Oxidative stress, advanced glycation end products and residual renal function in the rat model of unilateral ureteral obstruction: effects of phlogenzym and losartan

Aim. Oxidative stress plays a role in the pathogenesis of ureteral obstruction. Methods. We studied parameters of oxidative status, levels of advanced glycation end products (AGEs), and contralateral (CL) kidney function in the rat model of unilateral ureteral obstruction (UUO). The effect of Phloge...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Sebekova, K.Jr., Blazicek, Jr.P., Syrova, D., Galbavy, S., Schinzel, R., Heidland, A., Sebekova, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут молекулярної біології і генетики НАН України 2010
Назва видання:Вiopolymers and Cell
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/153879
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Oxidative stress, advanced glycation end products and residual renal function in the rat model of unilateral ureteral obstruction: effects of phlogenzym and losartan / K.Jr. Sebekova, Jr.P. Blazicek, D. Syrova, S. Galbavy, R. Schinzel, A. Heidland, K. Sebekova // Вiopolymers and Cell. — 2010. — Т. 26, № 2. — С. 121-127. — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-153879
record_format dspace
spelling irk-123456789-1538792019-07-06T20:26:37Z Oxidative stress, advanced glycation end products and residual renal function in the rat model of unilateral ureteral obstruction: effects of phlogenzym and losartan Sebekova, K.Jr. Blazicek, Jr.P. Syrova, D. Galbavy, S. Schinzel, R. Heidland, A. Sebekova, K. Biomedicine Aim. Oxidative stress plays a role in the pathogenesis of ureteral obstruction. Methods. We studied parameters of oxidative status, levels of advanced glycation end products (AGEs), and contralateral (CL) kidney function in the rat model of unilateral ureteral obstruction (UUO). The effect of Phlogenzym (12 mg/day orally); losartan (20 mg/l in drinking water), and their combination was studied. Results. In placebo-administered UUO rats AGEs and malondialdehyde levels were higher than in the sham operated controls. Function of the CL kidney was slightly impaired, its collagen content and protein/deoxyribonucleic acid ratio (P/DNA) in the glomeruli increased. All treatments prevented the rise in collagen content, P/DNA ratio, and improved CL kidney function. Phlogenzym ameliorated lipid peroxidation and AGE levels. Conclusions. In the model of UUO systemically increased oxidative stress may play a role in development of tubulointerstitial fibrosis and in the functional impairment of the CL kidney. Suppression of the oxidative stress and blockade of angiotensin-1 receptors might mitigate the progression of obstructive uropathy. Оксидативний стрес відіграє значну роль у патогенезі обструкції сечоводу. Мета роботи полягала у вивченні параметрів оксидативного статусу, оцінюванні рівня кінцевих продуктів глікації і функціонування контралатеральної нирки на моделі щурів з унілатеральною обструкцією сечоводу (УОС). Методи. На моделі УОС досліджували ефекти флогензиму (12 мг в день орально) і лосартану (20 мг/л у питній воді), а також їхньої комбінації. Результати. У щурів з УОС, які отримували плацебо, рівень накопичення кінцевих продуктів глікації та малондіальдегіду виявився вищим, ніж у несправжньооперованих контрольних щурів. Функціонування контралатеральної нирки незначно погіршилося, концентрація колагену і співвідношення вмісту білок/дезоксирибонуклеїнова кислота (P/ DNA) у клубочку нирки підвищені. Обробка досліджуваними лікарськими засобами запобігала збільшенню вмісту колагену, зростанню показника співвідношення P/DNA та покращувала функціонування колатеральної нирки. Флогензим сприяв підвищенню рівня перекисного окиснення ліпідів та кінцевих продуктів глікації. Висновки. У моделі УОС систематичне збільшення оксидативного стресу може відігравати важливу роль у розвитку тубулоінтерстиційного фіброзу і порушенні функціонування контралатеральної нирки. Супресія оксидативного стресу та блокування рецептора ангіотензину-1 можуть послаблювати прогресію обструктивної уропатії. Оксидативный стресс играет значительную роль в патогенезе обструкции мочеточника. Цель работы состояла в изучении параметров оксидативного статуса, оценке уровня конечных продуктов гликации и функционирования контралатеральной почки на модели крыс с унилатеральной обструкцией мочеточника (УОМ). Методи. На модели УОМ исследовали эффекты флогензима (12 мг в день орально) и лосартана (20 мг/л в питьевой воде), а также их комбинации. Результаты. У крыс с УОМ, получавших плацебо, уровень конечных продуктов гликации и малондиальдегида оказался выше, чем у ложноооперованных контрольных крыс. Функционирование контралатеральной почки незначительно ухудшилось, концентрация коллагена и соотношение содержания белок/дезоксирибонуклеиновая кислота (P/DNA) в клубочке почки повысились. Обработка исследуемыми лекарственными средставами предотвращала увеличение содержания коллагена, показателя соотношения P/DNA и улучшала функционирование колатеральной почки. Флогензим способствовал возрастанию уровня перекисного окисления липидов и конечных продуктов гликации. Выводы. В модели УОМ систематическое увеличение оксидативного стресса может быть причиной развития тубулоинтерстиционного фиброза и нарушения функционирования контралатеральной почки. Супрессия оксидативного стресса и блокирование рецептора ангиотензина-1 можгут ослаблять прогрессию обструктивной уропатии. 2010 Article Oxidative stress, advanced glycation end products and residual renal function in the rat model of unilateral ureteral obstruction: effects of phlogenzym and losartan / K.Jr. Sebekova, Jr.P. Blazicek, D. Syrova, S. Galbavy, R. Schinzel, A. Heidland, K. Sebekova // Вiopolymers and Cell. — 2010. — Т. 26, № 2. — С. 121-127. — Бібліогр.: 32 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.00014E http://dspace.nbuv.gov.ua/handle/123456789/153879 616.61-008.6 en Вiopolymers and Cell Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Biomedicine
Biomedicine
spellingShingle Biomedicine
Biomedicine
Sebekova, K.Jr.
Blazicek, Jr.P.
Syrova, D.
Galbavy, S.
Schinzel, R.
Heidland, A.
Sebekova, K.
Oxidative stress, advanced glycation end products and residual renal function in the rat model of unilateral ureteral obstruction: effects of phlogenzym and losartan
Вiopolymers and Cell
description Aim. Oxidative stress plays a role in the pathogenesis of ureteral obstruction. Methods. We studied parameters of oxidative status, levels of advanced glycation end products (AGEs), and contralateral (CL) kidney function in the rat model of unilateral ureteral obstruction (UUO). The effect of Phlogenzym (12 mg/day orally); losartan (20 mg/l in drinking water), and their combination was studied. Results. In placebo-administered UUO rats AGEs and malondialdehyde levels were higher than in the sham operated controls. Function of the CL kidney was slightly impaired, its collagen content and protein/deoxyribonucleic acid ratio (P/DNA) in the glomeruli increased. All treatments prevented the rise in collagen content, P/DNA ratio, and improved CL kidney function. Phlogenzym ameliorated lipid peroxidation and AGE levels. Conclusions. In the model of UUO systemically increased oxidative stress may play a role in development of tubulointerstitial fibrosis and in the functional impairment of the CL kidney. Suppression of the oxidative stress and blockade of angiotensin-1 receptors might mitigate the progression of obstructive uropathy.
format Article
author Sebekova, K.Jr.
Blazicek, Jr.P.
Syrova, D.
Galbavy, S.
Schinzel, R.
Heidland, A.
Sebekova, K.
author_facet Sebekova, K.Jr.
Blazicek, Jr.P.
Syrova, D.
Galbavy, S.
Schinzel, R.
Heidland, A.
Sebekova, K.
author_sort Sebekova, K.Jr.
title Oxidative stress, advanced glycation end products and residual renal function in the rat model of unilateral ureteral obstruction: effects of phlogenzym and losartan
title_short Oxidative stress, advanced glycation end products and residual renal function in the rat model of unilateral ureteral obstruction: effects of phlogenzym and losartan
title_full Oxidative stress, advanced glycation end products and residual renal function in the rat model of unilateral ureteral obstruction: effects of phlogenzym and losartan
title_fullStr Oxidative stress, advanced glycation end products and residual renal function in the rat model of unilateral ureteral obstruction: effects of phlogenzym and losartan
title_full_unstemmed Oxidative stress, advanced glycation end products and residual renal function in the rat model of unilateral ureteral obstruction: effects of phlogenzym and losartan
title_sort oxidative stress, advanced glycation end products and residual renal function in the rat model of unilateral ureteral obstruction: effects of phlogenzym and losartan
publisher Інститут молекулярної біології і генетики НАН України
publishDate 2010
topic_facet Biomedicine
url http://dspace.nbuv.gov.ua/handle/123456789/153879
citation_txt Oxidative stress, advanced glycation end products and residual renal function in the rat model of unilateral ureteral obstruction: effects of phlogenzym and losartan / K.Jr. Sebekova, Jr.P. Blazicek, D. Syrova, S. Galbavy, R. Schinzel, A. Heidland, K. Sebekova // Вiopolymers and Cell. — 2010. — Т. 26, № 2. — С. 121-127. — Бібліогр.: 32 назв. — англ.
series Вiopolymers and Cell
work_keys_str_mv AT sebekovakjr oxidativestressadvancedglycationendproductsandresidualrenalfunctionintheratmodelofunilateralureteralobstructioneffectsofphlogenzymandlosartan
AT blazicekjrp oxidativestressadvancedglycationendproductsandresidualrenalfunctionintheratmodelofunilateralureteralobstructioneffectsofphlogenzymandlosartan
AT syrovad oxidativestressadvancedglycationendproductsandresidualrenalfunctionintheratmodelofunilateralureteralobstructioneffectsofphlogenzymandlosartan
AT galbavys oxidativestressadvancedglycationendproductsandresidualrenalfunctionintheratmodelofunilateralureteralobstructioneffectsofphlogenzymandlosartan
AT schinzelr oxidativestressadvancedglycationendproductsandresidualrenalfunctionintheratmodelofunilateralureteralobstructioneffectsofphlogenzymandlosartan
AT heidlanda oxidativestressadvancedglycationendproductsandresidualrenalfunctionintheratmodelofunilateralureteralobstructioneffectsofphlogenzymandlosartan
AT sebekovak oxidativestressadvancedglycationendproductsandresidualrenalfunctionintheratmodelofunilateralureteralobstructioneffectsofphlogenzymandlosartan
first_indexed 2025-07-14T05:18:53Z
last_indexed 2025-07-14T05:18:53Z
_version_ 1837598332313141248
fulltext BIOMEDICINE Oxidative stress, advanced glycation end products and residual renal function in the rat model of unilateral ureteral obstruction: effects of phlogenzym and losartan K. Sebekova, Jr., P. Blazicek1, D. Syrova2, S. Galbavy3, R. Schinzel4, A. Heidland4, K. Sebekova5 St. Elisabeth and Barbara Hospital 5, Mauerstrabe, Halle/Saale, Germany, 06110 1Alpha Medical 49, Vlcie hrdlo, Slovakia, 81207 2Children Hospital 1, Limbova, Bratislava, Slovakia, 83340 3St. Elisabeth University of Health and Social Sciences 1, Namestie, maja, Bratislava, Slovakia, 81100 4University of Wurzburg 6, Oberdurrbacher Strabe, Wurzburg, Germany, 97080 5Slovak Medical University 12, Limbova, Bratislava, Slovakia, 83303 katarina.sebekova@szu.sk Aim. Oxidative stress plays a role in the pathogenesis of ureteral obstruction. Methods. We studied parameters of oxidative status, levels of advanced glycation end products (AGEs), and contralateral (CL) kidney function in the rat model of unilateral ureteral obstruction (UUO). The effect of Phlogenzym (12 mg/day orally); losartan (20 mg/l in drinking water), and their combination was studied. Results. In pla- cebo-administered UUO rats AGEs and malondialdehyde levels were higher than in the sham operated con- trols. Function of the CL kidney was slightly impaired, its collagen content and protein/deoxyribonucleic acid ratio (P/DNA) in the glomeruli increased. All treatments prevented the rise in collagen content, P/DNA ratio, and improved CL kidney function. Phlogenzym ameliorated lipid peroxidation and AGE levels. Con- clusions. In the model of UUO systemically increased oxidative stress may play a role in development of tubulointerstitial fibrosis and in the functional impairment of the CL kidney. Suppression of the oxidative stress and blockade of angiotensin-1 receptors might mitigate the progression of obstructive uropathy. Keywords: ureteral obstruction, advanced glycation end products, oxidative stress, malondialdehyde, collagen. Introduction. In the model of unilateral ureteral ob- struction (UUO) altered hemodynamics, hypoxia, infil- tration with macrophages, up-regulated renin-angio- tensin-aldosterone system producing vasoactive com- pounds, result in tubulointerstitial fibrosis of the ligated kidney [1–3]. Angiotensin (Ang) II may promote cell growth and fibrosis via overexpression of growth factors and cytokines, and the induction of oxidative stress [4]. The latter one is in the tu- bulointerstitium of obstructed kidney reflected by 121 ISSN 0233-7657. Biopolymers and Cell. 2010. Vol. 26. N 2 Ó Institute of Molecular Biology and Genetics NAS of Ukraine, 2010 increased heme oxygenase-1 expression, accumulation of Ne-(carboxymethyl)lysine (CML), and perturbation of tubular antioxidants; and systemically by the rise in plasma malondialdehyde (MDA) levels [5, 6]. The en- hanced formation of reactive oxygen species (ROS) may exert toxic effects in other tissues and organs. The contralateral (CL) kidney, due to its compensatory hy- pertrophy, might be the most susceptible. Advanced glycation end products (AGEs) are for- med on proteins by non-enzymatic glycation and/or glycoxidation. With decreased renal function they ac- cumulate in tissues and circulation, due to retention and enhanced synthesis under exaggerated oxidative- and carbonyl-stress [7, 8]. Interaction of AGEs with their specific cell surface receptor RAGE leads to the pro- duction of ROS, which accelerate formation of AGEs [9]. Experimental studies suggest the interaction bet- ween the AGE-RAGE and the renin-angiotensin sys- tems [10]. In vitro, Ang II receptor 1 blockers (ARBs) lower AGEs formation, and suppress the AGEs- induced enhanced Ang 1 receptor protein [11, 12]. They also attenuate the accumulation of AGEs in vivo [13, 14]. In studies on pig proximal tubular cells (LLC-PK1) trypsin prevented the AGEs-induced cell hypertrophy and accumulation of AGEs [15, 16]. In rodents administration of proteases improved the course of various renal diseases [17, 18]. Whether administration of proteases interferes with AGEs and oxidative stress in vivo remains unclear. We investigated the possible involvement of the systemically enhanced oxidative stress in relation to the function and structure of the CL kidney, in the model of UUO. AGE-lowering- and antioxidant-potential of the above mentioned treatment modalities, and their com- bination was studied. Materials and methods. The trial was conducted according to the guidelines for studies using laboratory animals, after the approval by the local Ethics Board for Experimental Animals (Bratislava). Rats. Male Wistar rats (180–220 g, VELAS Praha, Czech Republic) were caged under controlled hu- midity, temperature, and light/dark cycle, with free ac- cess to drinking water and food (SP1, Top Dovo, Czech Republic). After induction of UUO rats were pair-fed to the UUO placebo administered group. Induction of unilateral ureteral obstruction. Forty rats were subjected to UUO in i. p. thiopental narcosis. Briefly, right ureter was liberated, ligated twice with sterile silk, and cut between two ligations. Six sham- operated rats served as controls (CTRL). Experimental protocol. UUO rats were randomized into 4 groups per 10 animals, administered during 14 days: a) placebo (UUO-P); b) a fixed mixture of pro- teases (UUO-E, Phlogenzym, «MUCOS Pharma», Ger- many) in a dose of 12 mg/day in 1 ml of tap water (each dose contained 2.42 mg trypsin, 4.54 mg bromelain, and 5.04 mg flavonoid rutosid); c) ARB (UUO-ARB, Losartan, MSD, USA, 20 mg/l in drinking water); d) combined treatment (UUO-COMB, both drugs in the above mentioned dosage). Control and UUO-P rats we- re gavaged by 1 ml of water. Body weight and blood pressure (tail plethysmo- graphy) was recorded. At sacrifice (thiopental narco- sis), blood was sampled from abdominal aorta and urine from bladder. Standard blood chemistry was determi- ned (Vitros 250 analyzer, «J&J», USA). Plasma or whole blood was stored at –70oC for determination of: total antioxidant status (TAS) and glutathione peroxi- dase activity (GPX), («Randox», UK); plasma MDA [19] and lipofuscin (LF) [20] concentrations; and AGE specific fluorescence [21]. CML concentration was quantified with competitive ELISA using monoclonal antibodies according to the method developed by «Ro- che Diagnostika», Germany. One AGE unit (U) repre- sented 50 % reduction in binding. Proteinuria was de- termined by a pyrogallol red method. Kidneys were weighed. Collagen content in renal cortex was determined in formaline fixed paraffin em- bedded slices, stained with hematoxilyne/eosine and Van Gieson. The contrast red area stained as collagen was expressed in per cent of the cortical tissue area with aids of computerized video camera. In glomeruli isolated by differential sieving method [22] the DNA [23] and protein content [24] was determined. Statistics. The data were tested for normality and equality of variance, and compared either by one-way analysis of variance (ANOVA) with post hoc Scheffe’s test; or by Kruskal-Wallis with Mann-Whitney U-tests. Results are given as mean ± SD, or as median, me- an ± SD (not normally distributed data); p < 0.05 was considered significant. 122 SEBEKOVA K.JR. ET AL. Results and discussion. Role of accumulation of AGEs in pathogenesis of UUO (Table). At sacrifice the body weight of the UUO-P rats was lower than that of CTRL rats. The weight of the CL kidney and kidney/body weight ratio was comparable. UUO resulted in hypertrophy of the glomeruli in CL kidney, as indicated by rise of protein/DNA ratio (Fig. 1, a). In LLC-PK1 cells, AGE-modified albu- min induced cell hypertrophy via stimulation of pro- tein synthesis and inhibition of its degradation [15, 16]. The latter one was, at least partially, caused by the decline in lysosomal cathepsin activity, due to down-regulation of mRNA levels [25]. Plasma AGE- specific fluorescence (Table) and CML concentra- tions (Fig. 2) were significantly higher in the UUO-P rats than in the CTRL, but not on the account of plas- ma albumin or glucose concentration. AGEs rose despite only a moderate changes in plasma creatinine levels. The rise in protein content of isolated glomeruli may be causally linked to enhanced circulating AGE le- vels, as supported by a direct relation between plasma CML and P/DNA content (r = 0.567, p < 0.02). In the cortex of CL kidney collagen content increased 5-fold (Fig. 1, b). Incubation of LLC-PK1 or immortali- zed human kidney epithelial cells (IHKECs) with AGE- modified BSA results in intracellular accumulation of AGEs, associated with the induction of pro-fibrotic fac- tors (overexpression of TGF-b1 mRNA, rise in TGF-b1 protein, enhanced activation of protein kinase C, and fib- ronectin synthesis) [12, 15, 16]. Thus, elevated circu- lating AGEs may contribute to rise in renal cortex col- lagen content, as supported by a direct relation between plasma CML and renal cortex collagen content (r = = 0.918, p < 0.001). However, in the UUO model plasma CML accumulates in spite of its enhanced renal excre- tion (Fig. 2). UUO represents a nonproteinuric model of 123 RAT UUO MODEL: EFFECTS OF PHLOGENZYM AND LOSARTAN Morphometric data, blood and urine chemistry Parameter CTRL (n = 6) UUO-P (n = 10) UUO-E (n = 10) UUO-ARB (n = 9) UUO-COMB (n = 9) ANOVA/K-W F p Body wt, g 240.0±3.4 203.5±5.1** 194.6±4.0** 210.4±3.4** 189.9±4.6** 16.16 0.001 CL kidney wt, mg 892±46 958±43 1038±48 982±55 967±36 0.19 0.943 CL kidney/body wt, mg/g 3.7±0.2 4.8±0.3 5.0±0.3 5.1±0.4 5.1±0.2 1.95 0.123 SBP, mm Hg 100.0; 96.7±3.1 100.0; 102.5±2.0 100.0; 102.5±1.5 100.0; 95.0±3.8 95.0; 94.4±2.8 7.70 0.100 Creatinine, mmol/l 46.5±1.2 66.7±3.3** 47.1±2.8++ 54.3±2.7 56.3±6.2 4.85 0.003 Urea, mmol/l 4.5±0.4 6.9±0.2** 4.7±0.3++ 5.9±0.6 5.2±0.3+ 7.77 0.001 Proteinuria, ng/mmol crea 81.3; 72.8±17.8 98.2; 124.0±21.2 62.0; 65.4±12.5 83.7; 70.3±15.2 54.4; 65.9±12.0 0.30 0.990 Glucose, mmol/l 7.1; 7.0±1.8 6.9; 7.3±0.6 6.6; 6.9±0.3 8.0; 8.6±0.7 7.1; 7.3±0.4 5.36 0.252 Albumin, g/l 29.5±0.6 29.2±0.6 28.0±0.6 29.3±0.8 30.8±0.9 1.86 0.141 Lipofuscin, AU 6.1; 6.6±0.9 10.4; 10.1±0.4** 7.3; 7.4±0.2++ 11.0; 10.9±0.4** 6.8; 7.4±0.3++ 25.78 0.001 TAS, mmol/l 0.8±0.1 0.9±0.1 0.8±0.1 0.7±0.1 0.8±0.1 0.843 0.508 GPX, U/g Hb 348±13 365±17 360±10 349±16 373±22 0.38 0.822 AGE-Fl/Alb, AU/g 0.33±0.03 0.44±0.01* 0.43±0.03 0.42±0.02 0.39±0.02 3.91 0.012 CTRL – sham operated control rats; UUO – unilateral ureteral obstruction; P – placebo; E – Phlogenzym; ABR – losartan; COMB – combined treatment with E + ABR; ANOVA – one-way analysis of variance; K-W – Kruskal-Wallis test (in italics); wt – weight; SBP – systolic blood pressure; CL: contralateral; crea: creatinine; MDA: malondialdehyde; AU: arbitrary units; TAS: total antioxidant status; GPX – glutathione peroxidase activity; U – units; Hb – hemoglobin; AGE-Fl – advanced glycation end products specific fluorescence; Alb – albumin; *p < 0.05 vs. CTRL; **p < 0.01 vs. CTRL; + – p < 0.05 vs. UUO-P; ++ – p < 0.01 vs. UUO-P. interstitial fibrosis. Thus, a predominant excretion of AGE-modified peptides is anticipated. Their enhanced filtration load might also contribute to the damage of tubule cells with subsequent development of tubulo- interstitial fibrosis. Role of enhanced oxidative stress in pathogenesis of UUO (Table). Fourteen days after the induction of UUO oxidative stress was systemically enhanced, as re- flected by increased MDA and lipofuscin levels. CML is considered as integrative biomarker of the cumula- tive protein damage induced by glycoxidation [26]. Much faster accumulation of CML than that of fluo- rescent AGEs, and high correlation between CML and MDA (r = 0.599, p < 0.05), or CML and LF concentra- tions (r = 0.556, p < 0.05), support the role of the oxida- tive stress in CML formation. Since the total antioxi- dant status and GPX activity were not altered, the en- hanced oxidative stress seemed to result from overpro- duction of ROS, not caused by a compromised antioxidant defense. Shortly (12 h) after the onset of UUO heme oxygenase-1 activity increases, with a time dependent decline within the next 7 days [5]. It might not be excluded that during the early phase of UUO, enhanced production of ROS induces antioxidant en- zyme activity, which returns to normal values, or even decreases, later. Although the function of the CL kidney was only slightly altered, both plasma AGE-specific fluoresce, as well as CML levels correlated highly with those of se- rum creatinine (r = 0.560, p < 0.05, and r = 0.760, p < < 0.001, respectively), indicating the important role of the kidney in their removal, and the role of oxidative stress in the impairment of renal function. Effects of the treatment. We compared the estab- lished beneficial effects of the administration of losar- tan with the potential beneficial action of Phlogenzym and their combination on the function of the CL kidney, from the point of interference with AGEs and oxidative status, since: 1) inhibitors of converting enzyme and ARBs ameliorate the alterations induced by UUO [27]; 2) the experimental and clinical data suggest that ARBs may attenuate oxidative stress and formation of AGEs [13, 28, 29]; 3) proteolytic enzymes antagonize the AGE-induced toxicity in various renal cell cultures [15, 124 SEBEKOVA K.JR. ET AL. 15 10 0 ++ + ** Protein/DNA glomeruli Cortex collagen area 0,4 0,2 0,1 0 0,3 [% ] UUO-E; UUO-ARB; UUO-COMBCTRL; UUO-P; a **,++ *,++ ** ++ [m g /m g] 5 b Fig. 1. Effects of UUO, and treatment with Phlogenzym, losartan, and their combina- tion on contralateral kidney: a – protein to DNA ratio in isolated glomeruli; b – renal cortex collagen content. CTRL – sham operated controls; UUO – unilateral ureteral obstruction; P – placebo; E – Phlogenzym; ARB – losartan; COMB – combined treat- ment with E + ABR; *p < 0.05 vs. CTRL; **p < 0.01 vs. CTRL; + – p < 0.05 vs. UUO-P; ++ – p < 0.01 vs. UUO-P 4 2 1 0 3 5 ** ++ *,++ ** * UUO-E; UUO-ARB; UUO-COMBCTRL; UUO-P; 4 2 1 0 3 5 S-CML [U /m m o l cr ea ] [U /g A lb ] U-CML a b Fig. 2. Plasma levels and urinary excretion of Ne-(carboxymethyl)lysine (CML): a – S- CML; b – U-CML. CTRL – sham operated controls; UUO – unilateral ureteral obst- ruction; P – placebo; E – Phlogenzym; ARB– losartan; COMB – combined treat- ment with E + ABR; Alb – albumin; crea – creatinine 16], and in models of progressive renal diseases ad- ministration of Phlogenzym exerted beneficial effects of on renal function and morphology [17, 18]. Contralateral kidney (Table). Administration of Phlogenzym, losartan or their combination to UUO rats resulted in comparable improvement of the CL kidney function, although significant decline in plasma creati- nine concentration was reached only in UUO-E group. Urea accumulation was ameliorated in UUO-E and UUO-COMB groups. Treatment did not affect protein- uria, the body weight, CL kidney weight, or kidney/bo- dy weight ratio. All treatment modalities ameliorated renal cortex collagen accumulation (Fig. 1, b). In all tre- ated groups glomerular protein/DNA ratio was lower than in the UUO-P rats, reaching significance in the UUO-E and UUO-ARB groups (Fig. 1, a). Glomerular protein/DNA ratio correlated with plasma CML level (r = 0.458, p < 0.01). These data correspond with our previous findings in in vitro studies. In LLC-PK1 cells trypsin inhibited the AGE-induced cell hypertrophy, overexpression of TGF-b1 mRNA, total TGF-b1 pro- tein, and increased AGE accumulation [15, 16]. The above mentioned AGE-induced effects, as well as acti- vation of protein kinase C and enhanced fibronectin synthesis were diminished also by co-incubation with losartan in IHKECs and LLC-PK1 cells [12]. Thus, in- terference of both, proteases and ARB with TGF-b1, may in vivo result in attenuation hypertrophy, and of collagen accumulation. Oxidative status (Table) and AGEs. Phlogenzym significantly ameliorated the rise in MDA. Lipofuscin levels remained elevated under treatment with ARB, pointing to a shift of lipid peroxidation towards secon- dary products. The antioxidant defense (TAS and GPX activity) was not influenced by any of the interventions. AGE-specific fluorescence was not influenced signifi- cantly by either treatment. Plasma CML levels were ameliorated by the administration of Phlogenzym alone or in combination with ABR. Urinary excretion of CML remained elevated in the UUO-ARB group (Fig. 2). Changes in CML levels observed under the treat- ment were not on the account of blood pressure, plasma albumin, or glucose concentrations. Potential involve- ment of oxidative events is supported by tight relation- ship between CML and MDA (r = 0.519, p < 0.001), or CML and LF concentrations (r = 0.755, p < 0.001). Thus, partial persistence of enhanced oxidative stress under treatment with ARB was further reflected by elevated CML levels, despite of only a mild rise in plasma creatinine, and substantial increase in urinary CML excretion. At first glance this data are contra- dictory to our previous observation, in which the 12- weeks-long administration of losartan to subtotally nephrectomized rats completely prevented the rise in plasma AGE levels [13]. However, in both studies losartan significantly increased urinary AGE excretion. We suppose that in spite of enhanced renal excretion longer time is needed to normalize the elevated circu- lating AGE levels. Moreover, it is equivocal whether the sub-antihypertensive dose of losartan administered in our study is sufficient to block the oxidative stress induced by Ang II. In the rat model of congestive heart failure, an increase in antioxidant defense and a decline in oxidative stress was achieved after administration of a 100-fold higher dose of losartan [29]. Losartan effectively prevented glomerular hypertrophy and col- lagen accumulation, despite persistent oxidative stress and elevated AGE levels. ARBs were capable to reduce the expression of RAGE in human endothelial cells, and to modify the AGE-RAGE interaction by suppres- sion of RAGE expression in the type 2 diabetic KK/Ta mice [11, 30]. We suppose that suppression of RAGE under ARB treatment may to measurable extent prevent progressive renal damage even under the persisting oxi- dative stress. Phlogenzym attenuated accumulation of AGEs and lipid peroxidation products. CML adducts are one of the most relevant ligands for RAGE and mediate NF- kB pathways, resulting in intracellular generation of ROS [9, 31]. In in vitro studies proteases could in- activate the extracellular domain of the RAGE, thus interfere directly with production of ROS, decreasing formation of AGEs and lipid peroxidation products [15, 16]. However, in Phlogenzym, rhutosid is added as antioxidant to stabilize trypsin and bromelain. In vitro, antioxidants ameliorate the toxic effects induced by AGEs [28]. According to our knowledge no data are available on the antioxidant/anti-AGE effects of rhuto- sid. However, water-soluble rutin derivative suppres- sed in vitro glycation in tissue proteins [32]. Thus, the observed mechanisms of beneficial effects of Phlogen- zym are to be interpreted with caution. 125 RAT UUO MODEL: EFFECTS OF PHLOGENZYM AND LOSARTAN Combined treatment showed additive effects and partially prevented the changes under ARB treatment, suggesting different mechanisms of the beneficial effects on CL kidney function of enzymes or ARBs. Conclusions. Our study confirms the role of syste- mically enhanced oxidative stress in UUO, as reflected by increased plasma malondialdehyde, lipofuscin, CML and fluorescent AGE levels. Enhanced oxidative stress may be involved not only in the development of tubulointerstitial fibrosis of the ligated kidney, but also in impairment of the CL kidney. Suppression of oxi- dative stress and glycoxidation might therefore be of clinical relevance in retardation of the progression of renal disease. Acknowledgements. Support from the Verein zur Bekampfung der Hochdruck- und Nierenkrankheiten, Wurzburg e. V., Germany, and an excellent help of Mr. Andre Klassen in preparation of the manuscript is acknowledged. Ê. Äæ. Øå áå êî âà, Ï. Áëà æè ÷åê, Ä. Ñè ðî âà, Ø. Ãàë áàâ³, À. Õåé äëàíä, Ê. Øå áå êî âà Îêñè äà òèâ íèé ñòðåñ, ê³íöåâ³ ïðî äóê òè ãë³êàö³¿ òà çà ëèø êî âå ôóíêö³îíó âàí íÿ íè ðêè íà ìî äåë³ ùóð³â ç óí³ëà òå ðàëü íîþ îá ñòðóêö³ºþ ñå ÷î âî äó: åôåê òè ôëî ãåí çè ìó òà ëî ñàð òà íó Ðå çþ ìå Ìåòà. Îêñè äà òèâ íèé ñòðåñ â³ä³ãðຠçíà÷ íó ðîëü ó ïà òî ãå íåç³ îá ñòðóêö³¿ ñå ÷î âî äó. Ìåòà ðî áî òè ïî ëÿ ãà ëà ó âèâ ÷åíí³ ïà ðà - ìåòð³â îêñè äà òèâ íî ãî ñòà òó ñó, îö³íþ âàíí³ ð³âíÿ ê³íöå âèõ ïðî - äóêò³â ãë³êàö³¿ ³ ôóíêö³îíó âàí íÿ êîí òðà ëà òå ðàëü íî¿ íè ðêè íà ìî äåë³ ùóð³â ç óí³ëà òå ðàëü íîþ îá ñòðóêö³ºþ ñå ÷î âî äó (ÓÎÑ). Ìå òî äè. Íà ìî äåë³ ÓÎÑ äîñë³äæó âà ëè åôåê òè ôëî ãåí çè ìó (12 ìã â äåíü îðàëü íî) ³ ëî ñàð òà íó (20 ìã/ë ó ïèòí³é âîä³), à òà - êîæ ¿õíüî¿ êîìá³íàö³¿. Ðå çóëü òà òè. Ó ùóð³â ç ÓÎÑ, ÿê³ îò ðè - ìó âà ëè ïëà öå áî, ð³âåíü íà êî ïè ÷åí íÿ ê³íöå âèõ ïðî äóêò³â ãë³êàö³¿ òà ìà ëîíä³àëü äåã³äó âè ÿ âèâ ñÿ âè ùèì, í³æ ó íå ñïðà âæíüîîïå - ðî âà íèõ êîí òðîëü íèõ ùóð³â. Ôóíêö³îíó âàí íÿ êîí òðà ëà òå ðàëü - íî¿ íè ðêè íå çíà÷ íî ïîã³ðøè ëî ñÿ, êîí öåí òðàö³ÿ êî ëà ãå íó ³ ñï³â- â³äíî øåí íÿ âì³ñòó á³ëîê/äåç îêñè ðè áî íóê ëå¿ íî âà êèñ ëî òà (P/ DNA) ó êëó áî÷ êó íè ðêè ï³äâè ùåí³. Îáðîá êà äîñë³äæó âà íè ìè ë³êà ðñüêè ìè çà ñî áà ìè çà ïîá³ãàëà çá³ëüøåí íþ âì³ñòó êî ëà ãå íó, çðîñ òàí íþ ïî êàç íè êà ñï³ââ³äíî øåí íÿ P/DNA òà ïî êðà ùóâàëà ôóíêö³îíó âàí íÿ êî ëà òå ðàëü íî¿ íè ðêè. Ôëî ãåí çèì ñïðèÿâ ï³äâè - ùåí íþ ð³âíÿ ïå ðå êèñ íî ãî îêèñ íåí íÿ ë³ï³ä³â òà ê³íöå âèõ ïðî - äóêò³â ãë³êàö³¿. Âèñ íîâ êè. Ó ìî äåë³ ÓÎÑ ñèñ òå ìà òè÷ íå çá³ëü- øåí íÿ îêñè äà òèâ íî ãî ñòðå ñó ìîæå â³ä³ãðà âà òè âàæ ëè âó ðîëü ó ðîç âèòêó òó áó ëî³íòåð ñòèö³éíî ãî ô³áðî çó ³ ïî ðó øåíí³ ôóíê- ö³îíó âàí íÿ êîí òðà ëà òå ðàëü íî¿ íè ðêè. Ñóï ðåñ³ÿ îêñè äà òèâ íî ãî ñòðå ñó òà áëî êó âàí íÿ ðå öåï òî ðà àíã³îò åí çè íó-1 ìîæóòü ïî - ñëàá ëþâàòè ïðî ãðåñ³þ îá ñòðóê òèâ íî¿ óðî ïàò³¿. Êëþ ÷îâ³ ñëî âà: îá ñòðóêö³ÿ ñå ÷î âî äó, îêñè äà òèâ íèé ñòðåñ, ìà ëîíä³àëü äåã³ä, êî ëà ãåí. Ê. Äæ. Øå áå êî âà, Ï. Áëà æè ÷åê, Ä. Ñûðî âà, Ø. Ãàë áàâè, À. Õåé äëàíä, Ê. Øå áå êî âà Îêñè äà òèâ íûé ñòðåññ, êî íå÷ íûå ïðî äóê òû ãëè êà öèè è îñòà òî÷ íîå ôóíê öè î íè ðî âà íèå ïî ÷êè íà ìî äå ëè êðûñ ñ îá ñòðóêöèåé ìî ÷å òî÷ íè êà: ýô ôåêòû ôëî ãåí çèìà è ëî ñàð òàíà Ðå çþ ìå Öåëü. Îêñè äà òèâíûé ñòðåññ èã ðà åò çíà ÷è òåëü íóþ ðîëü â ïà - òî ãå íå çå îá ñòðóêöèè ìî ÷å òî÷ íè êà. Öåëü ðàáî òû ñî ñòî ÿ ëà â èçó÷å íèè ïà ðà ìåòðîâ îêñè äà òèâ íî ãî ñòà òóñà, îöåíêå óðîâíÿ êî íå÷ íûõ ïðî äóêòîâ ãëè êà öèè è ôóíê öèîíèðîâàíèÿ êîí òðà ëà - òå ðàëü íîé ïî ÷êè íà ìî äåëè êðûñ ñ óíè ëà òå ðàëü íîé îá ñòðóê öè - åé ìî ÷å òî÷ íè êà (ÓÎÌ). Ìå òî äè. Íà ìî äåëè ÓÎÌ èñ ñëå äî âà ëè ýô ôåêòû ôëî ãåí çèìà (12 ìã â äåíü îðàëü íî) è ëî ñàð òàíà (20 ìã/ë â ïèòü å âîé âîäå), à òàêæå èõ êîì áèíà öèè. Ðå çóëü òà - òû. Ó êðûñ ñ ÓÎÌ, ïîëó÷àâøèõ ïëà öå áî, óðîâåíü êî íå÷ íûõ ïðî - äóêòîâ ãëè êà öèè è ìà ëîí äè àëü äå ãèäà îêà çàë ñÿ âûøå, ÷åì ó ëîæíîîîïå ðî âàííûõ êîí òðîëü íûõ êðûñ. Ôóí êöè î íè ðî âà íèå êîí òðà ëà òå ðàëü íîé ïî ÷êè íå çíà ÷è òåëü íî óõóä øè ëîñü, êîí öåí - òðà öèÿ êîë ëà ãå íà è ñî îò íî øå íèå ñî äåð æà íèÿ áåëîê/äåç îêñè - ðè áî íóê ëåè íî âàÿ êèñ ëî òà (P/DNA) â êëó áî÷ êå ïî ÷êè ïî âû ñè- ëèñü. Îáðà áîò êà èñ ñëå äó å ìû ìè ëå êà ðñòâåí íû ìè ñðåä ñòà âà ìè ïðåä îò âðà ùàëà óâå ëè ÷å íèå ñî äåð æà íèÿ êîë ëà ãåíà, ïî êà çà òå ëÿ ñî îò íî øå íèÿ P/DNA è óëó÷ øàëà ôóíê öè î íè ðî âà íèå êî ëà òå - ðàëü íîé ïî ÷êè. Ôëî ãåí çèì ñïî ñî áñòâî âàë âîç ðàñ òà íèþ óðîâíÿ ïå ðå êèñ íî ãî îêèñ ëå íèÿ ëè ïè äîâ è êî íå÷íûõ ïðî äóêòîâ ãëè êà- öèè. Âû âî äû.  ìî äåëè ÓÎÌ ñèñ òå ìà òè ÷åñêîå óâå ëè ÷å íèå îê- ñè äà òèâ íî ãî ñòðåññà ìî æåò áûòü ïðè ÷è íîé ðàç âèòèÿ òó áó - ëî èí òåð ñòè öèî ííî ãî ôèá ðî çà è íà ðó øå íèÿ ôóíê öè î íè ðî âà íèÿ êîí òðà ëà òå ðàëü íîé ïî ÷êè. Ñóï ðåñ ñèÿ îêñè äà òèâ íî ãî ñòðåññà è áëî êè ðî âà íèå ðå öåï òî ðà àí ãè î òåí çè íà-1 ìîæãóò îñëàá ëÿòü ïðî ãðå ññèþ îá ñòðóê òèâ íîé óðî ïàòèè. Êëþ ÷åâûå ñëî âà: îá ñòðóê öèÿ ìî ÷å òî÷ íè êà, îêñè äà òèâíûé ñòðåññ, ìà ëîí äè àëü äåãèä, êî ëëà ãåí. REFERENCES 1. Klahr S., Purkerson M. L. The pathophysiology of obstruc- tive nephropathy: The role of vasoactive compounds in the hemodynamic and structural abnormalities of the obstructed kidney // Am. J. Kidney Dis.–1994.–23, N 2.–P. 219–223. 2. Diamond J. R., Kees-Folts D., Ding G., Frye J. E., Restrepo N. C. Macrophages, monocyte chemoattractant peptide-1, and TGF-b1 in experimental hydronephrosis // Am. J. Physi- ol.–1994.– 266, N 6.–P. 926–933. 3. Kaneto H., Morrissey J., Klahr S. Increased expression of TGF-b1 mRNA in the obstructed kidney of the rats with uni- lateral ureteral ligation // Kidney Int.–1993.–44, N 2.– P. 313–321. 4. Klahr S., Morrissey J. J. The role of vasoactive compounds, growth factors and cytokines in progression of renal disease // Kidney Int.–2000.– 75, Suppl.–P. S7–14. 5. Kawada N., Moriyama T., Ando A., Fukunaga M., Miyata T., Kurokawa K., Imai E., Hori M. Increased oxidative stress in mouse kidneys with unilateral ureteral obstruction // Kidney Int.–1999.–56, N 3.–P.1004–1013. 6. Ricardo S. D., Ding G., Eufemio M., Diamond J. R. Antioxi- dant expression in experimental hydronephrosis: role of me- chanical stretch and growth factors // Am. J. Physiol.–1997.– 272, N 6.–P. F789–798. 126 SEBEKOVA K., Jr. ET AL. 7. Gugliucci A., Bendayan M. Renal fate of circulating advan- ced glycated end products (AGE): evidence for reabsorption and catabolism of AGE-peptides by renal proximal tubular cells // Diabetologia.–1996.–39, N 2.–P. 149–160. 8. Miyata T., Wada Y., Cai Z., Iida Y., Horie K., Yasuda Y., Ma- eda K., Kurokawa K., van Ypersele de Strihou C. Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure // Kidney Int.–1997.–51, N 4.–P. 1170–1181. 9. Yan S. D., Schmidt A. M., Anderson G. M., Zhang J., Brett J., Zou Y. S., Pinsky D., Stern D. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins // J. Biol. Chem.–1994.– 269, N 13.–P. 9889–9897. 10. Fujita M., Okuda H., Tsukamoto O., Asano Y., Hirata Y.L., Kim J., Miyatsuka T., Takashima S., Minamino T., Tomoike H., Kitakaze M. Blockade of angiotensin II receptors reduces the expression of receptors for advanced glycation end pro- ducts in human endothelial cells. // Arterioscler. Thromb. Vasc. Biol.–2006.–26, N 10.–P. e138–142. 11. Miyata T., Van Ypersele de Strihou C., Ueda Y., Ichimori K., Inagi R., Onogi H., Ishikawa N., Nangaku M., Kurokawa K. Angiotensin II receptor antagonists and angiotensin- converting enzyme inhibitors lower in vitro the formation of advanced glycation end products: biochemical mechanisms // J. Am. Soc. Nephrol.–2002.–13, N 10.–P. 2478–2487. 12. Xiang G., Schinzel R., Munch G., Simm A., Sebekova K., Wanner C., Heidland A. Losartan suppresses the AGE-in- duced expression of TGF-b1 in human tubule and LLC-PK1 cell lines // J. Am. Soc. Nephrol.–1999.– 10, N 9.–P. 692A. 13. Sebekova K., Schinzel R., Munch G., Krivosikova Z., Dzurik R., Heidland A. Advanced glycation end product levels in subtotally nephrectomized rats: beneficial effects of angio- tensin II receptor 1 antagonist losartan // Mineral. Electrol. Metab.–1999.–25, N 4–6.–P. 380–383. 14. Forbes J. M., Thomas M. C., Thorpe S. R., Alderson N. L., Cooper M. E. The effects of valsartan on the accumulation of circulating and renal advanced glycation end products in experimental diabetes // Kidney Int.–2004.–92.– S105–S107. 15. Xiang G., Schinzel R., Simm A., Sebekova K., Heidland A. Advanced glycated end products impair protein turnover in LLC-PK1 cells: amelioration by trypsin // Kidney Int.– 2001.–59, Suppl.–P. S53–S57. 16. Xiang G., Schinzel R., Simm A., Munch G., Sebekova K., Kas- per M., Niwa T., Schmitz C., Heidland A. Advanced glycated end products (AGEs)-induced expression of TGF-b1 is sup- pressed by a protease in the tubule cell line LLC-PK1 // Nephrol. Dial. Transplant.–2001.–16, N 8.–P. 1562–1569. 17. Sebekova K., Dammrich J., Fierlbeck W., Krivosikova Z., Paczek L., Heidland A. Effects of chronic therapy with pro- teolytic enzymes on hypertension-induced renal injury in the model of Goldblatt hypertension // Am. J. Nephrol.–1998.– 18, N 6.–P. 570–576. 18. Sebekova K., Dammrich J., Krivosikova Z., Heidland A. The effects of oral protease administration in the rat remnant kid- ney model // Res. Exp. Med.–1999.–199, N 3.–P. 177–188. 19. Wong S. H., Knight J. A., Hopfer S. M., Zaharia O., Leack C. N., Jr., Sunderman F. W., Jr. Lipoperoxides in plasma as me- asured by liquid chromatographic separation of malondial- dehyde-thiobarbituric acid adduct // Clin. Chem.–1987.– 33, N 2.–P. 214–220. 20. Tsuchida M., Miura T., Mizutani K., Aibara K. Fluorescent substances in mouse and human sera as a parameter of in vivo lipid peroxidation // Biochim. Biophys. Acta.–1985.– 834, N 2.–P. 196–204. 21. Muench G., Keis R., Wessels A., Riederer P., Bahner U., Hei- dland A., Niwa T., Lemke H. D., Schinzel R. Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitive ELISA // Eur. J. Clin. Chem. Clin. Biochem.–1997.– 35, N 9.–P. 669–677. 22. Spiro R.G. Studies on the renal glomerular basement mem- brane: preparation and chemical composition // J. Biol. Chem.–1984.– 242, N 8.–P. 1915–1919. 23. Harris D.A. Fluorometric assay for DNA with Hoechst 33258 // Spectrophotometry and spectrofluorometryn / Eds D. A. Harris, C. L. Bashford.–Washington: IRL Press, 1987.– P. 64–65. 24. Smith P. K., Krohn R. J., Hermanson G. T., Mallia A. K., Gar- tner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bici- nochonicinic acid // Anal. Biochem.–1985.–50, N 1.–P. 76– 85. 25. Sebekova K., Schinzel R., Ling H., Simm A., Xiang G., Gekle M., Munch G., Vamvakas S., Heidland A. Advanced glycated albumin impairs protein degradation in the proximal tubules cell line LLC-PK1 // Cell. Mol. Biol.–1998.–44, N 7.– P. 1051–1060. 26. Brownlee M. Advanced protein glycosylation in diabetes and ageing // Annu. Rev. Med.–1995.–46.–P. 223–224. 27. Ishidoya S., Morrisey J., McCracken R., Klahr S. Angioten- sin II receptor antagonist ameliorates renal tubulointerstitial fibrosis caused by unilateral ureteral obstruction // Kidney Int.–1995.–47, N 5.–P. 1285–1294. 28. Schupp N., Schinzel R., Heidland A., Stopper H. Genotoxicity of advanced glycation end products: involvement of oxidative stress and of angiotensin II type 1 receptors // Ann. N. Y. Acad. Sci.–2005.–1043.–P. 685–695. 29. Khaper N., Singal P. K. Modulation of oxidative by a selecti- ve inhibition of angiotensin II type 1 receptors in MI rats // J. Am. Coll. Cardiol.–2001.–37, N .–P. 1461–1466. 30. Fan Q., Liao J., Kobayashi M., Yamashita M., Gu L., Gohda T., Suzuki Y., Wang L. N., Horikoshi S., Tomino Y. Cande- sartan reduced advanced glycation end-products accumulati- on and diminished nitro-oxidative stress in type 2 diabetic KK/Ta mice // Nephrol. Dial. Transplant–2004.–19, N 12.– P. 3012–3020. 31. Kislinger T., Fu C., Huber B., Qu W., Taguchi A., Du Yan S., Hofmann M., Yan S. F., Pischetsrieder M., Stern D., Schmidt A. M. N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene exp- ression // J. Biol. Chem.–1999.–274, N 44.–P. 31740–31749. 32. Nagashawa T., Tabata N., Ito Y., Nishizawa N., Aiba Y., Kitts D. D. Inhibition of glycation reaction in tissue protein incu- bations by water-soluble rutin derivative // Mol. Cell. Bio- chem.–2003.–249, N 1–2.–P. 3–10. UDC 616.61-008.6 Received 10.01.10 127 RAT UUO MODEL: EFFECTS OF PHLOGENZYM AND LOSARTAN