Magnetobreakdown oscillations of Nernst-Ettingshausen field in layered conductors

In the presented report, the Nernst-Ettingshausen effect in layered conductors is investigated. Considering a Fermi surface (FS) consisting of a slightly corrugated cylinder and two corrugated planes distributed periodically in the momentum space, the thermoelectric effects are considered under ge...

Full description

Saved in:
Bibliographic Details
Date:2016
Main Author: Galbova, O.
Format: Article
Language:English
Published: Інститут фізики конденсованих систем НАН України 2016
Series:Condensed Matter Physics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/154231
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Magnetobreakdown oscillations of Nernst-Ettingshausen field in layered conductors / O. Galbova // Condensed Matter Physics. — 2016. — Т. 19, № 3. — С. 33701: 1–7. — Бібліогр.: 28 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-154231
record_format dspace
spelling irk-123456789-1542312019-06-16T01:26:04Z Magnetobreakdown oscillations of Nernst-Ettingshausen field in layered conductors Galbova, O. In the presented report, the Nernst-Ettingshausen effect in layered conductors is investigated. Considering a Fermi surface (FS) consisting of a slightly corrugated cylinder and two corrugated planes distributed periodically in the momentum space, the thermoelectric effects are considered under general assumptions for the value of a magnetic breakdown probability. As a result of an external generalized force, the FS sheets in layered conductors with a multisheet FS appear to be so close that the charge carriers (as a result of magnetic breakdown) can move from one FS sheet to another. In addition, the distribution functions of the charge carriers and the magnetic breakdown oscillations of thermoelectrical field along the normal to the layer, under different values and orientations of the magnetic field, B, are calculated. It is shown that if the magnetic field is deflected from the xz-plane at an angle ϕ, the oscillation part of a thermoelectrical field along the normal to the layer under condition sinϕtanϑ À 1 is mainly determined with the Nernst-Ettingshausen effect. В цiй статтi дослiджується ефект Нерста-Еттiнгсгаузена в шаруватих провiдниках. Розглядаючи поверхню Фермi (ПФ), що складається зi слабо гофрованого цилiндра i двох гофрованих площин, розподiлених перiодично в iмпульсному просторi, вивчаються термоелектричнi ефекти, роблячи загальнi припущення для значень ймовiрностi магнiтного пробою. В результатi зовнiшньої узагальненої сили, шари ПФ в шаруватих провiдниках з багатошаровими ПФ виникають так близько один до одного, що носiї заряду (в результатi магнiтного пробою) можуть переходити з одного шару ПФ до iншого. Крiм того, обчислено функцiї розподiлу носiїв заряду та осциляцiї термоелектричного поля магнiтного пробою вздовж нормалi до шару для рiзних значень i орiєнтацiй магнiтного поля B. Показано, що якщо магнiтне поле вiдхиляється вiд xz-площини на кут ϕ, осциляцiйна частина термоелектричного поля вздовж нормалi до шару при умовi sinϕtanϑ À 1 визначається в основному ефектом Нерста-Еттiнгсгаузена. 2016 Article Magnetobreakdown oscillations of Nernst-Ettingshausen field in layered conductors / O. Galbova // Condensed Matter Physics. — 2016. — Т. 19, № 3. — С. 33701: 1–7. — Бібліогр.: 28 назв. — англ. 1607-324X DOI: 10.5488/CMP.19.33701 PACS: 72.15.Gd, 74.70.Kn arXiv:1609.04710 http://dspace.nbuv.gov.ua/handle/123456789/154231 en Condensed Matter Physics Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In the presented report, the Nernst-Ettingshausen effect in layered conductors is investigated. Considering a Fermi surface (FS) consisting of a slightly corrugated cylinder and two corrugated planes distributed periodically in the momentum space, the thermoelectric effects are considered under general assumptions for the value of a magnetic breakdown probability. As a result of an external generalized force, the FS sheets in layered conductors with a multisheet FS appear to be so close that the charge carriers (as a result of magnetic breakdown) can move from one FS sheet to another. In addition, the distribution functions of the charge carriers and the magnetic breakdown oscillations of thermoelectrical field along the normal to the layer, under different values and orientations of the magnetic field, B, are calculated. It is shown that if the magnetic field is deflected from the xz-plane at an angle ϕ, the oscillation part of a thermoelectrical field along the normal to the layer under condition sinϕtanϑ À 1 is mainly determined with the Nernst-Ettingshausen effect.
format Article
author Galbova, O.
spellingShingle Galbova, O.
Magnetobreakdown oscillations of Nernst-Ettingshausen field in layered conductors
Condensed Matter Physics
author_facet Galbova, O.
author_sort Galbova, O.
title Magnetobreakdown oscillations of Nernst-Ettingshausen field in layered conductors
title_short Magnetobreakdown oscillations of Nernst-Ettingshausen field in layered conductors
title_full Magnetobreakdown oscillations of Nernst-Ettingshausen field in layered conductors
title_fullStr Magnetobreakdown oscillations of Nernst-Ettingshausen field in layered conductors
title_full_unstemmed Magnetobreakdown oscillations of Nernst-Ettingshausen field in layered conductors
title_sort magnetobreakdown oscillations of nernst-ettingshausen field in layered conductors
publisher Інститут фізики конденсованих систем НАН України
publishDate 2016
url http://dspace.nbuv.gov.ua/handle/123456789/154231
citation_txt Magnetobreakdown oscillations of Nernst-Ettingshausen field in layered conductors / O. Galbova // Condensed Matter Physics. — 2016. — Т. 19, № 3. — С. 33701: 1–7. — Бібліогр.: 28 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT galbovao magnetobreakdownoscillationsofnernstettingshausenfieldinlayeredconductors
first_indexed 2025-07-14T04:40:52Z
last_indexed 2025-07-14T04:40:52Z
_version_ 1837595941348048896
fulltext Condensed Matter Physics, 2016, Vol. 19, No 3, 33701: 1–7 DOI: 10.5488/CMP.19.33701 http://www.icmp.lviv.ua/journal Magnetobreakdown oscillations of Nernst-Ettingshausen field in layered conductors O. Galbova∗ Faculty of Natural Sciences and Mathematics, Institute of Physics, P.O. Box 162 1001 Skopje, Republic of Macedonia Received February 23, 2016, in final form April 25, 2016 In the presented report, the Nernst-Ettingshausen effect in layered conductors is investigated. Considering a Fermi surface (FS) consisting of a slightly corrugated cylinder and two corrugated planes distributed periodically in the momentum space, the thermoelectric effects are considered under general assumptions for the value of a magnetic breakdown probability. As a result of an external generalized force, the FS sheets in layered con- ductors with a multisheet FS appear to be so close that the charge carriers (as a result of magnetic breakdown) can move from one FS sheet to another. In addition, the distribution functions of the charge carriers and the magnetic breakdown oscillations of thermoelectrical field along the normal to the layer, under different values and orientations of the magnetic field, B , are calculated. It is shown that if the magnetic field is deflected from the xz-plane at an angle ϕ, the oscillation part of a thermoelectrical field along the normal to the layer under condition sinϕ tanϑÀ 1 is mainly determined with the Nernst-Ettingshausen effect. Key words: layered conductor, Fermi surface, magnetic breakdown oscillations PACS: 72.15.Gd, 74.70.Kn 1. Introduction The electronic phenomena that occur in degenerate conductors, in the presence of strong magnetic fields, are highly dependent on the electron energy spectrum. The experimental study of these phe- nomena enables us to gain important information on the topology of the Fermi surface (FS) — a ba- sic/fundamental characteristic of the electron energy spectrum. Theoretical investigations of the metal magnetic permeability, under general assumptions for the type of energy spectrum of the conduction electrons (taken a priori as the known one), were done by Lifshicz and Kosevich [1]. It was shown that the period of oscillations of magnetization in a quantized magnetic field, B , as a function 1/B is propor- tional to the extreme FS section. The investigation of these oscillations, under different orientations of a magnetic field, allows for a complete determination of the form of the Fermi surface [2]. The analo- gous information of the FS could be gained from the investigation of the Shubnikov de Haas magneto- resistance oscillations [3, 4] in degenerate conductors [5]. The investigation of galvanomagnetic phenom- ena in a strong magnetic field (classical case), where the circular frequency ωc = eH/(m∗c) is much bigger than the relaxation frequency, 1/τ, enables one to determine the FS topology structure [6, 7]. In the low-dimensional conductors, the oscillation effects are numerous. Experimental observations (1998) performed in the Shegoleva (Chernogolovka) laboratory, at mag- netic field strengths of up to 14 T, show the existence of resistance oscillations with a varying angle be- tween the magnetic field, ~H , and the normal to the layer, ~n, in the layered organic conductor β-(BEDT- TTF)2JBr2 [8, 9]. Then, the angle oscillations were observed in multilayered conductors of organic origin (see, for example the articles [10–19]) and in different quasi-two-dimensional conductors. This oscilla- tion effect is essentially expressive under the tanϑ À 1 condition, where the cross section of the FS with the plane pB = (~p~B)/B = const is strongly extended along the axis pz = ~p~n, and the velocity of ∗ E-mail: galbova@pmf.ukim.mk © O. Galbova, 2016 33701-1 http://dx.doi.org/10.5488/CMP.19.33701 http://www.icmp.lviv.ua/journal O. Galbova the electrons, vz , along the trajectories in the momentum space ε(~p) = const, pB = const, frequently changes the sign. Under certain orientations of the magnetic field, the mean value of the velocity vz may be small enough to cause a sharp increase of the current resistance which is repeated periodically as tanϑ functions. Out of the period of these oscillations, an important information on the form of FS could be gained [20–23]. The inverse problem, i.e., calculation of the electron energy spectrum, is most effec- tively performed using experimental investigations of thermomagnetic effects in a strong magnetic field. An enormous number of the theoretical and experimental works are devoted to the investigation of the Nernst-Ettingshausen effect (see, for example [24–26]). 2. Formulation of the problem In the present report we consider the linear response of an electronic system to the perturbation by an electric field, ~E , and temperature gradient, ∂T /∂r : Ji =σi j E j −αi j ∂T ∂x j (2.1) in layered conductors. The quasi-two-dimensional electronic energy spectrum of charge carriers is taken in a general form: ε(p) = ∞∑ n=0 εn(px , py )cos [ anpz ħ +αn(px , py ) ] , (2.2) εn(−px ,−py ) = εn(px , py ), αn(−px ,−py ) =αn(px , py ). In the above equation, a is the separation between the layers, ħ is Plank constant divided by 2π, while εn(px , py ) and αn(px , py ) are arbitrary functions. The quasi-two-dimensionality parameter of the elec- tronic energy spectrum, η, is defined as a ratio between themaximum value of the electron velocity along the normal of the layers: vz =− ∞∑ n=1 an ħ εn(px , py )sin [ anpz ħ +αn(px , py ) ] É ηvF (2.3) and the Fermi velocity vF with which the electrons move within the layer. In the absence of the current density, the electric field generated by the temperature gradient, is given by Ei = %i kαk j ∂T ∂x j , (2.4) where %i k , σi j and αi j are the resistivity tensor, conductivity tensor and thermoelectricity tensor, re- spectively: σi j =− ∫ σi j (ε) ∂ f0 ∂ε dε, (2.5) αi j =− ∫ σi j (ε) ε−µ T ∂ f0(ε) ∂ε dε. (2.6) Here, f0(ε) = [ 1+exp (ε−µ T )]−1 is the equilibrium Fermi distribution function for the charge carriers, µ is the chemical potential of the electrons, and T is temperature in units of energy. By employing the kinetic equation solution for the distribution function of the charge carriers f (~p) = f0(ε)−eE jψ j ∂ f0(ε) ∂ε in the τ-approximation for the collision integral, it is possible to calculate the conductivity tensor σi j (ε): σi j (ε) = 2e3B c(2πħ)3 ∫ dpB T∫ 0 dt vi (t )  t∫ λ1 dt ′v j (t ′)+exp ( λ1− t τ ) ψ j (λ1, pB ) = 〈viψ j 〉, (2.7) 33701-2 Magnetobreakdown oscillations of Nernst-Ettingshausen field in layered conductors where the function ψ j (λ1, pH ) = λ1∫ −∞ v j (t )exp ( t −λ1 τ ) dt (2.8) describes the complex motion of the charge carriers along the magnetic breakdown trajectories, with probabilities for a magnetic breakdown w and w ′ in the regions A and B (figure 1), respectively, at the moments λ1, λ2, λ3, (λ1 being the closest to the moment when electrons move from a given sheet of FS to the neighboring one, and also λk > λk+1). The tensor σ ′ i j (ε) coincides with the tensor σi j (ε) if in the expression for σ′ i j (ε), τ is substituted by τε. As a result of an external generalized force, the FS sheets in the layered conductors with a multisheet FS appear to be close enough so that the charge carriers (as a result of magnetic breakdown) can move from one FS sheet to another, and their motion along the magnetic-breakdown trajectories becomes com- plex. The magnetic breakdown oscillations of the current resistance normal to the layer of conductors with a multisheet FS, composed of a weakly corrugated cylinder and two corrugated planes, is period- ically repeated in the momentum space, were theoretically investigated in the work [27]. It was shown that the period of the magnetic breakdown oscillations of the kinetic coefficients contains important in- formation for both the form of the FS planes (sheets) and the mutual positions of the FS planes (sheets) in the momentum space. Furthermore, only the limiting cases when the probability for magnetic break- down, w , is negligibly small and when w is close to 1, are considered. In this report we consider the thermoelectric effects under a general assumption for the value of the magnetic breakdown probability. Let the Fermi surface be composed of a cylinder and two planes, weakly corrugated along the pz axis, and let the px axis be normal to the plane, figure 1. When there are several groups of charge carriers, each of them contributes to the kinetic coefficient, so that 〈viψ j 〉 = 〈viψ j 〉1+〈viψ j 〉2+〈viψ j 〉3 +〈viψ j 〉4, (2.9) where the terms 〈viψ j 〉 1 +〈viψ j 〉 3 define the current due to the electrons on the quasi-planar FS sheets and the terms 〈viψ j 〉 2 + 〈viψ j 〉 4 give the contribution of the conduction electrons belonging to the FS section in the form of a corrugated cylinder. 1 3 2 4 Figure 1. Projections of the FS and the magnetic breakdown electron trajectories in the magnetic field ~H = (H sinϑ,0, H cosϑ) on the plane px py . 33701-3 O. Galbova 3. Calculations In [28], a case was considered where the probabilities for magnetic breakdown w and w ′ are essen- tially different, and the electron that was tunneled from the quasi FS plane sheet to the cylinder FS sheet, after performing a rotation along the cross-section (as a result of magnetic breakdown) comes back to the previous quasi FS plane sheet. Here, we consider the case where in the magnetic field ~B = (B sinϑ,0,B cosϑ) the distance between the regions A and B (when the FS sheets are at the closest distance along the pz axis) is equal to an integer, N , of the unit cells in the momentum space, figure 1, i.e., tanϑ= 2πNħ aDp . (3.1) In the above equation, Dp is the diameter of a cylinder along the px axis. In this case, the probability w ′ coincides with the probability w on all cross-sections of the FS and the plane pB = const, and the elec- tron could move from one quasi-FS plane sheet to another quasi-FS plane sheet even in cases where the corrugation along the px axis is pronounced. Non-equilibrium distribution functions of the electrons on the FS sheet 1 after the magnetic break- down in the region A: φ1(λ1+0) = λ1∫ −∞ dt exp ( t −λ1 τ ) (~E~v)1 E (3.2) are connected to the distribution functions of the electrons on the same FS sheet but prior to themagnetic breakdown, φ1(λ1 −0), with the following equation: φ1(λ1+0) = (1−w)φ1(λ1−0)+wφ2(λ1−0), (3.3) and with the functions φ1 and φ2 at the previous moment λ2 φ1(λ1+0) = (1−w) [ A1+exp (−P τ ) φ1(λ2+0) ] +w [ A2+exp (−P ′ τ ) φ2(λ2+0) ] . (3.4) Similarly, the equation (3.4) at the earlier moments λ2, λ3, λ4, gain the forms: φ2(λ2+0) = (1−w) [ A4+exp (−P ′ τ ) φ4(λ3+0) ] +w [ A3+exp (−P τ ) φ3(λ3+0) ] , (3.5) φ3(λ3+0) = (1−w) [ A3+exp (−P τ ) φ3(λ4+0) ] +w [ A4+exp (−P ′ τ ) φ4(λ4+0) ] , (3.6) φ4(λ4+0) = (1−w) [ A2+exp (−P ′ τ ) φ2(λ5+0) ] +w [ A1+exp (−P τ ) φ1(λ5 +0) ] , (3.7) φ1(λ5+0) = (1−w) [ A1+exp (−P τ ) φ1(λ6+0) ] +w [ A2+exp (−P ′ τ ) φ2(λ6 +0) ] . (3.8) In the above equations, the functions Ai = λ j∫ λ j +1 dt exp ( t −λ j τ ) (~E~v)i E , i = 1,2,3,4, (3.9) in the non-collision range (τ→∞) are equal to the drifting of the electrons along an electrical field for a time period (λ j −λ j+1) between two instants of the magnetic breakdown. This period estimated with accuracy to small corrections proportional to the quasi-two-dimensionality parameter of the electronic energy spectrum, η, is independent of λ j , and corresponds to the period P of the electron drifting on the FS sheets 1 and 3, i.e., to a half-period P ′ of the electron drifting along the closed sections of the corrugated cylinder. 33701-4 Magnetobreakdown oscillations of Nernst-Ettingshausen field in layered conductors One can easily find that the equation (3.8) corresponds to the equation (3.4) for some previous mag- netic breakdownmoment. Going on with the above recursive relation, one moves back in time and, since the functions on the right-hand side of the equations (3.3)–(3.8) decrease with each recursion (accumula- tion of the effect of multipliers smaller than 1), they become sufficiently small after many recursive steps. As a result, the functions φi on the left-hand side of the equations (3.4)–(3.7), proportional to A j , form a geometric progression which can be easily calculated [25]. After several algebraic manipulations, one comes to φ1(λ1+0) = (1−w)A1+w A2 1−h1 + ∞∑ n=0 hn 1 gφ2(λn+2 +0), (3.10) where h1 = (1−w)exp(−P/τ), g = w exp(−P ′/τ). Substituting the function φ4(λ4 +0) in the equation (3.5) and using the expression (3.7), one gets φ2(λ2+0) = (1−w)(A4+h A2)+w(A3+h A1)+h2φ2(λ4 +0)+ g1φ3(λ3+0)+hg1φ1(λ5+0), (3.11) where g1 = w exp(−P/τ), h = (1−w)exp(−P ′/τ). Using the expression (3.7), the connection between the function φ3(λ3 +0): φ3(λ3 +0) = (1−w)A3+w A4 1−h1 + ∞∑ n=0 hn 1 gφ4(λn+4 +0), (3.12) and the function φ2 is as follows: φ3(λ3 +0) = (1−w)A3+w A4 1−h1 +hg (1−w)A2+w A1 1−h1 + ∞∑ n=0 hn 1 g hφ2(λn+5 +0)+ ∞∑ n=0 hn 1 g g1φ1(λn+5 +0). (3.13) By substituting the functionsφ1 andφ3 from the equations (3.12)–(3.13) in the equation (3.11), we gain the functional expression for only one functionφ2 whose solution under conditionsw À γ1 = exp(P/τ)− 1 and w À γ= exp(P ′/τ)−1 gains a simple form: φ2(λ2+0) = A1+ A2+ A3+ A4 2(γ+γ1) , (3.14) φ1(λ1+0) = (1−w)A1+w A2 w +γ1 + w w +γ1 φ2(λ2+0). (3.15) The functions φ3(λ3+0) and φ4(λ4+0) coincide with the functions φ1(λ1+0) and φ2(λ2+0) if we inter- change the places therein: A1→ A3, A2→ A4. Now, if we know the functions φi , it is easy to calculate all the components of the conductivity and thermoelectricity tensors under different values and orientations of the magnetic field ~B = (B cosϕsinϑ,B sinϕsinϑ,B cosϑ). 4. Discussion and conclusion The basic contribution to the average value of an electron velocity, vz , that is moving along a strongly extended trajectories, under condition tanϑÀ 1, is given by small areas in the vicinity of the stationary phases, where dpz dt = eB c sinϑ(vx sinϕ− vy cosϕ) = 0. (4.1) On the closed sections of a corrugated cylinder, there are at least two points of this kind. Under certain orientations of the magnetic field with respect to the crystal axis of the single crystal conductor, the con- tribution from these points to the average value of the electron velocity, vz , can be cancelled. This leads to a sharp increase of the current resistance normal to the layer, %zz , whose asymptotic behavior under η→ 0 is equal to 1/σzz . In the magnetic field normal to the y -axis, the components of the conductivity tensor gain the form: σzz = σ0η 2 tanϑ { β(1+ sinαDp )+2β1(1+ sinαδpx )+β2 [ 2cosα(Dp +δpx +∆p ) + sinα(Dp +2δpx +2∆p )− sinα(Dp +δpx ) ]+β3 [cosα(δpx +∆p ) −sinα∆p + sinα(Dp +2δpx +∆p )+cosα(Dp +∆p ) ]} . (4.2) 33701-5 O. Galbova Here, σ0 is the electro-conductivity of the quasi-two-dimensional conductor along the layer in the ab- sence of amagnetic field;Dp is the diameter of a cylinder along the px axis;∆p = pminx2 −pminx1 = pminx3 −pminx2 is the minimum distance between the cylinder and the plane FS sheets; α = (a/ħ) tanϑ; the quantities β, β1, β2 and β3 are all ∼ 1 and depend on a concrete type of the electronic energy spectrum. In the formula (4.2), the non-oscillation terms of the diagonal electro-conductivity components σzz are not in- cluded: σzz =− 2e2 (2πħ)3 ∫ dε ∂ f0(ε) ∂ε ∫ dpB ∣∣∣∣ tB c ∣∣∣∣ (v̄z1 + v̄z2 + v̄z3 + v̄z4)2 2(γ+γ1) > 0. (4.3) The angular oscillation of a thermoelectric filed along the normal to the layer, Ez : Ez = π2T 3e %zk ∂σk j ∂µ ∂T ∂x j (4.4) gains a multiplier proportional to tanϑ as a result of the differention with respect to µ of the quickly oscillating members in σ′ i j (ε) under condition tanϑÀ 1. It means that the thermoelectric filed, Ez , as a function of tanϑ, can change the sign even in the case of a longitudinal thermoelectrical effect when the temperature gradient is directed along the normal of the layer. When the magnetic field is deflected from the xz-plane by the angle ϕ different from zero, the drift of the charge carriers along the y -axis is v̄y = v̄z sinϕ tanϑ, and, when sinϕ tanϑÀ 1, the oscillation part of the thermoelectrical field Ez : Ez = π2T 3e τ τη 1 σzz ∂σosczz ∂µ ( ∂T ∂z + sinϕ tanϑ ∂T ∂y ) (4.5) is mainly determined with the Nernst-Ettingshausen effect. The magnetic breakdown oscillations could not exist if sinϕ � 1 because in this case the relation (4.1), which is an imperative requirement for the existence of stationary phase points on the FS plane sheets, is not fulfilled. Under the following conditions: γ0 ¿ cosϑ ¿ sinϕ ¿ 1, (where γ0 is of the same order of magnitude with the quantities γ1 and γ2 under ϑ = 0), the stationary phase points on the electronic trajectories, under small deflection of the magnetic field from the xz-plane, are insignificantly dislocated. This allows us to use the equation (4.2) to calculate the angular oscillation of a thermoelectrical filed along the normal to the layer, Ez . There are also angular oscillations of the thermoelectrical filed along the layer plane under condition tanϑÀ 1, but their amplitudes are negligibly small (proportional to η2 ) compared to the dominant background, smoothly changing with the variation of the angle between the magnetic field and the layer plane. References 1. Lifshitz I.M., Kosevic A.M., Dokl. Akad. Nauk S.S.S.R., 1954, 96, 963 (in Russian). 2. Lifshitz I.M., Pogorelov A.V., Dokl. Akad. Nauk S.S.S.R., 1954, 96, 1143 (in Russian). 3. Shubnikov L.V., de Haas W.J., Leiden Commun., 1930, 207a, 17. 4. Shubnikov L.V., de Haas W.J., Nature, 1930, 126, 500; doi:10.1038/126500a0. 5. Lifshitz I.M., Kosevic A.M., Zh. Eksp. Teor. Fiz., 1958, 33, 88 (in Russian). 6. Lifshitz I.M., Peschansky V.G., Zh. Eksp. Teor. Fiz., 1959, 35, 1251 (in Russian). 7. Lifshitz I.M., Peschansky V.G., Zh. Eksp. Teor. Fiz., 1960, 38, 188 (in Russian). 8. Kartsovnik M.V., Laukhin V.N., Nizhankovskii V.I., Ignat’ev A.A., JETP Lett., 1988, 47, 363. 9. Kartsovnik M.V., Kononovich P.A., Laukhin V.N., Shchegolev I.F., JETP Lett., 1988, 48, 541. 10. Wosnitza J., Fermi Surfaces of Low-Dimensional Organic Metals and Superconductors, Springer-Verlag, Berlin, 1996. 11. Kartsovnik M.V., Laukhin V.N., J. Phys. I France, 1996, 6, 1753; doi:10.1051/jp1:1996187. 12. Peschansky V.G., Phys. Rep., 1997, 288, 305; doi:10.1016/S0370-1573(97)00030-6. 13. Ishiguro T., Yamaji K., Sato G., Organic Superconductors, Springer-Verlag, Berlin, Heidelberg, 1998. 14. Singelton J., Rep. Prog. Phys., 2000, 63, 1111; doi:10.1088/0034-4885/63/8/201. 15. Kartsovnik M.V., Chem. Rev., 2004, 104, 5737; doi:10.1021/cr0306891. 16. Kartsovnik M.V., Peschansky V.G., Low Temp. Phys., 2005, 31, 185; doi:10.1063/1.1884422. 17. Uji S., Brooks J.S., In: The Physics of Organic Superconductors and Conductors, Lebed A.G. (Ed.), Springer-Verlag, Berlin, Heidelberg, 2008, 89–127. 33701-6 http://dx.doi.org/10.1038/126500a0 http://dx.doi.org/10.1051/jp1:1996187 http://dx.doi.org/10.1016/S0370-1573(97)00030-6 http://dx.doi.org/10.1088/0034-4885/63/8/201 http://dx.doi.org/10.1021/cr0306891 http://dx.doi.org/10.1063/1.1884422 Magnetobreakdown oscillations of Nernst-Ettingshausen field in layered conductors 18. Kartsovnik M.V., In: The Physics of Organic Superconductors and Conductors, Lebed A.G. (Ed.), Springer-Verlag, Berlin, Heidelberg, 2008, 185–247. 19. Carrington A., Rep. Prog. Phys., 2011, 74, 124507; doi:10.1088/0034-4885/74/12/124507. 20. Kirichenko O.V., Krstovska D., Peschansky V.G., Zh. Eksp. Teor. Fiz., 2004, 99, 246 (in Russian). 21. Kirichenko O.V., Peschansky V.G., Hasan R., Low Temp. Phys., 2006, 32, 1516; doi:10.1063/1.2400694. 22. Kirichenko O.V., Peschansky V.G., Hasan R., Zh. Eksp. Teor. Fiz., 2007, 132, 183 (in Russian). 23. Galbova O., Kirichenko O.V., Peschansky V.G., Low Temp. Phys., 2009, 35, 810; doi:10.1063/1.3253405. 24. Luk’yanchuk I.A., Varlamov A.A., Kavokin A.V., Phys. Rev. Lett., 2011, 107, 016601; doi:10.1103/PhysRevLett.107.016601. 25. Choi E.S., Brooks J.S., Qualls J.S., Phys. Rev. B, 2002, 65, 205119; doi:10.1103/PhysRevB.65.205119. 26. Behnia K., Aubin H., Rep. Prog. Phys., 2016, 79, No. 4, 046502; doi:10.1088/0034-4885/79/4/046502. 27. Galbova O., Kirichenko O.V., Peschansky V.G., Low Temp. Phys., 2013, 39, 602; doi:10.1063/1.4816118. 28. Galbova O., Peschansky V.G., Stepanenko D.I., Low Temp. Phys., 2015, 41, 537; doi:10.1063/1.4927316. Осциляцiї магнiтного пробою поля Нерста-Еттiнгсгаузена в шаруватих провiдниках O. Галбова Факультет природничих наук i математики, Iнститут фiзики, P.O. Box 162 1001 Скоп’є, Республiка Македонiя В цiй статтi дослiджується ефект Нерста-Еттiнгсгаузена в шаруватих провiдниках. Розглядаючи поверх- ню Фермi (ПФ), що складається зi слабо гофрованого цилiндра i двох гофрованих площин, розподiлених перiодично в iмпульсному просторi, вивчаються термоелектричнi ефекти, роблячи загальнi припущен- ня для значень ймовiрностi магнiтного пробою. В результатi зовнiшньої узагальненої сили, шари ПФ в шаруватих провiдниках з багатошаровими ПФ виникають так близько один до одного, що носiї заряду (в результатi магнiтного пробою) можуть переходити з одного шару ПФ до iншого. Крiм того, обчислено функцiї розподiлу носiїв заряду та осциляцiї термоелектричного поля магнiтного пробою вздовж нормалi до шару для рiзних значень i орiєнтацiй магнiтного поля B . Показано, що якщо магнiтне поле вiдхиля- ється вiд xz-площини на кут ϕ, осциляцiйна частина термоелектричного поля вздовж нормалi до шару при умовi sinϕ tanϑÀ 1 визначається в основному ефектом Нерста-Еттiнгсгаузена. Ключовi слова:шаруватий провiдник, поверхня Фермi, осциляцiї магнiтного пробою 33701-7 http://dx.doi.org/10.1088/0034-4885/74/12/124507 http://dx.doi.org/10.1063/1.2400694 http://dx.doi.org/10.1063/1.3253405 http://dx.doi.org/10.1103/PhysRevLett.107.016601 http://dx.doi.org/10.1103/PhysRevB.65.205119 http://dx.doi.org/10.1088/0034-4885/79/4/046502 http://dx.doi.org/10.1063/1.4816118 http://dx.doi.org/10.1063/1.4927316 Introduction Formulation of the problem Calculations Discussion and conclusion