Projectivity and flatness over the graded ring of normalizing elements

Let k be a field, H a cocommutative bialgebra, A a commutative left H-module algebra, Hom(H,A) the $k$-algebra of the k-linear maps from H to A under the convolution product, Z(H,A) the submonoid of Hom(H,A) whose elements satisfy the cocycle condition and G any subgroup of the monoid Z(H,A). We giv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
1. Verfasser: Guédénon, T.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2015
Schriftenreihe:Algebra and Discrete Mathematics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/154259
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Projectivity and flatness over the graded ring of normalizing elements / T. Guédénon // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 172-192 . — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Let k be a field, H a cocommutative bialgebra, A a commutative left H-module algebra, Hom(H,A) the $k$-algebra of the k-linear maps from H to A under the convolution product, Z(H,A) the submonoid of Hom(H,A) whose elements satisfy the cocycle condition and G any subgroup of the monoid Z(H,A). We give necessary and sufficient conditions for the projectivity and flatness over the graded ring of normalizing elements of A. When A is not necessarily commutative we obtain similar results over the graded ring of weakly semi-invariants of A replacing Z(H,A) by the set χ(H,Z(A)H) of all algebra maps from H to Z(A)H, where Z(A) is the center of A.