Numerical investigation of local defectiveness control of diblock copolymer patterns
We numerically investigate local defectiveness control of self-assembled diblock copolymer patterns through appropriate substrate design. We use a nonlocal Cahn-Hilliard (CH) equation for the phase separation dynamics of diblock copolymers. We discretize the nonlocal CH equation by an unconditiona...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики конденсованих систем НАН України
2016
|
Назва видання: | Condensed Matter Physics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154227 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Numerical investigation of local defectiveness control of diblock copolymer patterns / D. Jeong, Y. Choi, J. Kim// Condensed Matter Physics. — 2016. — Т. 19, № 3. — С. 33001: 1–10. — Бібліогр.: 35 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-154227 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1542272019-06-16T01:25:22Z Numerical investigation of local defectiveness control of diblock copolymer patterns Jeong, D. Choi, Y. Kim, J. We numerically investigate local defectiveness control of self-assembled diblock copolymer patterns through appropriate substrate design. We use a nonlocal Cahn-Hilliard (CH) equation for the phase separation dynamics of diblock copolymers. We discretize the nonlocal CH equation by an unconditionally stable finite difference scheme on a tapered trench design and, in particular, we use Dirichlet, Neumann, and periodic boundary conditions. The value at the Dirichlet boundary comes from an energy-minimizing equilibrium lamellar profile. We solve the resulting discrete equations using a Gauss-Seidel iterative method. We perform various numerical experiments such as effects of channel width, channel length, and angle on the phase separation dynamics. The simulation results are consistent with the previous experimental observations. Проведено числове дослiдження керування локальною дефектнiстю самоорганiзованих структур дiблоккополiмерiв за допомогою вiдповiдної конструкцiї субстрату. Використовується нелокальне рiвняння Кана-Хiлларда для динамiки фазового роздiлення дiблок-кополiмерiв. Здiйснено дискретизацiю нелокального рiвняння з використанням безумовно стiйкої схеми скiнченної рiзницi на звуженiй канавцi зразка i, зокрема, використано крайовi умови Дiрiхле, Ньюмана i перiодичнi граничнi умови. Значення при крайових умовах Дiрiхле отримано згiдно з рiвноважним ламеларним профiлем, що вiдповiдає енергетичному мiнiмуму. Ми розв’язуємо отриманi дискретнi рiвняння, використовуючи iтеративний метод ГауссаЗейделя. Проведено рiзнi числовi експерименти, такi як вплив ширини каналу, довжини каналу та кута на динамiку фазового роздiлення. Результати симуляцiй вiдповiдають попереднiм експериментальним спостереженням. 2016 Article Numerical investigation of local defectiveness control of diblock copolymer patterns / D. Jeong, Y. Choi, J. Kim// Condensed Matter Physics. — 2016. — Т. 19, № 3. — С. 33001: 1–10. — Бібліогр.: 35 назв. — англ. 1607-324X DOI: 10.5488/CMP.19.33001 PACS: 02.60.Cb, 02.60.Lj, 02.70.Bf, 02.70.Pt arXiv:1609.06974 http://dspace.nbuv.gov.ua/handle/123456789/154227 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We numerically investigate local defectiveness control of self-assembled diblock copolymer patterns through
appropriate substrate design. We use a nonlocal Cahn-Hilliard (CH) equation for the phase separation dynamics
of diblock copolymers. We discretize the nonlocal CH equation by an unconditionally stable finite difference
scheme on a tapered trench design and, in particular, we use Dirichlet, Neumann, and periodic boundary conditions. The value at the Dirichlet boundary comes from an energy-minimizing equilibrium lamellar profile. We
solve the resulting discrete equations using a Gauss-Seidel iterative method. We perform various numerical experiments such as effects of channel width, channel length, and angle on the phase separation dynamics. The
simulation results are consistent with the previous experimental observations. |
format |
Article |
author |
Jeong, D. Choi, Y. Kim, J. |
spellingShingle |
Jeong, D. Choi, Y. Kim, J. Numerical investigation of local defectiveness control of diblock copolymer patterns Condensed Matter Physics |
author_facet |
Jeong, D. Choi, Y. Kim, J. |
author_sort |
Jeong, D. |
title |
Numerical investigation of local defectiveness control of diblock copolymer patterns |
title_short |
Numerical investigation of local defectiveness control of diblock copolymer patterns |
title_full |
Numerical investigation of local defectiveness control of diblock copolymer patterns |
title_fullStr |
Numerical investigation of local defectiveness control of diblock copolymer patterns |
title_full_unstemmed |
Numerical investigation of local defectiveness control of diblock copolymer patterns |
title_sort |
numerical investigation of local defectiveness control of diblock copolymer patterns |
publisher |
Інститут фізики конденсованих систем НАН України |
publishDate |
2016 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/154227 |
citation_txt |
Numerical investigation of local defectiveness control of diblock copolymer patterns / D. Jeong, Y. Choi, J. Kim// Condensed Matter Physics. — 2016. — Т. 19, № 3. — С. 33001: 1–10. — Бібліогр.: 35 назв. — англ. |
series |
Condensed Matter Physics |
work_keys_str_mv |
AT jeongd numericalinvestigationoflocaldefectivenesscontrolofdiblockcopolymerpatterns AT choiy numericalinvestigationoflocaldefectivenesscontrolofdiblockcopolymerpatterns AT kimj numericalinvestigationoflocaldefectivenesscontrolofdiblockcopolymerpatterns |
first_indexed |
2025-07-14T04:40:49Z |
last_indexed |
2025-07-14T04:40:49Z |
_version_ |
1837595938089074688 |
fulltext |
Condensed Matter Physics, 2016, Vol. 19, No 3, 33001: 1–10
DOI: 10.5488/CMP.19.33001
http://www.icmp.lviv.ua/journal
Numerical investigation of local defectiveness
control of diblock copolymer patterns
D. Jeong, Y. Choi, J. Kim∗
Department of Mathematics, Korea University, Seoul 136-713, Republic of Korea
Received October 21, 2015, in final form December 22, 2015
We numerically investigate local defectiveness control of self-assembled diblock copolymer patterns through
appropriate substrate design. We use a nonlocal Cahn-Hilliard (CH) equation for the phase separation dynamics
of diblock copolymers. We discretize the nonlocal CH equation by an unconditionally stable finite difference
scheme on a tapered trench design and, in particular, we use Dirichlet, Neumann, and periodic boundary con-
ditions. The value at the Dirichlet boundary comes from an energy-minimizing equilibrium lamellar profile. We
solve the resulting discrete equations using a Gauss-Seidel iterative method. We perform various numerical ex-
periments such as effects of channel width, channel length, and angle on the phase separation dynamics. The
simulation results are consistent with the previous experimental observations.
Key words: diblock copolymer, nonlocal Cahn-Hilliard equation, local defectivity control
PACS: 02.60.Cb, 02.60.Lj, 02.70.Bf, 02.70.Pt
1. Introduction
A diblock copolymer is a linear chain consisting of two blocks of different types of monomers bonded
covalently to each other. The two blocks are mixed above the critical temperature; however, the copoly-
mer melt undergoes phase separation below the critical temperature due to the incompatibility of dif-
ferent blocks [1]. As a result of phase separation, periodic structures including lamellae [2–7], spheres
[2, 3, 8–12], cylinders [2, 3, 6, 10, 13, 14], hexagons [2, 3, 7, 10, 13–17], and gyroids [2, 3, 10] are observed
in a mesoscopic-scale domain.
Figure 1. Examples of local defects.
In recent years, self-assembly of block copolymer has come out as a promising patterning tool to over-
come the scaling limits in nano-lithography and generate suboptical lithographic patterns [18]. However,
one of the problems is the lack of complete pattern orientation due to a high density of defects [19]. In
figure 1, we can observe various examples of local defect in the block copolymer. Therefore, it is very
important to control the local defects of self-assembled polymer patterns with the application of these
materials. As the efforts to rectify this, many researches and techniques such as electric fields [20], flow
∗Corresponding author, E-mail: cfdkim@korea.ac.kr.
© D. Jeong, Y. Choi, J. Kim, 2016 33001-1
http://dx.doi.org/10.5488/CMP.19.33001
http://www.icmp.lviv.ua/journal
D. Jeong, Y. Choi, J. Kim
[21], shear application [22–24], thermal treatment [25], chemically pre-patterned surface (chemoepitaxy)
[26, 27], and topographical confinement (graphoepitaxy) [28] have been carried out to reduce the defect
density in specific pattern-forming block copolymer thin films. Among the controlling method, authors
in [19] proposed an appropriate substrate design and achieved a defect-free pattern formation. In this
paper, we focus on numerically realizing the situation presented in [19] and we describe in detail the
numerical method which is used in the numerical simulations.
We use the mathematical model proposed by Ohta and Kawasaki [29]. Let φ be the difference of the
local volume fraction of A and B monomers. Then, the nonlocal Cahn-Hilliard (CH) equation in a two-
dimensional domain is
∂φ(x, t )
∂t
= ∆µ(x, t )−α[
φ(x, t )− φ̄]
, (1)
µ(x, t ) = F ′(φ(x, t )
)−ε2∆φ(x, t ), (2)
where x = (x, y) and t are the spatial and temporal variables, respectively. F (φ) = 0.25(φ2 − 1)2 is the
Helmholtz free energy, ε is the gradient energy coefficient, α is inversely proportional to the square of
the total chain length of the copolymer, and φ̄ = ∫
Ωφ(x,0)dx/|Ω| is the average concentration over the
domain Ω [30].
In equation (1), α[φ(x, t )− φ̄] term indicates the long-range interaction and plays an important part
in pattern formation. If α= 0, then equations (1) and (2) describe the process of the reduction in the total
interfacial energy of a microstructure as the classical CH equation.
The total system energy is given as
E (φ) =
∫
Ω
[
F (φ)+ ε2
2
∣∣∇φ∣∣2
]
dx+ α
2
∫
Ω
∫
Ω
G(x−y)
[
φ(x)− φ̄][
φ(y)− φ̄]
dydx , (3)
whereG is the Green’s function of −∆ in Ω with periodic boundary conditions, i.e., −∆G(x) = δ(x). Then,
the evolving equations (1) and (2) can be derived using the H−1 gradient flow for the free energy (3), and
equation (3) can be rewritten as
E (φ) =
∫
Ω
[
F (φ)+ ε2
2
∣∣∇φ∣∣2
]
dx+ α
2
∫
Ω
∣∣∇ψ∣∣2 dx ,
where ψ satisfies −∆ψ=φ− φ̄ with periodic boundary conditions [2].
Now, we will solve equations (1) and (2) on a trench domain. Figure 2 represents the physical do-
main (Ω) and boundaries (Γ1, Γ2). On Γ1, Dirichlet boundary condition for φ and homogeneous Neumannboundary condition for µ are used. On Γ2, the periodic boundary condition for both φ and µ is used.
The rest of this paper is organized as follows. In section 2, we describe the numerical method and so-
lution. In section 3, we present several numerical experiments. Conclusions are summarized in section 4.
.
Γ1
Γ1
Γ2Γ2
Ω
Γ
1
[φ : Dirichlet boundary, µ : Neumann boundary]
Γ
2
[φ, µ : Periodic boundary]
Figure 2. Illustration of the physical domain (Ω) with boundaries Γ1 and Γ2.
33001-2
Numerical investigation of local defectiveness control of diblock copolymer patterns
2. Numerical method
2.1. Discretization of domain
First, assume that we have a domain Ω as shown in figure 2. The domain Ω is defined by the angle
θ, reference values a and b for the trench wall as represented in figure 3. Here, the trench walls are
determined with symmetric points (−a,b), (a,b), (−a,−b), and (a,−b). Then, we cover the domain Ω by
a rectangular domain ΩR = (−Lx ,Lx )× (−Ly ,Ly ) with a Cartesian grid of mesh size h.
Now, we discretize the rectangular domain ΩR with the uniform mesh size h = 2Lx /Nx = 2Ly /Ny inboth x- and y -directions. Here, Nx and Ny are the number of grid points in x- and y -directions, respec-
tively. We denote cell-corner points as (xi , y j ) = (hi ,h j ) for i = 0, . . . , Nx and j = 0, . . . , Ny . Let φn
i j and µn
i jbe approximations of φ(xi , y j , tn) and µ(xi , y j , tn), respectively, where tn = n∆t and ∆t is the temporal
step size.
Lx−Lx
Ly
−Ly
x
y
0
(a, b)(−a, b)
(a,−b)(−a,−b)
Γ1
Γ1
Γ2Γ2
θ
ΩR
Γ
1
[φ : Dirichlet boundary, µ : Neumann boundary]
Γ
2
[φ, µ : Periodic boundary]
Figure 3. Illustration of the parameters over the whole domain ΩR = (−Lx ,Lx )× (−Ly ,Ly ). Γ1 and Γ2are boundary of the computational domain which is determined from θ. Trench walls are defined with
symmetric points (−a,b), (a,b), (−a,−b), and (a,−b).
2.2. Numerical solution
In this paper, we apply a non-linearly stabilized splitting scheme [31] to the nonlocal CH equations (1)
and (2) as follows:
φn+1
i j −φn
i j
∆t
= ∆hµ
n+1
i j −α
(
φn+1
i j − φ̄
)
, (4)
µn+1
i j =
(
φn+1
i j
)3 −φn
i j −ε2∆hφ
n+1
i j , (5)
where φ̄=∑
xi j ∈Ωh
φ0
i j
/∑
xi j ∈Ωh
1. Here,Ωh is the computational domain which is represented bymarkedcircle in figure 4.
To solve equations (4) and (5), we use the Gauss–Seidel iterative method. Given solution φn
i j , let
φn+1,0
i j =φn
i j be an initial guess. For eachm Ê 0, we generate the updated solution φn+1,m+1
i j and µn+1,m+1
i j
from φn+1,m
i j and µn+1,m
i j by
(
1
∆t
+α
)
φn+1,m+1
i j + 4
h2µ
n+1,m+1
i j =
φn
i j
∆t
+αφ̄+
µn+1,m+1
i−1, j +µn+1,m
i+1, j +µn+1,m+1
i , j−1 +µn+1,m
i , j+1
h2 , (6)
33001-3
D. Jeong, Y. Choi, J. Kim
φ : Dirichlet boundary, µ : Neumann boundary
Interior domain Ω
h
Periodic boundary
Figure 4. Inner grid points (•) which are on the computational domainΩh , Dirichlet (φ) and homogeneousNeumann (µ) boundary points (◦), and periodic boundary points (�).
[
−4ε2
h2 −3
(
φn+1,m
i j
)2
]
φn+1,m+1
i j +µn+1,m+1
i j =−φn
i j −2
(
φn+1,m
i j
)3
−ε2
φn+1,m+1
i−1, j +φn+1,m
i+1, j +φn+1,m+1
i , j−1 +φn+1,m
i , j+1
h2 . (7)
We continue the above iterations until l2-norm error between two successive approximations of φ is lessthan a given tolerance tol, that is, ∥∥φn+1,m+1 −φn+1,m∥∥
2 < tol.
2.3. Boundary conditions
For a numerical solution, we consider three different conditions at each boundary as follows:
• φi j = ‖φeq‖∞ for xi j ∈ Γ1.
• ∇hµi j = 0 for xi j ∈ Γ1.
• φ0 j =φNx+1, j and µ0 j =µNx+1, j for j = 1, . . . , Ny +1.
Here, ‖φeq‖∞ represents the maximum value of numerical solution at equilibrium state. In subsection2.4, we will describe more details for ‖φeq‖∞.Near the boundaries, we should use some special formulae. For example, let us consider the position
(xi , y j ) in figure 5. By the Dirichlet boundary condition, we already know the value at A and B . We define
φA
φB
βh
αh φij φi+1,j
φi,j−1
θ
(a, b)
(a)
µA
µB
ph
qh
µ
ij
µ
i+1,j
µ
i,j−1
µp
µq
θ
(a, b)
(b)
Figure 5. (a) Dirichlet condition and (b) Neumann condition on curved boundary.
33001-4
Numerical investigation of local defectiveness control of diblock copolymer patterns
∆Dxx and ∆Dy y as the discrete second derivatives near the boundary as follows:
∆Dxxφi j =
(
φi+1, j −φi j
h
− φi j −φA
αh
)(
αh +h
2
)−1
, (8)
∆Dy yφi j =
(
φB −φi j
βh
− φi j −φi , j−1
h
)(
βh +h
2
)−1
, (9)
where 0 < α, β < 1, and φA = φB = ‖φeq‖∞. Therefore, the discrete Laplacian operator near the bound-ary with Dirichlet condition is defined as ∆Dhφn+1
i j = ∆Dxxφ
n+1
i j +∆Dy yφ
n+1
i j . For other points, the discreteLaplacian is similarly defined. We also define the discrete Laplacian operator near the boundary with
Neumann boundary condition as ∆Nhµn+1
i j =∆Nxxµ
n+1
i j +∆Ny yµ
n+1
i j . Here,
∆Nxxµi j =
(
µi+1, j −µi j
h
− µi j −µq
αh
)(
αh +h
2
)−1
, (10)
∆Ny yµi j =
(
µp −µi j
βh
− µi j −µi , j−1
h
)(
βh +h
2
)−1
, (11)
where α and β are defined as in figure 5 (a). µp and µq are obtained by using a linear interpolation,
µp = pµi+1, j + (1−p)µi j and µq = qµi j + (1−q)µi , j−1 [see figure 5 (b)].
2.4. Optimal wavelength having minimum discrete total energy
We describe an algorithm for finding the total energy-minimizing wavelength [1, 4]. We define the
optimal wavelength L∗ as the period of the hexagonal lattice that has the lowest energy. In other words,
L∗ means the smallest length having the global minimum of the domain-scaled discrete total energy.
To calculate L∗, we solve equations (1) and (2) until a numerical equilibrium state is reached with the
given values of hx , ∆t , ε, and α. The initial condition is φ(x,0) = 0.1cos(2πx/Lx ) in Ω = (0,Lx ), where
Lx starts at 2hx and increases in steps of 2hx . Let M be the smallest even integer such that the domain-
scaled total energy E d/Lx is minimized. Construct the quadratic polynomial passing the three points(
(M −2)hx , E d/[(M −2)hx ]
), (Mhx , E d/(Mhx )
), and (
(M +2)hx , E d/[(M +2)hx ]
); then, define the op-
timal length L∗ as the critical point of the polynomial [see figure 6 (a)]. For more details, see refer-
ences [1, 4].
We define the numerical equilibrium state as that in which the consecutive error is not larger than the
prescribed tolerance, that is,max1ÉiÉNx (|φk+1
i −φk
i |)/∆t É 1.0×10−6. The maximum value of equilibrium
wave is defined as ‖φeq‖∞ = max1ÉiÉNx |φeqi | in figure 6 (b).
We replace the Dirichlet problem solution with ‖φeq‖∞ in this paper.
Ed
Lx
Lx
oprimal length
L
∗
LM−2 LM LM+2
0
‖φeq‖∞
L∗ x
φ
(a) (b)
Figure 6. (a) Schematic of algorithm to search for the optimal length L∗. Here, LM−2 = (M −2)hx , LM =
Mhx , and LM+2 = (M +2)hx . (b) Illustration of maximum value ‖φeq‖∞ of equilibrium wave.
33001-5
D. Jeong, Y. Choi, J. Kim
3. Numerical experiments
In this section, we perform a number of numerical tests. Throughout the numerical experiments,
unless otherwise specified, we use ε = 1/(20
p
2), α = 100, L∗ = 0.375, h = L∗/10, ∆t = 0.1h, ‖φeq‖∞ =
0.6134, and θ =π/4. We examine the evolution of a randomperturbation about the average concentration
φ̄= 0 on simple rectangle domainΩR = (−25L∗,25L∗)×(−15L∗,15L∗)withNx = 500,Ny = 300. The initial
condition is set to φ(x, y,0) = φ̄+0.01 rand(x, y). Here, rand(x, y) is a random number between −1 and 1.
Also, we use tol = 10−4 for stopping criterion of the Gauss-Seidel iteration.
3.1. Discrete total energy
We first define the discrete total energy as
E d(φn) =
Nx∑
i=1
Ny∑
j=1
{
h2F (φn
i j )+ ε2
2
[(
φn
i+1, j −φn
i j
)2 +
(
φn
i , j+1 −φn
i j
)2
]
+ α
2
[(
ψn
i+1, j −ψn
i j
)2 +
(
ψn
i , j+1 −ψn
i j
)2
]}
.
Note that ψ satisfies −∆ψ=φ− φ̄ with periodic boundary conditions [2].
Figure 7 shows the temporal evolution of the normalized discrete total energy E d(φn)/E d(φ0). In
figure 7, we can see that the normalized discrete total energy (which is denoted by the solid line) is
nonincreasing as time proceeds. Moreover, the four small figures represent the numerical solution at
times t = 30∆t , 100∆t , 700∆t , 2000∆t , respectively.
0 1 2 3 4 5 6 7
0.7
0.8
0.9
1.0
t
Ed(φn)
Ed(φ0)
Figure 7. Time evolution of the normalized discrete total energy E d(φn )/E d(φ0). Here, the small figures
indicate the concentration field φ at times t = 30∆t , 100∆t , 700∆t , 2000∆t , respectively.
3.2. The effect of channel width
To investigate the effect of the channel width, we fix a = 5L∗ with b = 2L∗ and b = 5L∗. Figures 8 (a)
and (b) show the temporal evolution of φ with the trench widths 2b = 4L∗ and 2b = 10L∗, respectively.
We can observe that the self-assembled pattern is completely defect-free and is aligned parallel to the
trench walls within the narrow trench area; all the defects reside in the wider regions on either side,
which is consistent with the experimental results [19].
33001-6
Numerical investigation of local defectiveness control of diblock copolymer patterns
(a)
(b)
t = 30∆t t = 100∆t t = 2000∆t
Figure 8. The effect of different trench width: (a) 4L∗ and (b) 10L∗. Evolution times are given below each
figure.
3.3. The effect of channel length
In this section, we simulate two cases with respect to a narrow channel length. For this test, we use
two different values a = 4.5L∗ and a = 9L∗ when we fix b = 4.5L∗. The numerical results can be seen in
figure 9. Similarly to the previous tests, we can see that the numerical solution in the narrow channel has
the defect-free lamella pattern.
(a)
(b)
t = 30∆t t = 100∆t t = 2000∆t
Figure 9. The effect of different trench length: (a) 9L∗ and (b) 18L∗. Evolution times are given below each
figure.
3.4. The effect of angle
To see the dynamics of the angle, we only change the angle as θ =π/3, π/4, and π/6with a = b = 5L∗.
Figure 10 represents the temporal evolution of pattern formation in channels with respect to the angle.
In all three cases, we observe that the numerical solution in the narrow channel has aligned lamella
patterns parallel to the trench walls. Also, within the narrow trench region, the self-assembled pattern is
defect-free unlike the side region where all the defects are located.
Figure 11 shows the profiles of φ at equilibrium state for each ε= 0.02, 0.03, and 0.04.
From the result in figure 11, as ε value is increasing, we observe that the amplitude of φ is smaller
and the wavelength is wider.
33001-7
D. Jeong, Y. Choi, J. Kim
(a)
(b)
(c)
t = 40∆t t = 100∆t t = 2000∆t
Figure 10. The effect of the angle: (a) θ = π/3, (b) π/4, and (c) π/6. Evolution times are given below each
figure.
3.5. Comparison of Dirichlet and Neumann boundary conditions
In this section, we compare numerical results by the Dirichlet and Neumann boundary conditions.
We have the comparison test on the same geometry shown in figure 10 (c). Figure 12 (a) shows the tem-
poral evolution of φ when applying Dirichlet and homogeneous Neumann conditions for φ and µ on the
boundary Γ1, respectively. Figure 12 (b) represents the temporal evolution of φ when applying homoge-neous Neumann condition forφ and µ on the boundary Γ1. As we expected, we obtain the lamella patternin the narrow channel when we apply the Dirichlet boundary condition on Γ1. However, the numericalsolution with the zero homogeneous boundary condition for φ has many defects in the narrow channel
and a contact angle of 90◦ on all boundaries.
0 0.1 0.2 0.286 0.346 0.396
−1
−0.5
0
0.5
1
x
φ ǫ = 0.02
ǫ = 0.03
ǫ = 0.04
Figure 11. Profiles of φ at the equilibrium state when ε = 0.02, 0.03, and 0.04. We reprinted from [35],
with permission from the Current Applied Physics.
33001-8
Numerical investigation of local defectiveness control of diblock copolymer patterns
(a)
(b)
t = 40∆t t = 100∆t t = 2000∆t
Figure 12. Time evolution ofφwhen applying (a) the Dirichlet and (b) the homogeneous Neumann bound-
ary condition for φ on Γ1. The other boundary conditions are used to be equal to the previous examples.Here, we denote the simulation time on the bottom of figures columns line.
4. Conclusions
In this paper, we numerically investigated the local defectiveness control of self-assembled diblock
copolymer patterns through appropriate substrate design. We used a nonlocal Cahn-Hilliard equation
for the phase separation dynamics of diblock copolymers. We discretized the nonlocal CH equation by
an unconditionally stable finite difference scheme on a tapered trench design and, in particular, we used
Dirichlet, Neumann, and periodic boundary conditions. The value at the Dirichlet boundary is obtained
from energy-minimizing wavelength. We solved the resulting discrete equations using the Gauss-Seidel
iterative method. We performed various numerical experiments to know the effect of the channel width,
length, and angle. Our simulation results were consistent with real experimental observations.
Acknowledgement
The first author (D. Jeong) was supported by a Korea University Grant. The corresponding author
(J.S. Kim) was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (NRF-2014R1A2A2A01003683).
References
1. Jeong D., Lee S., Choi Y., Kim J., Curr. Appl. Phys., 2015, 15, 799; doi:10.1016/j.cap.2015.04.033.
2. Choksi R., Peletier M.A., Williams J.F., SIAM J. Appl. Math., 2009, 69, 1712; doi:10.1137/080728809.
3. Fink Y., Urbas A.M., Bawendi M.G., Joannopoulos J.D., Thomas E.L., J. Lightwave Technol., 1999, 17, 1963;
doi:10.1109/50.802981.
4. Jeong D., Shin J., Li Y., Choi Y., Jung J.H., Lee S., Kim J., Curr. Appl. Phys., 2014, 14, 1263;
doi:10.1016/j.cap.2014.06.016.
5. Lee M., Cho B.K., Kim H., Yoon J.Y., Zin W.C., J. Am. Chem. Soc., 1998, 120, 9168; doi:10.1021/ja980654w.
6. Spencer R.K.W., Wickham R.A., Soft Matter, 2013, 9, 3373; doi:10.1039/C3SM27499C.
7. Yokojima Y., Shiwa Y., Phys. Rev. E, 2002, 65, 056308; doi:10.1103/PhysRevE.65.056308.
8. Gao J., Tang P., Yang Y., Soft Matter, 2013, 9, 69; doi:10.1039/C2SM26758F.
9. Kim T., Son S.K., Lee D.K., Ko M.J., Kim K., Curr. Appl. Phys., 2010, 10, 189; doi:10.1016/j.cap.2010.08.035.
10. Lin B., Zhang H., Tang P., Qiu F., Yang Y., Soft Matter, 2011, 7, 10076; doi:10.1039/C1SM06204B.
11. Yu Y., Tsai C., Curr. Appl. Phys., 2013, 13, 1128; doi:10.1016/j.cap.2013.03.003.
12. Zhang W., Dong G., Yang H., Sun J., Zhou J., Wang J., Colloid. Surface. A, 2009, 348, 45;
doi:10.1016/j.colsurfa.2009.06.029.
13. Jackson E.A., Hillmyer M.A., ACS Nano, 2010, 4, 3548; doi:10.1021/nn1014006.
33001-9
http://dx.doi.org/10.1016/j.cap.2015.04.033
http://dx.doi.org/10.1137/080728809
http://dx.doi.org/10.1109/50.802981
http://dx.doi.org/10.1016/j.cap.2014.06.016
http://dx.doi.org/10.1021/ja980654w
http://dx.doi.org/10.1039/C3SM27499C
http://dx.doi.org/10.1103/PhysRevE.65.056308
http://dx.doi.org/10.1039/C2SM26758F
http://dx.doi.org/10.1016/j.cap.2010.08.035
http://dx.doi.org/10.1039/C1SM06204B
http://dx.doi.org/10.1016/j.cap.2013.03.003
http://dx.doi.org/10.1016/j.colsurfa.2009.06.029
http://dx.doi.org/10.1021/nn1014006
D. Jeong, Y. Choi, J. Kim
14. Park S., Lee D.H., Xu J., Kim B., Hong S.W., Jeong U., Xu T., Russell T.P., Science, 2009, 323, 1030;
doi:10.1126/science.1168108.
15. Li S., Jiang Y., Chen J.Z.Y., Soft Matter, 2014, 10, 8932; doi:10.1039/c4sm01884b.
16. Müller M., Sun D.W., J. Phys.: Condens. Matter, 2015, 27, 194101; doi:10.1088/0953-8984/27/19/194101.
17. Pál E., Oszkó A., Mela P., Möller M., Dékány I., Colloid. Surface. A, 2008, 331, 213;
doi:10.1016/j.colsurfa.2008.08.015.
18. Kim B., Laachi N., Delaney K.T., Carilli M., Kramer E.J., Fredrickson G.H., J. Appl. Polym. Sci., 2014, 131, 40790;
doi:10.1002/app.40790.
19. Ruiz R., Ruiz N., Zhang Y., Sandstrom R.L., Black C.T., Adv. Mater., 2007, 19, 2157; doi:10.1002/adma.200602470.
20. Morkved T.L., Lu M., Urbas A.M., Ehrichs E.E., Science, 1996, 273, 931; doi:10.1126/science.273.5277.931.
21. Pelletier V., Adamson D.H., Register R.A., Chaikin P.M., Appl. Phys. Lett., 2007, 90, 163105; doi:10.1063/1.2723673.
22. Angelescu D.E., Waller J.H., Adamson D.H., Deshpande P., Chou S.Y., Register R.A., Chaikin P.M., Adv. Mater., 2004,
16, 1736; doi:10.1002/adma.200400643.
23. Huber P., J. Phys.: Condens. Matter, 2015, 27, 103102; doi:10.1088/0953-8984/27/10/103102.
24. Guo Y., Zhang J., Wang B., Wu H., Sun M., Pan J., Condens. Matter Phys., 2015, 18, 23801;
doi:10.5488/CMP.18.23801.
25. Sepe A., Hoppe E.T., Jaksch S., Magerl D., Zhong Q., Perlich J., Posselt D., Smilgies D.M., Papadakis C.M., J. Phys.:
Condens. Matter, 2011, 23, 254213; doi:10.1088/0953-8984/23/25/254213.
26. Kim S.O., Solak H.H., Stoykovich M.P., Ferrier N.J., de Pablo J.J., Nealey P.F., Nature, 2003, 424, 411;
doi:10.1038/nature01775.
27. Liu C.C., Ramirez-Hernandez A., Han E., Craig G.S.W., Tada Y., Yoshida H., Kang H.M., Ji S.X., Gopalan P.,
de Pablo J.J., Nealey P.F., Macromolecules, 2013, 46, 1415; doi:10.1021/ma302464n.
28. Segalman R.A., Yokoyama H., Kramerm E.J., Adv. Mater., 2001, 13, 1152;
doi:10.1002/1521-4095(200108)13:15<1152::AID-ADMA1152>3.0.CO;2-5.
29. Ohta T., Kawasaki K., Macromolecules, 1986, 19, 2621; doi:10.1021/ma00164a028.
30. Nishiura Y., Ohnishi I., Physica D, 1995, 85, 31; doi:10.1016/0167-2789(95)00005-O.
31. Eyre D.J., Mater. Res. Soc. Symp. Proc., 1998, 529, 39; doi:10.1557/PROC-529-39.
32. Hamley I.W., Macromol. Theory Simul., 2000, 9, 363;
doi:10.1002/1521-3919(20000801)9:7<363::AID-MATS363>3.0.CO;2-7.
33. Choksi R., Ren X., J. Stat. Phys., 2003, 113, 151; doi:10.1023/A:1025722804873.
34. Choksi R., Peletier M.A., Williams J.F., SIAM J. Appl. Math., 2009, 69, 1712; doi:10.1137/080728809.
35. Jeong D., Shin J., Li Y., Choi Y., Jung J.H., Lee S., Curr. Appl. Phys., 2014, 14, 1263; doi:10.1016/j.cap.2014.06.016.
Числове дослiдження керування локальною дефектнiстю
структур дiблок-кополiмерiв
Д. Йонг, Й. Чоi,Ю. Кiм
Факультет математики, Корейський унiверситет, Сеул 136-713, Республiка Корея
Проведено числове дослiдження керування локальною дефектнiстю самоорганiзованих структур дiблок-
кополiмерiв за допомогою вiдповiдної конструкцiї субстрату. Використовується нелокальне рiвняння
Кана-Хiлларда для динамiки фазового роздiлення дiблок-кополiмерiв. Здiйснено дискретизацiюнелокаль-
ного рiвняння з використанням безумовно стiйкої схеми скiнченної рiзницi на звуженiй канавцi зразка i,
зокрема, використано крайовi умови Дiрiхле,Ньюмана i перiодичнi граничнi умови. Значення при крайо-
вих умовах Дiрiхле отримано згiдно з рiвноважним ламеларним профiлем, що вiдповiдає енергетично-
му мiнiмуму. Ми розв’язуємо отриманi дискретнi рiвняння, використовуючи iтеративний метод Гаусса-
Зейделя. Проведено рiзнi числовi експерименти, такi як вплив ширини каналу, довжини каналу та кута
на динамiку фазового роздiлення. Результати симуляцiй вiдповiдають попереднiм експериментальним
спостереженням.
Ключовi слова: дiблок-кополiмери, нелокальне рiвняння Кана-Хiлларда, керування локальною
дефектнiстю
33001-10
http://dx.doi.org/10.1126/science.1168108
http://dx.doi.org/10.1039/c4sm01884b
http://dx.doi.org/10.1088/0953-8984/27/19/194101
http://dx.doi.org/10.1016/j.colsurfa.2008.08.015
http://dx.doi.org/10.1002/app.40790
http://dx.doi.org/10.1002/adma.200602470
http://dx.doi.org/10.1126/science.273.5277.931
http://dx.doi.org/10.1063/1.2723673
http://dx.doi.org/10.1002/adma.200400643
http://dx.doi.org/10.1088/0953-8984/27/10/103102
http://dx.doi.org/10.5488/CMP.18.23801
http://dx.doi.org/10.1088/0953-8984/23/25/254213
http://dx.doi.org/10.1038/nature01775
http://dx.doi.org/10.1021/ma302464n
http://dx.doi.org/10.1002/1521-4095(200108)13:15%3C1152::AID-ADMA1152%3E3.0.CO;2-5
http://dx.doi.org/10.1021/ma00164a028
http://dx.doi.org/10.1016/0167-2789(95)00005-O
http://dx.doi.org/10.1557/PROC-529-39
http://dx.doi.org/10.1002/1521-3919(20000801)9:7%3C363::AID-MATS363%3E3.0.CO;2-7
http://dx.doi.org/10.1023/A:1025722804873
http://dx.doi.org/10.1137/080728809
http://dx.doi.org/10.1016/j.cap.2014.06.016
Introduction
Numerical method
Discretization of domain
Numerical solution
Boundary conditions
Optimal wavelength having minimum discrete total energy
Numerical experiments
Discrete total energy
The effect of channel width
The effect of channel length
The effect of angle
Comparison of Dirichlet and Neumann boundary conditions
Conclusions
|