Characterization of vaccine and field IBDV strains in Ukraine for proper vaccine selection for disease prevention

Infectious bursal disease virus (IBDV) causes a highly contagious disease in young chickens and is distributed worldwide. Primary viral antigen is VP2. The VP2 gene contains hypervariable re-gion (VP2 HRV). Mutations in this region lead to emergence of antigenically different IBDV strains. For IBDV...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Pastyria, A.S., Budzanivska, I.G., Polischuk, V.P.
Формат: Стаття
Мова:English
Опубліковано: Інститут молекулярної біології і генетики НАН України 2018
Назва видання:Вiopolymers and Cell
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154260
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Characterization of vaccine and field IBDV strains in Ukraine for proper vaccine selection for disease prevention / A.S. Pastyria, I.G. Budzanivska, V.P. Polischuk // Вiopolymers and Cell. — 2018. — Т. 34, № 1. — С. 24-31. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-154260
record_format dspace
spelling irk-123456789-1542602019-07-07T12:38:24Z Characterization of vaccine and field IBDV strains in Ukraine for proper vaccine selection for disease prevention Pastyria, A.S. Budzanivska, I.G. Polischuk, V.P. Molecular and Cell Biotechnologies Infectious bursal disease virus (IBDV) causes a highly contagious disease in young chickens and is distributed worldwide. Primary viral antigen is VP2. The VP2 gene contains hypervariable re-gion (VP2 HRV). Mutations in this region lead to emergence of antigenically different IBDV strains. For IBDV prevention, vaccination is used. The efficacy of vaccination depends on the ge-netic closeness of field and vaccine strains. Aim of the study was to analyze nucleotide sequence of different vaccine and field strains of IBDV circulating in Ukrainian poultry farms. Methods. In this study 11 vaccine strains and 16 field isolates were used. RNA was extracted using a magnetic separation method, reverse transcription was carried out and PCR was performed using specific primers to the VP2 gene. Obtained amplicons were used for sequencing. Phylogenetic and amino acid analysis was performed with MEGA 6 software. Results. 11 vaccine strains formed 5 phy-logenetic clusters. Cluster I represented strains GM97, 228E and MB/20. Cluster II contained mild vaccine strains LC-75 and D78. Intermediate strains Winterfield-2512 and Lukert formed cluster III. ‘Hot’ vaccine strains MB and MB/3 formed cluster IV. Cluster V was represented by strains MB/5 and V877. After addition of 16 Ukrainian field strains the tree structure remained the same. 8 isolates clustered together with ‘hot’, 5 – with intermediate, and 3 – with mild vaccine strains. Amino acid analyses confirmed antigenic closeness among vaccine and field strains of the same cluster. Conclusion. The obtained data can be used for the vaccine selection for IBD pre-vention in each particular poultry farm of Ukraine. Вірус інфекційної бурсальної хвороби (ІБХ) викликає висококонтагіозне захворювання курчат та поширений у всьому світі. Головним антигеном є білок VP2. Ген VP2 містить гіперваріабельний регіон, мутації в якому призводять до появи нових антигенних варіантів вірусу ІБХ. Для попередження інфікування використовують вакцинацію, ефективність якої залежить від генетичної спорідненості вакцинних та польових штамів вірусу. Мета. проаналізувати нуклеотидну послідовність різних вакцинних та польових штамів вірусу ІБХ, поширених в господарствах України. Методи. У дослідженні було використано 11 вакцинних та 16 польових штамів вірусу ІБХ. РНК виділяли методом магнітної сорбції, здійснювали реакцію зворотної транскрипції та постановку ПЛР із специфічними праймерами до гену VP2. Амплікони секвенували, нуклеотидну та амінокислотну послідовність аналізували за допомогою програми MEGA 6. Результати. 11 вакцинних штамів формували 5 кластерів. Кластер І містив штами GM97, 228E та MB/20. Кластер ІІ бус сформований м’якими штамами LC-75 та D78. Середні штами Winterfield-2512 та Lukert формували кластер ІІІ. «Гарячі» штами MB та MB/3 містились у кластері IV. Кластер V містив штами MB/5 та V877. Після включення 16 польових ізолятів, виявлених в Україні, структура дерева не змінилась. Вісім з них групувалися разом з «гарячими», 5 – з середніми та 3 – з м’якими вакцинними штамами. Порівняння амінокислотних послідовностей підтвердило антигенну спорідненість штамів, що знаходились в одному кластері. Висновки. Отримані результати можуть бути використані для підбору вакцин для профілактики ІБХ в кожному окремому господарстві України. Вирус инфекционной бурсальной болезни (ИББ) вызывает высококонтагиозное заболевание цыплят и распространен во всем мире. Главным антигеном вируса является белок VP2. Ген VP2 содержит гипервариабельный регион, мутации в котором приводят к появлению новых антигенных вариантов вируса ИББ. Для предупреждения инфицирования используют вакцинацию, эффективность которой зависит от генетического родства вакцинных и полевых штаммов вируса. Цель. проанализировать нуклеотидную последовательность различных вакцинных и полевых штаммов вируса ИББ, распространенных в хозяйствах Украины. Методы. В исследовании были использованы 11 вакцинных и 16 полевых штаммов вируса ИББ. РНК выделяли методом магнитной сорбции, осуществляли реакцию обратной транскрипции и постановку ПЦР со специфическими праймерами к гену VP2. Ампликоны секвенировали, нуклеотидную и аминокислотную последовательность анализировали с помощью программы MEGA 6. Результаты. 11 вакцинных штаммов формировали 5 кластеров. Кластер I содержал штаммы GM97, 228E и MB/20. Кластер II был сформирован мягкими штаммами LC-75 и D78. Средние штаммы Winterfield-2512 и Lukert формировали кластер ІІІ. «Горячие» штаммы MB и MB/3 содержались в кластере IV. Кластер V содержал штаммы MB/5 и V877. После включения 16 полевых изолятов, выявленных в Украине, структура дерева не изменилась. Восемь из них группировались вместе с «горячими», 5 – средними и 3 – мягкими вакцинными штаммами. Сравнение аминокислотных последовательностей подтвердило антигенное родство штаммов, находящихся в одном кластере. Выводы. Полученные результаты могут быть использованы для подбора вакцин для профилактики ИБХ в каждом отдельном хозяйстве Украины. 2018 Article Characterization of vaccine and field IBDV strains in Ukraine for proper vaccine selection for disease prevention / A.S. Pastyria, I.G. Budzanivska, V.P. Polischuk // Вiopolymers and Cell. — 2018. — Т. 34, № 1. — С. 24-31. — Бібліогр.: 15 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.00096D http://dspace.nbuv.gov.ua/handle/123456789/154260 578 en Вiopolymers and Cell Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Molecular and Cell Biotechnologies
Molecular and Cell Biotechnologies
spellingShingle Molecular and Cell Biotechnologies
Molecular and Cell Biotechnologies
Pastyria, A.S.
Budzanivska, I.G.
Polischuk, V.P.
Characterization of vaccine and field IBDV strains in Ukraine for proper vaccine selection for disease prevention
Вiopolymers and Cell
description Infectious bursal disease virus (IBDV) causes a highly contagious disease in young chickens and is distributed worldwide. Primary viral antigen is VP2. The VP2 gene contains hypervariable re-gion (VP2 HRV). Mutations in this region lead to emergence of antigenically different IBDV strains. For IBDV prevention, vaccination is used. The efficacy of vaccination depends on the ge-netic closeness of field and vaccine strains. Aim of the study was to analyze nucleotide sequence of different vaccine and field strains of IBDV circulating in Ukrainian poultry farms. Methods. In this study 11 vaccine strains and 16 field isolates were used. RNA was extracted using a magnetic separation method, reverse transcription was carried out and PCR was performed using specific primers to the VP2 gene. Obtained amplicons were used for sequencing. Phylogenetic and amino acid analysis was performed with MEGA 6 software. Results. 11 vaccine strains formed 5 phy-logenetic clusters. Cluster I represented strains GM97, 228E and MB/20. Cluster II contained mild vaccine strains LC-75 and D78. Intermediate strains Winterfield-2512 and Lukert formed cluster III. ‘Hot’ vaccine strains MB and MB/3 formed cluster IV. Cluster V was represented by strains MB/5 and V877. After addition of 16 Ukrainian field strains the tree structure remained the same. 8 isolates clustered together with ‘hot’, 5 – with intermediate, and 3 – with mild vaccine strains. Amino acid analyses confirmed antigenic closeness among vaccine and field strains of the same cluster. Conclusion. The obtained data can be used for the vaccine selection for IBD pre-vention in each particular poultry farm of Ukraine.
format Article
author Pastyria, A.S.
Budzanivska, I.G.
Polischuk, V.P.
author_facet Pastyria, A.S.
Budzanivska, I.G.
Polischuk, V.P.
author_sort Pastyria, A.S.
title Characterization of vaccine and field IBDV strains in Ukraine for proper vaccine selection for disease prevention
title_short Characterization of vaccine and field IBDV strains in Ukraine for proper vaccine selection for disease prevention
title_full Characterization of vaccine and field IBDV strains in Ukraine for proper vaccine selection for disease prevention
title_fullStr Characterization of vaccine and field IBDV strains in Ukraine for proper vaccine selection for disease prevention
title_full_unstemmed Characterization of vaccine and field IBDV strains in Ukraine for proper vaccine selection for disease prevention
title_sort characterization of vaccine and field ibdv strains in ukraine for proper vaccine selection for disease prevention
publisher Інститут молекулярної біології і генетики НАН України
publishDate 2018
topic_facet Molecular and Cell Biotechnologies
url http://dspace.nbuv.gov.ua/handle/123456789/154260
citation_txt Characterization of vaccine and field IBDV strains in Ukraine for proper vaccine selection for disease prevention / A.S. Pastyria, I.G. Budzanivska, V.P. Polischuk // Вiopolymers and Cell. — 2018. — Т. 34, № 1. — С. 24-31. — Бібліогр.: 15 назв. — англ.
series Вiopolymers and Cell
work_keys_str_mv AT pastyriaas characterizationofvaccineandfieldibdvstrainsinukraineforpropervaccineselectionfordiseaseprevention
AT budzanivskaig characterizationofvaccineandfieldibdvstrainsinukraineforpropervaccineselectionfordiseaseprevention
AT polischukvp characterizationofvaccineandfieldibdvstrainsinukraineforpropervaccineselectionfordiseaseprevention
first_indexed 2025-07-14T05:55:01Z
last_indexed 2025-07-14T05:55:01Z
_version_ 1837600605909024768
fulltext 24 A. S. Pastyria, I. G. Budzanivska, V. P. Polischuk © 2018 A. S. Pastyria et al.; Published by the Institute of Molecular Biology and Genetics, NAS of Ukraine on behalf of Bio- polymers and Cell. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited UDС 578 Characterization of vaccine and field IBDV strains in Ukraine for proper vaccine selection for disease prevention A. S. Pastyria, I. G. Budzanivska, V. P. Polischuk ESC "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv 64/13, Volodymyrska Str., Kyiv, Ukraine, 01601 ann.pastyria@gmail.com Infectious bursal disease virus (IBDV) causes a highly contagious disease in young chickens and is distributed worldwide. VP2 is the major viral antigen. The VP2 gene contains hyper- variable region (VP2 HRV). Mutations in this region lead to emergence of antigenically different IBDV strains. Vaccination is used for IBDV prevention. The efficacy of vaccination depends on similarity of field and vaccine strains. Aim. To analyze nucleotide sequences of different vaccine and field strains of IBDV circulating in Ukrainian poultry farms. Methods. Eleven vaccine strains and 16 field isolates were used in this study. RNA was extracted us- ing a magnetic separation method, reverse transcription was carried out and PCR was per- formed using specific primers to the VP2 gene. The obtained amplicons were sequenced. Phylogenetic and amino acid analysis was performed usning the MEGA 6 software. Results. Eleven vaccine strains formed five phylogenetic clusters. Cluster I represented strains GM97, 228E and MB/20. Cluster II contained mild vaccine strains LC-75 and D78. Intermediate strains Winterfield-2512 and Lukert formed cluster III. ‘Hot’ vaccine strains MB and MB/3 formed cluster IV. Cluster V was represented by strains MB/5 and V877. After addition of 16 Ukrainian field strains, the tree structure remained the same. Eight isolates clustered together with ‘hot’, five, with intermediate, and three, with mild vaccine strains. Amino acid analyses confirmed the antigenic similarity among vaccine and field strains of the same cluster. Conclusion. The obtained data can be used for the vaccine selection for IBD preven- tion in poultry farms in Ukraine. K e y w o r d s: IBDV, field strains, vaccine strains, vvIBDV, phylogenetic analysis. Introduction Infectious bursal disease virus (IBDV) is a member of the Birnaviridae family Avibirna­ virus genus. It is a non-enveloped virus with two segments of double stranded RNA. The IBDV genome is divided into segments A (3.4 kb) and B (2.8 kb). The large segment A encodes 4 viral proteins, the two capsid pro- teins VP2 (48 kDa) and VP3 (32–35 kDa), the viral protease VP4 (24 kDa), and a nonstruc- tural protein VP5 (17–21 kDa), while the ISSN 1993­6842 (on­line); ISSN 0233­7657 (print) Biopolymers and Cell. 2018. Vol. 34. N 1. P 24–31 doi: http://dx.doi.org/10.7124/bc.00096D mailto:ann.pastyria@gmail.com 25 Characterization of vaccine and field IBDV strains in Ukraine for proper vaccine selection for disease prevention smaller segment B encodes VP1 (90 kDa), an RNA-dependent RNA polymerase [1]. Virus replicates in immature IgM+ B-cells residing in the bursa of Fabricius of young chickens and causes an immunosuppressive infectious bursal disease (IBD) [2]. Primary viral antigen and structural protein is VP2. VP2 gene contains special hypervariable re- gion (VP2 HRV). Mutations in this region lead to emergence of antigenically different IBDV strains [3]. The most effective way of IBD prevention is vaccination with the live attenu- ated vaccines. These vaccines are divided into three groups: “mild”, “intermediate” and in- termediate plus or “hot” according to a degree of their residual virulence [4]. Mild vaccines are safe for specific pathogen free (SPF) chi- ckens but are not very effective in the pres- ence of high levels of maternal antibodies or against very virulent strains of IBDV. Intermediate and ‘hot’ vaccines are much more effective but may induce moderate to severe lesions in the bursa of Fabricius [5]. Choosing the appropriate vaccine is critical for controlling IBD because of the antigenic divergence observed among the serotype 1 vi- ruses. Point mutations and recombination events have contributed to the antigenic drift and antigenic variation among IBDV strains. In order to choose the most effective vaccine it is necessary to analyze what kind of field virus circulates in the farm. Vaccine strain should be genetically and antigenically close to the field virus [5, 6]. This study was aimed at comparing VP2 HRV of different vaccine strains and field isolates detected in Ukraine to find the most antigenically close vaccine strains for preven- tion IBD in each particular farm. Materials and Methods In this study 11 vaccine strains (including 3 Ukrainian) and 16 Ukrainian field isolates were used. IBDV vaccines Polimun IBD light (strain MB/20, BioTestLab, Ukraine), Polimun IBD (strain MB/5, BioTestLab, Ukraine), Polimun IBD+ (strain MB/3, BioTestLab, Ukraine), AviPro® PRECISE (strain LC-75, Loh mann Animal Health GmbH, Germany), HIPRA- GUMBORO® GM97 (strain GM97, Hipra, Spain) currently used in Ukraine, are not presented in GeneBank, that is] why they were taken from the manufactures for the analysis of the vaccine strains. Also, several sequences of vaccine stra- ins were taken from GeneBank, such as: D78 (AJ586963), 228E (AF457204), Lukert (AY918948), V877 (AJ878882), MB (AY739669), Winterfield-2512 (DQ355819). Ukrainian strains were isolated from different regions as described in previous study [7]. RNA was extracted with the use of mag- netic separation method following supplier`s recommendations (MagVetTM, LSI) from bur- sa tissues samples and vaccine samples. Reverse transcription was performed using a commercial test kit (Reverta-L, Amplisens). Obtained cDNA was used for nested PCR. PCR amplification of hypervariable region of VP2 gene was carried out with specific pri- mers [7]. The oligonucleotide primers used in this work designated Bur1F (5’-TCACCGTCC TCAGCTTAC-3’ nucleotide position 587-604) and Bur1R (5’-TCAGGATTTGGGATCAGC- 3’ nucleotide position 1212-1229) designed to amplify the hypervariable region of VP2 gene amplicon size – 643 bp. To increase specific- ity and sensitivity of the reaction the second set of primers Bur2F (5’-CGCTATAGCGCT TGACCCAAAAA-3’, nucleotide position 26 A. S. Pastyria, I. G. Budzanivska, V. P. Polischuk 651 - 673) and Bur2R (5’-CTCACCCCAGCG ACCGTAACGACG-3’, nucleotide position 1179-1202) designed by Kataria et al [8] were used which allows the amplification of the in- ner region of the first amplicon obtained after the first round of the amplification using Bur1F and Bur1R primers. The resulting product had the length of 552 bp. [The] First round of am- plification was carried out for 1 cycle at 95 °C for 2 min, 36 cycles at 95°C for 30 s, 52 °C for 30 s, 72 °C for 30 s, and 1 cycle at 72 °C for 2 min. Amplicons obtained from the first reaction were diluted by 20 times and used for the second reaction. Thermal profile for the second reaction was similar except the primer annealing temperature, which was 63 °C. PCR products were visualized in 1,5 agarosegel. Amplicons were separated from reaction com- ponents using the Thermo Scientific GeneJET Gel Extraction Kit. Purified amplicons were sequenced using forward primer (Bur2F) by Institute of Molecular Biology and Genetics NAS, Ukraine (3130 Genetic Analyzer, Applied Biosystems, USA). Sequences were analyzed using Mega 6 software [9]. Nucleotide alignment was performed using ClustalW in- strument. Phylogenetic analysis was performed using neighbor-joining method [10]. Results and Discussion 426 nucleotide fragments of [the] VP2 gene of IBDV strains were obtained and used for phy- logenetic analysis. 11 vaccine strains formed 5 phylogenetic clusters. Cluster I represented strains GM97, 228E and MB/20. Mean nucleo- tide identity was 99.7%. Cluster II contained mild vaccine strains LC-75 and D78 with nu- cleotide identity 99.3%. Intermediate strains Winterfield-2512 and Lukert formed cluster III (94.5% identity). ‘Hot’ vaccine strains MB and MB/3 formed cluster IV with 99.5% nucleotide identity. Cluster V was represented by strains MB/5 and V877 (98.9% identity) (Fig. 1). To analyze phylogenetic relationship of vaccine and field strains we added previously described very virulent (Ukraine 1517, Ukrai- Fig.1. Phylogenetic tree of VP2 hypervariable region (HRV) nucleotide sequen- ces of 11 vaccine strains com monly used in Ukrai- ne. The Neighbor-Joining consensus tree is shown. Results of the bootstrap test (1000 replicates) are shown next to the branch- es [11]. The bar represents 0.01 nucleotide substitu- tions per site. Vaccine stra- ins grou ped phylogeneti- cally into mild (II), inter- mediate (I, III, V) and “hot” (IV) strains. 27 Characterization of vaccine and field IBDV strains in Ukraine for proper vaccine selection for disease prevention ne 55, Ukraine 691_35_4, Ukraine 691_35_5, Ukraine 760_45_4, Ukraine 2065, Ukraine 934, Ukraine 964) and classical virulent (Ukrai- ne 1853, Ukraine 38_1943, Ukraine 43_1943, Ukraine 2045, Ukraine 58, Ukraine 691_24, Ukraine 760_45_5, Ukraine 1147) strains iso- lated from different regions of Ukraine to phy- logenetic tree. It was shown that after addition of 16 Ukrainian field strains the basic structure of consensus tree remained the same and con- tained the same 5 clusters (Fig. 2). 8 very virulent field isolates clustered together with ‘hot’ and 8 classical virulent – with intermedi- ate vaccine strains. There also were no field strains represented in cluster III (Fig. 2). To determine antigenic difference among vaccine and field strains, the deduced amino acid substitutions in the variable VP2 (vVP2) Fig. 2. Phylogenetic tree of hypervariable region (HRV) nucleotide sequen ces of 11 vaccine strains and 16 field IBDV isolates from Ukrai- ne. The Neighbor-Joining consensus tree is shown. Re sults of the bootstrap test (1000 replicates) are shown next to the branches [11]. The bar represents 0.01 nu- cleotide substitutions per site. IBDV strains formed 5 clus ters. Classical virulent IBDV strains are represent- ed in clusters I, II and V. Very virulent IBDV strains are represented in cluster V. Cluster III contains only in- termediate vaccine strains. 28 A. S. Pastyria, I. G. Budzanivska, V. P. Polischuk Fi g. 3. A lig nm en t o f d ed uc ed am in o ac id se qu en ce o f t he V P2 v ar iab le do m ain fr om aa p os iti on s 2 06 to 3 47 (n um be rin g ac co rd in g to B ay lis s e t a l. [ 13 ]) in si xt ee n fie ld st ra in s c om pa re d w ith re fe re nc e IB D V st ra in s: 52 /7 0 – fie ld st ra in fo r n um be rin g, U K 66 1 – re fe re nc e V V IB D V, М В – ‘’h ot ’’ va cc in e str ain , D 78 – m ild v ac cin e s tra in , 2 28 E an d V 87 7 – in ter m ed iat e v ac cin e s tra in s. Si tes w ith am in o ac id s s im ila r t o str ain 5 2/ 70 ar e m ar ke d w ith d ot s. 29 Characterization of vaccine and field IBDV strains in Ukraine for proper vaccine selection for disease prevention region (206-350 aa) [12] were analyzed (Fig. 3). For the reference and numbering the strain 52/70 (GeneBank accession no. D00869) was chosen [13]. The reference vvIBDV strain UK661 (GeneBank accession no. AJ878898) and ‘hot’ vaccine strain MB (GeneBank acces- sion no. AY739669) were taken for comparison with Ukrainian vvIBDV isolates. The analyzed region included 142 amino acid residues, from position 206 to 347. It was found that none of the local examined isolates was of vaccine or attenuated origin due to absence of 253-His ti- di ne and 284-Threonine mutations that are typically found in attenuated vaccine strains [14, 15]. Figure 3 demonstrated that 8 of the exam- ined strains (Ukraine 1517, Ukraine 55, Ukraine 691_35_4, Ukraine 691_35_5, Ukrai ne 760_45_4, Ukraine 2065, Ukraine 934, Ukrai- ne 964) showed the characteristic of vvIBDV amino acid substitutions at residues 222A, 242I (except Ukraine 760_45_4), 256I, 294I, and 299S (except Ukraine 691_35_5). 8 strains had the serine-rich heptapeptide SWSASGS which was found next to the second hydrophilic region 326–332 that confirmed the highly virulence nature among the analyzed strains [14]. In five strains [Ukraine 1517, Ukraine 55, Ukraine 691_35_4, Ukraine 691_35_5, Ukraine 760_45_4] D to N mutation in 212 aa position was found, which was not described before. The influence of this mutation on IBDV virulence should be analyzed in further studies. The comparison amino acid sequences of very virulent isolates and vaccine strain MB showed that in the discussed critical aa sites MB strain is similar to the analyzed field iso- lates. These results indicate that based on phy- logenetic and the amino acid sequence analy- ses vaccine strains can be chosen for preven- tion IBD in farms. The most phylogenetically and antigenically close to vvIBDV isolates were MB and MB/3 strains. Conclusion As a result of phylogenetic analysis the vac- cine strains studied in the research formed 5 genetic clusters. After addition of the field strains for analysing they clustered to the most similar vaccine strains. Deduced amino acid analysis revealed that 8 Ukrainian isolates had the amino acid sites common for very virulent strains. These strains were antigenically close to the ‘hot’ vaccine strains. Therefore, these data can be used for the vaccine selection for prevention IBD in each particular poultry farm. REFERENCES 1. Berg TP. Acute infectious bursal disease in poultry: a review. Avian Pathol. 2000;29(3):175–94. 2. Alkie TN, Rautenschlein S. Infectious bursal disease virus in poultry: current status and future prospects. Veteri­nary Medicine: Research and Reports. 2016; 2016(7):9–18. 3. Jackwood DJ, Sreedevi B, LeFever LJ, Sommer­ Wagner SE. Studies on naturally occurring infectious bursal disease viruses suggest that a single amino acid substitution at position 253 in VP2 increases pathogenicity. Virology. 2008;377(1):110–6. 4. Camilotti E, Moraes LB, Furian TQ, Borges KA, Moraes HLS, Salle CTP. Infectious Bursal Disease: Pathogenicity and Immunogenicity of Vaccines. Rev Bras Cienc Avic. 2016; 18(2):303–8. 5. Jackwood DJ. Advances in vaccine research against economically important viral diseases of food ani- mals: Infectious bursal disease virus. Vet Microbiol. 2017;206:121–125. 6. Boudaoud A, Mamache B, Tombari W, Ghram A. Virus mutations and their impact on vaccination against infectious bursal disease (Gumboro disease). Rev Sci Tech. 2016;35(3):875–897. 30 A. S. Pastyria, I. G. Budzanivska, V. P. Polischuk 7. Pastyria A, Sobko I, Polischuk V. Genetic character- ization of infectious bursal disease virus isolates in Ukraine. Bulletin of Taras Shevchenko National Uni­ versity of Kyiv. Series: Biology. 2016; 72(2):24–27. 8. Kataria RS, Tiwari AK, Bandyopadhyay SK, Kataria JM, Butchaiah G. Detection of infectious bursal disease virus of poultry in clinical samples by RT- PCR. Biochem Mol Biol Int. 1998;45(2):315–22. 9. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9. 10. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25. 11. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4): 783–791. 12. Mawgod SA, Arafa AS, Hussein HA. Molecular genotyping of the infectious bursal disease virus (IBDV) isolated from Broiler Flocks in Egypt. Int J Vet Sci Med. 2014; 2(1):46–52 13. Bayliss CD, Spies U, Shaw K, Peters RW, Papageor­ giou A, Müller H, Boursnell ME. A comparison of the sequences of segment A of four infectious bursal disease virus strains and identification of a variable region in VP2. J Gen Virol. 1990;71 (Pt 6):1303–12. 14. Mohamed MA, Elzanaty KES, Bakhit BM, Safwat MM. Genetic Characterization of Infectious Bursal Disease Viruses Associated with Gumboro Out- breaks in Commercial Broilers from Asyut Province, Egypt. ISRN Vet Sci. 2014; 2014(1):916412. 15. Jackwood DJ, Sommer­Wagner SE. Amino acids con- tributing to antigenic drift in the infectious bursal dis- ease Birnavirus (IBDV). Virology. 2011;409(1):33–7. Характеристика вакцинних та польових штамів вірусу ІБХ в Україні з метою правильного підбору вакцин для профілактики захворювання А. С. Пастиря, І. Г. Будзанівська, В. П. Поліщук Вірус інфекційної бурсальної хвороби (ІБХ) викликає висококонтагіозне захворювання курчат та поширений у всьому світі. Головним антигеном є білок VP2. Ген VP2 містить гіперваріабельний регіон, мутації в якому призводять до появи нових антигенних варіантів вірусу ІБХ. Для попередження інфікування використовують вакцинацію, ефективність якої залежить від генетичної спорідненості вакцинних та польових штамів вірусу. Мета. проаналізувати нуклеотидну послідовність різних вакцинних та польових штамів вірусу ІБХ, поширених в господарствах України. Методи. У дослідженні було використано 11 вакцинних та 16 польових штамів ві- русу ІБХ. РНК виділяли методом магнітної сорбції, здійснювали реакцію зворотної транскрипції та поста- новку ПЛР із специфічними праймерами до гену VP2. Амплікони секвенували, нуклеотидну та амінокислотну послідовність аналізували за допомогою програми MEGA 6. Результати. 11 вакцинних штамів формували 5 кластерів. Кластер І містив штами GM97, 228E та MB/20. Кластер ІІ бус сформований м’якими штамами LC-75 та D78. Середні штами Winterfield-2512 та Lukert формували кластер ІІІ. «Гарячі» штами MB та MB/3 містились у кластері IV. Кластер V містив штами MB/5 та V877. Після включення 16 польових ізолятів, вияв- лених в Україні, структура дерева не змінилась. Вісім з них групувалися разом з «гарячими», 5 – з середніми та 3 – з м’якими вакцинними штамами. Порівняння амінокислотних послідовностей підтвердило антигенну спорідненість штамів, що знаходились в одному клас- тері. Висновки. Отримані результати можуть бути ви- користані для підбору вакцин для профілактики ІБХ в кожному окремому господарстві України. К л юч ов і с л ов а: вірус ІБХ, польові штами, вак- цинні штами, високовірулентні штами, філогенетичний аналіз. Характеристика вакцинных и полевых штаммов вируса ИББ в Украине с целью правильного подбора вакцин для профилактики болезни А. С. Пастыря, И. Г. Будзанивская, В. П. Полищук Вирус инфекционной бурсальной болезни (ИББ) вы- зывает высококонтагиозное заболевание цыплят и распространен во всем мире. Главным антигеном ви- руса является белок VP2. Ген VP2 содержит гиперва- риабельный регион, мутации в котором приводят к появлению новых антигенных вариантов вируса ИББ. Для предупреждения инфицирования используют вак- 31 Characterization of vaccine and field IBDV strains in Ukraine for proper vaccine selection for disease prevention цинацию, эффективность которой зависит от генети- ческого родства вакцинных и полевых штаммов виру- са. Цель. проанализировать нуклеотидную последо- вательность различных вакцинных и полевых штаммов вируса ИББ, распространенных в хозяйствах Украины. Методы. В исследовании были использованы 11 вак- цинных и 16 полевых штаммов вируса ИББ. РНК выделяли методом магнитной сорбции, осуществляли реакцию обратной транскрипции и постановку ПЦР со специфическими праймерами к гену VP2. Ампли- ко ны секвенировали, нуклеотидную и аминокислот- ную последовательность анализировали с помощью программы MEGA 6. Результаты. 11 вакцинных штам- мов формировали 5 кластеров. Кластер I содержал штаммы GM97, 228E и MB/20. Кластер II был сфор- мирован мягкими штаммами LC-75 и D78. Средние штаммы Winterfield-2512 и Lukert формировали кластер ІІІ. «Горячие» штаммы MB и MB/3 содержались в кластере IV. Кластер V содержал штаммы MB/5 и V877. После включения 16 полевых изолятов, выявленных в Украине, структура дерева не изменилась. Восемь из них группировались вместе с «горячими», 5 – средни- ми и 3 – мягкими вакцинными штаммами. Сравнение аминокислотных последовательностей подтвердило антигенное родство штаммов, находящихся в одном кластере. Выводы. Полученные результаты могут быть использованы для подбора вакцин для профилак- тики ИБХ в каждом отдельном хозяйстве Украины. К л юч е в ы е с л ов а: вирус ИБХ, полевые штаммы, вакцинные штаммы высоковирулентные штаммы, филогенетический анализ. Received 22.11.2017