Fragmentation fractal of sandstone under acid corrosion and coupled static-dynamic loads

The analysis results show that the fragment of broken rock is a fractal distribution, and the smaller the impact pressure is, the less specimen fragments is,the lower degree of fragmentation degree is, and the lower fractal dimension is. Research shows that fractal dimension increases with the dynam...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: LIU Yong-sheng, LI Jin, ZOU Jia-yu, WU Yun, LU Shao-yong
Формат: Стаття
Мова:English
Опубліковано: НТК «Інститут монокристалів» НАН України 2018
Назва видання:Functional Materials
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154052
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Fragmentation fractal of sandstone under acid corrosion and coupled static-dynamic loads / LIU Yong-sheng, LI Jin, ZOU Jia-yu, WU Yun, LU Shao-yong // Functional Materials. — 2018. — Т. 25, № 1. — С. 122-127. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-154052
record_format dspace
spelling irk-123456789-1540522019-06-16T01:26:27Z Fragmentation fractal of sandstone under acid corrosion and coupled static-dynamic loads LIU Yong-sheng LI Jin ZOU Jia-yu WU Yun LU Shao-yong Characterization and properties The analysis results show that the fragment of broken rock is a fractal distribution, and the smaller the impact pressure is, the less specimen fragments is,the lower degree of fragmentation degree is, and the lower fractal dimension is. Research shows that fractal dimension increases with the dynamic compression strength of rock increasing, and the incident energy and the absorb energy increase linear with the fracture fractal dimension increasing. The fragmentation distribution of the specimens becomes more and more uniform with the increasing of the incident energy, and the characteristic scale of rupture decreased gradually. 2018 Article Fragmentation fractal of sandstone under acid corrosion and coupled static-dynamic loads / LIU Yong-sheng, LI Jin, ZOU Jia-yu, WU Yun, LU Shao-yong // Functional Materials. — 2018. — Т. 25, № 1. — С. 122-127. — Бібліогр.: 15 назв. — англ. 1027-5495 http://dspace.nbuv.gov.ua/handle/123456789/154052 DOI: https://doi.org/10.15407/fm25.01.122 en Functional Materials НТК «Інститут монокристалів» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Characterization and properties
Characterization and properties
spellingShingle Characterization and properties
Characterization and properties
LIU Yong-sheng
LI Jin
ZOU Jia-yu
WU Yun
LU Shao-yong
Fragmentation fractal of sandstone under acid corrosion and coupled static-dynamic loads
Functional Materials
description The analysis results show that the fragment of broken rock is a fractal distribution, and the smaller the impact pressure is, the less specimen fragments is,the lower degree of fragmentation degree is, and the lower fractal dimension is. Research shows that fractal dimension increases with the dynamic compression strength of rock increasing, and the incident energy and the absorb energy increase linear with the fracture fractal dimension increasing. The fragmentation distribution of the specimens becomes more and more uniform with the increasing of the incident energy, and the characteristic scale of rupture decreased gradually.
format Article
author LIU Yong-sheng
LI Jin
ZOU Jia-yu
WU Yun
LU Shao-yong
author_facet LIU Yong-sheng
LI Jin
ZOU Jia-yu
WU Yun
LU Shao-yong
author_sort LIU Yong-sheng
title Fragmentation fractal of sandstone under acid corrosion and coupled static-dynamic loads
title_short Fragmentation fractal of sandstone under acid corrosion and coupled static-dynamic loads
title_full Fragmentation fractal of sandstone under acid corrosion and coupled static-dynamic loads
title_fullStr Fragmentation fractal of sandstone under acid corrosion and coupled static-dynamic loads
title_full_unstemmed Fragmentation fractal of sandstone under acid corrosion and coupled static-dynamic loads
title_sort fragmentation fractal of sandstone under acid corrosion and coupled static-dynamic loads
publisher НТК «Інститут монокристалів» НАН України
publishDate 2018
topic_facet Characterization and properties
url http://dspace.nbuv.gov.ua/handle/123456789/154052
citation_txt Fragmentation fractal of sandstone under acid corrosion and coupled static-dynamic loads / LIU Yong-sheng, LI Jin, ZOU Jia-yu, WU Yun, LU Shao-yong // Functional Materials. — 2018. — Т. 25, № 1. — С. 122-127. — Бібліогр.: 15 назв. — англ.
series Functional Materials
work_keys_str_mv AT liuyongsheng fragmentationfractalofsandstoneunderacidcorrosionandcoupledstaticdynamicloads
AT lijin fragmentationfractalofsandstoneunderacidcorrosionandcoupledstaticdynamicloads
AT zoujiayu fragmentationfractalofsandstoneunderacidcorrosionandcoupledstaticdynamicloads
AT wuyun fragmentationfractalofsandstoneunderacidcorrosionandcoupledstaticdynamicloads
AT lushaoyong fragmentationfractalofsandstoneunderacidcorrosionandcoupledstaticdynamicloads
first_indexed 2025-07-14T05:33:49Z
last_indexed 2025-07-14T05:33:49Z
_version_ 1837599272422342656
fulltext 122 Functional materials, 25, 1, 2018 ISSN 1027-5495. Functional Materials, 25, No.1 (2018), p. 122-127 doi:https://doi.org/10.15407/fm25.01.122 © 2018 — STC “Institute for Single Crystals” Fragmentation fractal of sandstone under acid corrosion and coupled static-dynamic loads LIU Yong-sheng, LI Jin, ZOU Jia-yu, WU Yun, LU Shao-yong School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, P.R.China; Received November 30, 2017 The analysis results show that the fragment of broken rock is a fractal distribution, and the smaller the impact pressure is, the less specimen fragments is, the lower degree of fragmenta- tion degree is, and the lower fractal dimension is. Research shows that fractal dimension in- creases with the dynamic compression strength of rock increasing, and the incident energy and the absorb energy increase linear with the fracture fractal dimension increasing. The fragmen- tation distribution of the specimens becomes more and more uniform with the increasing of the incident energy, and the characteristic scale of rupture decreased gradually. Key words: rock dynamics; fragmentation fractal; acid corrosion; coupled static-dynamic loads; strength; energy. Обсуждается взаимосвязь между фрактальной размерностью и динамической прочностью на сжатие, диссипацией энергии в породе под кислотной коррозией и связанными статически-динамическими нагрузками. Результаты анализа показывают, что фрагменты разрушенной породы имеют фрактальное распределение, и чем меньше ударное давление, тем меньше фрагментов, меньше степень фрагментации и меньше фрактальная размерность. Исследования показывают, что фрактальная размерность возрастает с ростом динамической прочности породы на сжатие. Фрактальная размерность линейно возрастает с вложенной энергией и поглощённой энергией. Распределение фрагментов образцов становится все более однородным с ростом вложенной энергии, а характерный их масштаб постепенно уменьшается. Фрагментаційний фрактал пісковика під кислотною корозією та пов’язані статично-динамічні навантаження. LIU Yong-sheng, LI Jin, ZOU Jia-yu, WU Yun, LU Shao-yong. Обговорюється взаємозв’язок між фрактальної розмірністю і динамічною міцністю на стиск, дисипацією енергії в породі під кислотної корозією і пов’язаними статично- динамічними навантаженнями. Результати аналізу показують, що фрагменти зруйнованої породи мають фрактальний розподіл, і чим менше ударний тиск, тим менше фрагментів, менше ступінь фрагментації і менше фрактальна розмірність. Дослідження показують, що фрактальна розмірність зростає з ростом динамічної міцності породи на стиск. Фрактальна розмірність лінійно зростає з вкладеною енергією і поглиненої енергією. Розподіл фрагментів зразків стає все більш однорідним з ростом вкладеної енергії, а характерний їх масштаб поступово зменшується. Functional materials, 25, 1 2018 123 LIU Yong-sheng et al. / Fragmentation fractal of sandstone under ... 1. Introduction Rock is a kind of heterogeneous brittle me- dia. the internal micro cracks will be develop and expand continuously under the influence of the deep complex environment and the high ground stress. The degree of difficulty, energy consumption and fragmentation distribution of rock fragmentation are important parameters and measure index in rock drilling, blasting, mining and mineral processing. With the de- velopment of fractal theory in the 70s of last century, the study of rock fracture has entered a new stage. A large number of studies [1-3] showed that the development of the rock frag- ment from microscopic damage to the macro- scopic crack has fractal characteristics, and the fragment is fractal distribution. In recent years, fractal theory has been wide- ly used in the field of rock fragmentation and en- ergy analysis, and a lot of research results have been obtained. Xu Jin-yu et al. [7] analyzed the fragmentation lumpiness distribution of marble under impact loading test by fractal geometry. Nagahama[8] studied the process of the damage and energy dissipation of rock by fractal theory. Wang Qi-sheng et al.[9] studied the fragmenta- tion fractal characteristics of granite under the static and dynamic coupled loads, and analyzed the change of rock fragmentation fractal dimen- sion with different loads. In previous studies, they all did not take into account the effects of deep underground environment. In fact, the influence of deep un- derground complex environment on the rock properties can not be ignored in engineer- ing practice, and most of the deep rock are in acidic environment of underground water. In addition, the deep rock is in a the coupled of static and dynamic stress state. So there are great practical significance to study the fractal of deep rock considering comprehensively the influence of deep underground environment. In this paper, the fragmentation fractal character- istics of red sandstone under the coupled static- dynamic loads are comprehensively considered, and relationship of the fractal dimension and absorbed energy and dynamic strength were analyzed. 2. Calculate of fractal dimension In the early 70s of last century, French sci- entist B. B. Mandelbrot put forward the concept of fractal theory for the first time. The fractal dimension can be used to describe the features of a graph or object with fractal features[11]. The fragmentation process of rock is very com- plex, which is the result of the interaction of the external loading and the internal cracks in the rock mass. Based on large numbers of theo- retical and experimental studies, experts and scholars [12-13]had put forward a statistical model of rock fragmentation distribution, and the most representative distribution function are R-R and G-G-S . The expression of R-R distribution: y r r a = - - æ è çççç ö ø ÷÷÷÷÷ é ë ê ê ê ù û ú ú ú 1 0 exp (1) Here a is the distribution parameter of rock fragments, r0 is the characteristic size of the rock fragments, which is the size of the block when the cumulative amount of the sieve is 1 1 0-( )/ e %. The expression of G-G-S distribution: y r rm b = æ è çççç ö ø ÷÷÷÷÷ (2) Here b is the distribution parameter of rock fragment, which is the linear slope in log-log co- ordinate. rm is the distribution function. When r = rm, the quantity under sieve is 100% , which is the maximum size of the rock fragments. Expanding the formula (1) in series and re- moving of the higher order terms, then we can find that the final results of the formula (1) and formula (2) are the same. In the G-G-S distribu- tion function, the M represents the total mass of the fragments, the cumulative mass under the sieve is m r( ) when the feature size is r . And the formula (2) can be converted into: m r M r rm b ( ) = æ è çççç ö ø ÷÷÷÷÷ (3) Derivative the formula (3): dm r drbµ -1 (4) Considering the relationship between the increment of rock fragments and the mass growth: dm r dNµ 3 (5) Based on the results of Turcotte et al.[14] the relationship of the fractal dimension D and the number of fragments N which is larger than current size and the linear characteristic size r can be show as: N r Dµ - (6) Combining formula (4) and (5), the calcula- tion formula of fractal dimension D can be de- duced: W t A C E t dtI e e e I t ( ) ( )= ò σ 2 0 (7) 124 Functional materials, 25, 1, 2018 LIU Yong-sheng et al. / Fragmentation fractal of sandstone under ... Table 1 The loading scheme Loading scheme Impact pressure (MPa) Axial static pressure (MPa) Combined static and dynamic loading 0.45 0.50 0.55 0.60 0.65 8 Fig. 1 Coupled static-dynamic loading device Fig. 2. The stress-strain curves of specimens In the formula W t A C E t dtR e e e R t ( ) ( )= ò σ 2 0 is the total mass, W t A C E t dtT e e e T t ( ) ( )= ò σ 2 0 is the cumulative quality of the all fragment which diameter is less than R. According to the formula (7), the fractal di- mension D can be calculated from the cumula- tive mass under sieve of the different particle size. 3. Experimental scheme and results The experiment is carried out on the basis of the coupled static-dynamic loading testing sys- tem as shown in Figure 1. The loading scheme is shown as Table 1. Red sandstone was chosen as the research object. The specimen size is cylinders with 50mm in diameter and 25mm high. In order to simulate the acidic environment of deep un- derground, the acid solution with pH = 4 were prepared according to the characteristics of the deep water, and the specimen are immersed in the acid solution for 30 days. After the experiment of coupled static-dy- namic loads. All the broken fragments of rock under different impact pressure were collected by the self-made simple recovery device, and the fragments of rock specimen were sieved according to the relevant national standards. The square hole sieves based on new standard were used to sieve the rock fragments, which hole diameter are 2.5mm, 5mm, 10mm, 16mm, 20mm, 25mm, 31.5mm, 40mm and 50mm. After screening, the residue quantity under the sieve is weighed by electronic balance each times. The stress and strain curves of the speci- mens are obtained as shown Figure 2. According to [15], the incident energy and absorbed energy of the specimens can be calcu- lated by the formula. W t A C E t dtI e e e I t ( ) ( )= ò σ 2 0 (8) W t A C E t dtR e e e R t ( ) ( )= ò σ 2 0 (9) W t A C E t dtT e e e T t ( ) ( )= ò σ 2 0 (10) where WI(t), WR(t) and W tT ( ) respectively rep- resent the incident, reflection and transmis- sion energy; A0 is the cross-sectional area of elastic rod; C0 is the elastic rod wave velocity; E0 is the elastic modulus of specimen; σ I t( ), σR t( ) and σT t( ) are the incident, reflection and transmission stresses. The energy absorbed WS under coupled static-dynamic loads can be showed as: W W W W WS I O R T= + - +( ) (11) Where WO is the energy of static loads pres- sure, W t d tO = ò σ ε ε ( ) ( ) 0 . Functional materials, 25, 1 2018 125 LIU Yong-sheng et al. / Fragmentation fractal of sandstone under ... the incident energy and absorbed energy of the specimens can be calculated as showed Table 2. The fragmentation mode of rock under acid corrosion and coupled static-dynamic loading are shown in Figure 3, and they were screened by the above experimental scheme, the sieving results is shown in Table 3. 4. Analysis of fragmentation fractal According to the results of the screening ex- periment, the fractal dimension of the red sand- stone under acid corrosion and coupled static- dynamic loads can be calculated by the formula (7), and the results are shown in Table 4. From Table 4, we knew that the fractal dimension of the specimen with 0.45 impact pressure is smallest in Table 4, and the frac- tal dimension increased with the impact pres- sure increasing. This show the fragmentation degree of the specimen with 0.45 impact pres- sure is lowest, and it rise with impact pressure increasing, which is in agreement with the ex- perimental results form the Figure 2. Through the comparison of the broken mode and frac- tal dimension, it was found that the fewer the Table 2 Energy at different impact pressure Impact pressure (MPa) 0.45 0.50 0.55 0.60 0.65 Dynamic compressive strength(MPa) 59.14 67.72 68.21 68.91 73.42 Incident energy (J) 44.44 67.84 76.88 90.53 105.41 Absorbed energy (J) 20.11 36.32 34.35 45.88 54.70 Table 3 Results of screening experiment Residual mass (g) Hole diameter of sand sieve (mm) 2.5 5.0 10 16 20 25 31.5 40 50 Impact pressure (MPa) 0.45 0.6 1.4 4.3 2.5 0 0 0 0 99.2 0.50 7.2 3.6 14.1 15.3 11.9 0 0 54.9 0 0.55 3.8 2.9 11.7 14.6 4.2 0 0 71.8 0 0.60 17.6 8.9 23 16.4 0 0 40.1 0 0 0.65 22.7 12.9 29.2 41.2 0 0 0 0 0 Fig. 3. Fragmentation mode of the rock 126 Functional materials, 25, 1, 2018 LIU Yong-sheng et al. / Fragmentation fractal of sandstone under ... sample fragments are , the larger the volume is, the lower the fragmentation degree is, then the lower the fractal dimension is. The fractal dimension of the fragment size distribution can be used to reflect the fragmentation degree of material quantitatively. which shows that the fragmentation distribution of rock specimen has good self-similarity, that is a fractal distri- bution. The fractal is not only related to the mac- roscopic damage of the material, but also to its micro-structure and mechanical properties. According to the results the dynamic test, The changing law of the fractal dimensions and dy- namic compression strength and energy of the rock are shown in Figure 4 and Figure 5. It can be seen from Figure 4 that the dy- namic compression strength of rock increases linear with the fractal dimension increasing. The dynamic compression strength rise when the impact pressure increasing, then the crack will develop more fully, and the fragments be- come more, so the fractal dimension increase. Therefore, the fractal dimension can be used to quantitatively describe the dynamic strength of the specimens. From Figure 5 we can found that the fractal dimension of the acid red sand- stone shows a significant upward trend with Table 4 Fractal dimension of different specimens Impact pressure (MPa) Slope Fractal dimension Correlation coefficent 0.45 1.303 1.70 0.8402 0.50 0.781 2.22 0.9428 0.55 0.936 2.06 0.9332 0.60 0.542 2.46 0.9125 0.65 0.449 2.55 0.9787 Fig. 4. Relation between dynamic compression strength and fractal dimensions Fig. 5. Relation between energy andfractal dimensions the increasing of the incident energy under the action of static and dynamic combination. Those results are consistent with the other re- search results on the fractal dimension of rock subjected to impact dynamic load [11,13]. The fragment size distribution of rock sample be- come more and more uniform with the incident energy increasing, and the characteristic scale of fragment decreases accordingly. The de- struction of rock is closely related to the devel- opment, expansion and penetration of the in- ternal micro-crack . It is also the process of the development of the initial meso-damage in the rock structure to the macroscopic fracture. The more energy is absorbed, the more the crack ex- pands, and the more the fragment is produced, the higher the degree of fragmentation is, and the fractal dimension is bigger. 5. Conclusions The fractal characteristics of the rock frag- mentation under coupling effect of acid corro- sion and static-dynamic loading are analyzed in this paper , the results show that: Research showed that the fractal theory can be applied to analyze the rock properties under acidic environment and coupled loads. There is a close relationship between the fractal di- Functional materials, 25, 1 2018 127 LIU Yong-sheng et al. / Fragmentation fractal of sandstone under ... mension, strength of rock, absorbed energy and fragment shape. The fragment size distri- bution of rock specimens under acid corrosion and coupled static-dynamic loads have good self-similarity, which is the characteristics of fractal distribution. The study on the fractal of rock under acid corrosion and coupled static- dynamic loads can provide reference for the safe mining of deep coal seam. Experiment results showed that the lower the impact pressure is, the fewer the sample fragments are, the larger the volume of the fragment are, the lower the fragmentation de- gree is, and the lower the fractal dimension is. The fractal dimension of the fragment can be used to quantitatively described the fragmen- tation degree of the material. The fractal dimension increases with the increasing of the incident energy and absorbed energy of the specimens, and the dynamic com- pression strength of rock samples increases with the increasing of fractal dimension. The fractal dimension can be used to analyze the strength, energy and other internal perfor- mance, to explore the inherent law of material failure process. Acknowledgments This work is supported by the Natu- ral Science Foundation of China (51664014, 51274101) and Science and technology project of Jiangxi Provincial Department of Education (GJJ160474). References 1. Xie He-ping, Gao Feng. Chinese J. Rock Mech. Eng., 10, 55, 1991. 2. GAO Feng, XIE He-ping, WU Jing-bo. Chinese J. Rock Mech. Eng.,18, 503, 1999. 3. Turcotte D L. J. Geophys., 91,1291, 1988. 7. XU Jin-yu, LIU Shi. Rock Soil Mech., 33, 3225, 2012. 8. Nagahama H. Earth Scie. Front., 7,169, 2000. 9. Wang Qi-sheng, LI Xi-bing. J. Exp. Mech., 24, 587, 2009. 10. TAN Yun-liang, LIU Chuan-xiao, ZHAO Tong-bin. Elementary Theory for Rock Nonliner Dynam- ics [M]. Beijing: China Coal Industry Publishing House, 2008. 11. Xie He-ping. An Introdction of Fractal Meth- ods on Rock Mechanics. Beijing: Science Press, 1996. 12. Turcotte D L., Tectonophys.,132, 261, 1986. 13. Xie He-ping, Gao Feng, Zhou Hong-wei, et al. J.Seismology, 23, 1, 2003. 14. Guo Lianjun, Yang Yuehui, Zhang Daning. Met- al mine, 8, 1, 2014 15. Li shi bing Study on rock-breaking rule in deep wells and rock-breaking fractal mechanism daq- ing petroleum institute Doctoral Dissertation 2006.03