulation of ganglio-
side biosynthesis in the nervous system // J. Lipid. Res.–
2004.–45, N 5.–P. 783–793.
10. Kabayama K., Sato T., Saito K., Loberto N., Prinetti A.,
Sonnino S., Kinjo M., Igarashi Y., Inokuchi J. Dissociation of
the insulin receptor and caveolin-1 complex by ganglioside
GM3 in the state of insulin resistance // Proc. Nat. Acad. Sci.
USA.–2007.–104, N 34.–P. 13678–13683.
11. Fantini J., Barrantes F. J. Sphingolipid/cholesterol regulati-
on of neurotransmitter receptor conformation and function //
Biochim. Biophys. Acta.–2009.–1788, N 11.–P. 2345–2361.
12. Anderson R. G., Jacobson K. A role for lipid shells in targe-
ting proteins to caveolae, rafts, and other lipid domains //
Science.–2002.–296, N 5574.–P. 1821–1825.
13. Lopez P. H., Schnaar R. L. Gangliosides in cell recognition
and membrane protein regulation // Curr. Opin. Struct. Biol.–
2009.–9, N 5.–P. 549–557.
14. Yiamouyiannis J. A., Dain J. A. The appearance of gangliosi-
de during embryological development of the frog // J. Neuro-
chem.–1968.–15, N 7.– P. 673–676.
15. Hunter G. D., Wiegant V. M., Dunn A. J. Interspecies compa-
rison of brain ganglioside patterns studied by two-dimen-
sional thin-layer chromatography // J. Neurochem.–1981.–
37, N 4.–P. 1025–1031.
16. Ishizuka I., Kloppenburg M., Wiegandt H. Characterization
of gangliosides from fish brain // Biochim. Biophys. Acta.–
1970.–210, N 2.–P. 299–305.
17. Rahmann H., Hilbig R., Probst W., Muhleisen M. Involve-
ment of temperature in the composition of fish brain gan-
gliosides // J. Therm. Biol.–1983.–8, N 1–2.–P. 107–109.
18. Kappel T., Hilbig R., Rahmann H. Variability in brain gan-
glioside content and composition of endothermic mammals,
heterothermic hibernators and ectothermic fishes // Neuro-
chem. Int.–1993.–22, N 6.–P. 555–566.
19. Hilbig R., Rahmann H. Variability in brain gangliosides of fi-
shes // J. Neurochem.–1980.–34, N 1.–P. 236–240.
20. Avrova N. F. Gangliosides in fish brain // Adv. Exp. Med.
Biol.–1980.–125. –P. 177–183.
21. Rahmann H., Jonas U., Kappel T., Hilderbrandt H. Differen-
tial involvement of gangliosides versus phospholipids in the
process of temperature adaptation in vertebrates. A
comparative phenomenological and physicochemical study //
Ann. N. Y. Acad. Sci.–1998.–845.–P. 72–91.
22. Freischutz B., Saito M., Rahmann H., Yu R. K. Activities of
five different sialyltransferases in fish and rat brains // J.
Neurochem.–1994.–62, N 5.–P. 1965–1973.
23. Irwin L. N., Schwartz K. Amphibian brain gangliosides: pat-
tern analysis by two-dimensional thin-layer chromatography
// Comp. Biochem. Physiol. B.–1983.–76, N 3.–P. 649–651.
24. Irwin L. N., Irwin C. C. Phylogenetic and regional variations
in brain gangliosides of tetrapods // Comp. Biochem. Physiol.
B.–1979.–64, N 1.–P. 121–123.
25. Becker K., Wohrmann A. P. A., Rahmann. Brain gangliosides
and cold-adaptation in high-Antartic fish // Biochem. System.
Ecol.–1995.– 23, N 7–8.–P. 695–707.
26. Ledeen R. W., Yu R. K. Gangliosides of the nervous system //
Ganglioside function / Eds G. C. B. Porcellati, B. Ceccarelli,
G. Tettamanti.–New York; London: Plenum press, 1976.–
P. 191–204.
27. Becker K., Rahmann H. Influence of ambient temperature on
content and composition of brain gangliosides in vertebrates
// Comp. Biochem. Physiol. B. Biochem. Mol. Biol.–1995.–
111, N 2.–P. 299–310.
28. Viljetic B., Degmecic I. V., Krajina V., Bogdanovic T., Moj-
sovic A., Dikic D., Vajn K., Schnaar R. L., Heffer-Lauc M.
Distribution of major brain gangliosides in olfactory tract of
frogs // Coll. Antropol.–2010.
29. Avrova N. F. Brain ganglioside patterns of vertebrates // J.
Neurochem.–1971.–18, N 4.–P. 667–674.
30. Tagawa Y., Laroy W., Nimrichter L., Fromholt S. E., Moser
A. B., Moser H. W., Schnaar R. L. Anti-ganglioside antibo-
dies bind with enhanced affinity to gangliosides containing
very long chain fatty acids // Neurochem. Res.–2002.–27,
N 7–8.– P. 847–855.
31. Avrova N. F., Ghidoni R., Karpova O. B., Nalivayeva N. N.,
Malesci A., Tettamanti G. Systematic position of fish species
and ganglioside composition and content // Comp. Biochem.
Physiol. B.–1986.–83, N 3.–P. 669–676.
32. Simons K., van Meer G. Lipid sorting in epithelial cells // Bio-
chemistry.–1988.–27, N 17.–P. 6197–6202.
33. Rajendran L., Simons K. Lipid rafts and membrane dynamics
// J. Cell. Sci.–2005.–118, N 6.–P. 1099–1102.
34. Mitsuda T., Furukawa K., Fukumoto S., Miyazaki H., Urano
T., Furukawa K. Overexpression of ganglioside GM1 results
in the dispersion of platelet-derived growth factor receptor
from glycolipid-enriched microdomains and in the suppres-
sion of cell growth signals // J. Biol. Chem.–2002.–277,
N 13.–P. 11239–11246.
35. Rahmann H., Hilbig R., Marx J., Beitinger H., Mehlfeld R.
Brain gangliosides and hibernation // J. Therm. Biol.–1987.–
12, N 2.–P. 81–85.
36. Hilbig R., Rahmann H., Rosner H. Brain gangliosides and
temperature adaptation in eury- and stenothermic teleost fish
(carp and raibow trout) // J. Therm. Biol.–1979.–4, N 1.–
P. 29–34.
37. Zehmer J. K., Hazel J. R. Plasma membrane rafts of rainbow
tro ut are subject to thermal acclimation // J. Exp. Biol.–
2003.–206, N 10.–P. 1657–1667.
38. Zehmer J. K., Hazel J. R. Membrane order conservation in
raft and non-raft regions of hepatocyte plasma membranes
from thermally acclimated rainbow trout // Biochim. Bio-
phys. Acta.–2004.–1664, N 1.–P. 108–116.
39. Luque M. E., Crespo P. M., Monaco M. E., Aybar M. J., Da-
niotti J. L., Sanchez S. S. Cloning and functional characteri-
zation of two key enzymes of glycosphingolipid biosynthesis
in the amphibian Xenopus laevis // Develop. Dyn.–2008.–
237, N 1.–P. 112–123.
40. Chisada S., Yoshimura Y., Sakaguchi K., Uemura S., Go S.,
Ikeda K., Uchima H., Matsunaga N., Ogura K., Tai T., Okino
N., Taguchi R., Inokuchi J., Ito M. Zebrafish and mouse alpha
2,3-sialyltransferases responsible for synthesizing GM4
ganglioside // J. Biol. Chem.–2009.–284, N 44.–P. 30534–
30546.
41. Chang L. Y., Mir A. M., Thisse C., Guerardel Y., Delannoy P.,
Thisse B., Harduin-Lepers A. Molecular cloning and charac-
terization of the expression pattern of the zebrafish alpha2, 8-
sialyltransferases (ST8Sia) in the developing nervous system
// Glycoconj. J.–2009.–26, N 3.–P. 263–275.
42. Vanier M. T., Holm M., Ohman R., Svennerholm L. Develop-
mental profiles of gangliosides in human and rat brain // J.
Neurochem.–1971.–18, N 4.–P. 581–592.
43. Merat A., Dickerson J. W. The effect of development on the
gangliosides of rat and pig brain // J. Neurochem.–1973.– 20,
N 3.–P. 873–880.
44. Irwin L. N., Michael D. B., Irwin C. C. Ganglioside patterns
of fetal rat and mouse brain // J. Neurochem.–1980.– 34,
N 6.–P. 1527–1530.
112
HEFFER – LAUC ET AL.
45. Hilbig R. R. H., Rosner H., Mertz G., Segler-Stahl K., Rah-
mann H. Developmental profiles of gangliosides in mouse
and rat cerebral cortex // Rouxs Arch. Develop. Biol.–1982.–
191, N 4.– P. 281–284.
46. Yu R. K., Macala L. J., Taki T., Weinfield H. M., Yu F. S. De-
velopmental changes in ganglioside composition and synthe-
sis in embryonic rat brain // J. Neurochem.–1988.–50, N 6.–
P. 1825–1829.
47. Kracun I., Rosner H., Cosovic C., Stavljenic A. Topographi-
cal atlas of the gangliosides of the adult human brain // J.
Neu- rochem.–1984.–43, N 4.–P. 979–989.
48. Svennerholm L., Bostrom K., Jungbjer B., Olsson L. Mem-
brane lipids of adult human brain: lipid composition of
frontal and temporal lobe in subjects of age 20 to 100 years //
J. Neu- rochem.–1994.–63, N 5.–P. 1802–1811.
49. Kracun I., Rosner, H., Kostovic I., Rahmann H. Areal and la-
minar distribution of gangliosides in the fetal human neopal-
lium at 28 weeks of gestation // Rouxs. Arch. Develop. Biol.–
1983.–192, N 2.–P. 108–112.
50. Seyfried T. N., Miyazawa N., Yu R. K. Cellular localization of
gangliosides in the developing mouse cerebellum: analysis
using the weaver mutant // J. Neurochem.–1983.–41, N 2.–
P. 491–505.
51. Seyfried T. N., Bernard D. J., Yu R. K. Cellular distribution of
gangliosides in the developing mouse cerebellum: analysis
using the staggerer mutant // J. Neurochem.–1984.–43, N 4.–
P. 1152–1162.
52. Rosner H. A new thin-layer chromatographic approach for
separation of multisialogangliosides. Novel gangliosides
fractions in the embryonic chicken brain // Anal. Biochem.–
1980.–109, N 2.–P. 437– 442.
53. Miller-Podraza H., Mansson J. E.Svennerholm L. Isolation
of complex gangliosides from human brain // Biochim.
Biophys. Acta.–1992.–1124, N 1.–P. 45–51.
54. Molin K., Mansson J. E., Fredman P., Svennerholm L. Sialo-
syllactotetraosylceramide, 3'-isoLM1, a ganglioside of the
lactotetraose series isolated from normal human infant brain
// J. Neurochem.–1987.–49, N 1.–P. 216–219.
55. Mendez-Otero R., Ramon-Cueto A. Expression of 9-O-ace-
tylated gangliosides during development of the rat olfactory
system // Neuroreport.–1994.–5, N 14.–P. 1755–1759.
56. Rosner H., Greis C., Henke-Fahle S. Developmental expres-
sion in embryonic rat and chicken brain of a polysialogan
glioside-antigen reacting with the monoclonal antibody Q
211 // Brain Res.–1988.–470, N 2.–P. 161–171.
57. Greis C., Rosner H. Migration and aggregation of embryonic
chicken neurons in vitro: possible functional implication of
polysialogangliosides // Brain Res. Develop. Brain. Res.–
1990.–57, N 2.–P. 223–234.
58. Letinic K., Heffer-Lauc M., Rosner H., Kostovic I.
C-pathway polysialogangliosides are transiently expressed
in the human cerebrum during fetal development //
Neuroscience.–1998.– 86, N 1.–P. 1–5.
59. Molliver M. E., Kostovic I., van der Loos H. The
development of synapses in cerebral cortex of the human
fetus // Brain Res.–1973.– 50, N 2.–P. 403–407.
60. Kotani M., Ozawa H., Kawashima I., Ando S., Tai T. Genera-
tion of one set of monoclonal antibodies specific for a-path-
way ganglio-series gangliosides // Biochim. Biophys. Acta.–
1992.–1117, N 1.–P. 97–103.
61. Ferretti P., Borroni E. Putative cholinergic-specific ganglio-
sides in guinea pig forebrain // J. Neurochem.–1986.–46,
N 6.–P. 1888–1894.
62. Kotani M., Kawashima I., Ozawa H., Ogura K., Ishizuka I.,
Terashima T., Tai T. Immunohistochemical localization of
minor gangliosides in the rat central nervous system // Glyco-
biology.–1994.–4, N 6.–P. 855–865.
63. Kotani M., Kawashima I., Ozawa H., Terashima T., Tai T.
Differential distribution of major gangliosides in rat central
nervous system detected by specific monoclonal antibodies //
Glycobiology.–1993.–3, N 2.–P. 137–146.
64. Irie F., Hashikawa T., Tai T., Seyama Y., Hirabayashi Y. Dis-
tribution of cholinergic neuron-specific gangliosides (GT1a
alpha and GQ1b alpha) in the rat central nervous system //
Brain Res.–1994.–665, N 1.–P. 161–166.
65. Kotani M., Terashima T., Tai T. Developmental changes of
ganglioside expressions in postnatal rat cerebellar cortex //
Brain Res.–1995.–700, N 1–2.–P. 40–58.
66. Schlosshauer B., Blum A. S., Mendez-Otero R., Barnstable
C. J., Constantine-Paton M. Developmental regulation of
ganglioside antigens recognized by the JONES antibody // J.
Neurosci.–1988.–8, N 2.–P. 580–592.
67. Saito M., Kitamura H., Sugiyama K. The specificity of mono-
clonal antibody A2B5 to c-series gangliosides // J. Neuro-
chem.–2001.–78, N 1.–P. 64–74.
68. Schwarz A., Futerman A. H. The localization of gangliosides
in neurons of the central nervous system: the use of anti-gan-
glioside antibodies // Biochim. Biophys. Acta.–1996.–1286,
N 3.–P. 247–267.
69. Schwarz A., Futerman A. H. Determination of the localizati-
on of gangliosides using anti-ganglioside antibodies: compa-
rison of fixation methods // J. Histochem. Cytochem.–1997.–
45, N 4.–P. 611–618.
70. Kawashima I., Tai T. An immunocytochemical technique
with monoclonal antibodies to glycosphingolipids in rat pri-
mary cerebellar cultures: influence of detergent permeabi-
lization // Brain Res. Brain Res. Protoc.–1998.–2, N 4.–
P. 299–305.
71. Heffer-Lauc M., Viljetic B., Vajn K., Schnaar R., L.Lauc G.
Effects of detergents on the redistribution of gangliosides and
GPI-anchored proteins in brain tissue sections // J. Histo-
chem. Cytochem.–2007.– 55, N 8.–P. 805–812.
72. Heffer-Lauc M., Lauc G., Nimrichter L., Fromholt S. E.,
Schnaar R. L. Membrane redistribution of gangliosides and
glycosylphosphatidylinositol-anchored proteins in brain tis-
sue sections under conditions of lipid raft isolation // Bio-
chim. Biophys. Acta.–2005.– 1686, N 3.–P. 200–208.
73. Schnaar R. L., Fromholt S. E., Gong Y., Vyas A. A., Laroy W.,
Wayman D. M., Heffer-Lauc M., Ito H., Ishida H., Kiso M.,
Griffin J. W., Shiekh K. A. Immunoglobulin G-class mouse
monoclonal antibodies to major brain gangliosides // Anal.
Biochem.–2002.–302, N 2.–P. 276–284.
74. Lopez P. H., Zhang G., Bianchet M. A., Schnaar R. L., Sheikh
K. A. Structural requirements of anti-GD1a antibodies deter-
mine their target specificity // Brain.–2008.–131, N 7.–
P. 1926–1939.
75. Sugiura Y., Shimma S., Konishi Y., Yamada M. K., Setou M.
Imaging mass spectrometry technology and application on
ganglioside study; visualization of age-dependent accumula-
tion of C20-ganglioside molecular species in the mouse hip-
pocampus // PLoS. One.–2008.–3, N 9.– P. e3232.
76. Schwarz A., Rapaport E., Hirschberg K.Futerman A. H. A re-
gulatory role for sphingolipids in neuronal growth. Inhibition
of sphingolipid synthesis and degradation have opposite ef-
fects on axonal branching // J. Biol. Chem.–1995.–270,
N 18.–P. 10990–10998.
113
THE QUEST FOR THE GANGLIOSIDE FUNCTIONS
77. Hirschberg K., Zisling R., van Echten-Deckert G., Futerman
A. H. Ganglioside synthesis during the development of neu-
ronal polarity. Major changes occur during axonogenesis and
axon elongation, but not during dendrite growth or synapto-
genesis // J. Biol. Chem.–1996.–271, N 25.–P. 14876–14882.
78. Yang L. J., Zeller C. B., Shaper N. L., Kiso M., Hasegawa A.,
Shapiro R. E., Schnaar R. L. Gangliosides are neuronal li-
gands for myelin-associated glycoprotein // Proc. Nat. Acad.
Sci. USA.–1996.–93, N 2.–P. 814–818.
79. Schnaar R. L. Brain gangliosides in axon-myelin stability and
axon regeneration // FEBS Lett.–2009, Oct. 12 [Epub. ahead
of print].
80. Takamiya K., Yamamoto A., Furukawa K., Yamashiro S.,
Shin M., Okada M., Fukumoto S., Haraguchi M., Takeda N.,
Fujimura K., Sakae M., Kishikawa M., Shiku H., Furukawa
K., Aizawa S. Mice with disrupted GM2/GD2 synthase gene
lack complex gangliosides but exhibit only subtle defects in
their nervous system // Proc. Nat. Acad. Sci. USA.–1996.–
93, N 20.–P. 10662–10667.
81. Sheikh K. A., Sun J., Liu Y., Kawai H., Crawford T. O., Proia
R. L., Griffin J. W., Schnaar R. L. Mice lacking complex gan-
gliosides develop Wallerian degeneration and myelination
defects // Proc. Natl. Acad. Sci. USA.–1999.–96, N 13.–
P. 7532–7537.
82. Sun J., Shaper N. L., Itonori S., Heffer-Lauc M., Sheikh K. A.,
Schnaar R. L. Myelin-associated glycoprotein (Siglec-4)
expression is progressively and selectively decreased in the
brains of mice lacking complex gangliosides // Glycobiolo-
gy.–2004.–14, N 9.–P. 851–857.
83. Yamashita T., Wada R., Sasaki T., Deng C., Bierfreund U.,
Sandhoff K., Proia R. L. A vital role for glycosphingolipid
synthesis during development and differentiation // Proc. Nat.
Acad. Sci. USA.–1999.–96, N 16.–P. 9142–9147.
84. Yamashita T., Allende M. L., Kalkofen D. N., Werth N.,
Sandhoff K., Proia R. L. Conditional LoxP-flanked glucosyl-
ceramide synthase allele controlling glycosphingolipid syn-
thesis // Genesis.–2005.–43, N 4.–P. 175–180.
85. Jennemann R., Sandhoff R., Wang S., Kiss E., Gretz N., Zuli-
ani C., Martin-Villalba A., Jager R., Schorle H., Kenzelmann
M., Bonrouhi M., Wiegandt H., Grone H. J. Cell-specific de-
letion of glucosylceramide synthase in brain leads to severe
neural defects after birth // Proc. Nat. Acad. Sci. USA.–
2005.–102, N 35.–P. 12459–12464.
86. Kawai H., Allende M. L., Wada R., Kono M., Sango K., Deng
C., Miyakawa T., Crawley J. N., Werth N., Bierfreund U.,
Sandhoff K., Proia R. L. Mice expressing only monosialogan-
glioside GM3 exhibit lethal audiogenic seizures // J. Biol.
Chem.–2001.– 276, N 10.–P. 6885–6888.
87. Prinetti A., Loberto N., Chigorno V., Sonnino S. Glycosphin-
golipid behaviour in complex membranes // Biochim. Bio-
phys. Acta.–2009.–1788, N 1.–P. 184–193.
88. Allende M. L., Proia R. L. Lubricating cell signaling path-
ways with gangliosides // Curr. Opin. Struct. Biol.–2002.–
12, N 5.–P. 587–592.
UDC 577.114.5:57.017.2
Received 10.01.10
114
HEFFER-LAUC M. ET AL.
|