A dual-target strategy for the detection of Chlamydia trachomatis by real-time PCR
Aim. Polymerase chain reaction (PCR) is a key method for the C. trachomatis diagnostics. The first-generation tests targeting a cryptic plasmid showed quite a high sensitivity; however their value has recently been compromised by the discovery of C. trachomatis strains lacking the target DNA segment...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут молекулярної біології і генетики НАН України
2018
|
Назва видання: | Вiopolymers and Cell |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154282 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A dual-target strategy for the detection of Chlamydia trachomatis by real-time PCR / Y.A. Vitrenko, O.M. Deryabin // Вiopolymers and Cell. — 2018. — Т. 34, № 2. — С. 117-126. — Бібліогр.: 20 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-154282 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1542822019-07-07T12:37:28Z A dual-target strategy for the detection of Chlamydia trachomatis by real-time PCR Vitrenko, Y.A. Deryabin, O.M. Molecular and Cell Biotechnologies Aim. Polymerase chain reaction (PCR) is a key method for the C. trachomatis diagnostics. The first-generation tests targeting a cryptic plasmid showed quite a high sensitivity; however their value has recently been compromised by the discovery of C. trachomatis strains lacking the target DNA segment (e.g. the “Swedish” variant) and thus escaping the diagnostics. Moreover, there are variants bearing no plasmid at all. We propose the addition of a chromosome gene as a PCR tar-get to back up plasmid-based assays and enhance the overall efficiency of diagnostics. Methods. Two multiplexed PCRs were set up to target C. trachomatis cryptic plasmid and the 16s rRNA gene. The 16s rRNA primers produce PCR signal from a range of Chlamydia species whereas the introduction of a Taqman probe (essential for real-time PCR) scales the assay down to C. tra-chomatis. At the same time, our plasmid PCR is specific to C. trachomatis exclusively. Results. The sensitivity of plasmid and 16s rRNA PCRs reached from one to ten genome-equivalents per reaction (geq/rxn) whereas the efficiency was always about 100%. Multiplexing did not reduce the analytical sensitivity. Addition of DNA prepared from clinical specimens to the reaction mix did not affect PCR with pure C. trachomatis DNA further demonstrating the robustness of this system. The kinetics of the two reactions was compared in 49 DNA samples prepared from C. trachomatis-positive swabs. In 45 of these samples, the reactions showed a good correlation in the threshold cycle of amplification Cq, the main analytical parameter of real-time PCR. Conclusions. The simultaneous detection of chromosomal and plasmid targets in multiplex PCR offers a high sensitivity and is particularly advantageous for specimens where the plasmid might be lost due to DNA degradation or counter-selection after treatment. The dual strategy of PCR presented here could constitute the core of a diagnostic test for both in-house and commercial use. Мета. Полімеразна ланцюгова реакція (ПЛР) є ключовим методом діагностики C. trachomatis. Мішенню тестів першого покоління є криптична плазміда, що забезпечує досить високу чутливість. Однак придатність цих тестів була поставлена під сумнів після відкриття штамів, в яких був відсутній цільовий сегмент ДНК, і такі варіанти не виявлялись у ПЛР (т.з. «шведські» варіанти). Більш того, існують варіанти, повністю позбавлені плазміди. У цій роботі ми пропонуємо використовувати хромосомний ген в якості додаткової мішені, що дозволить підстрахувати плазмідні ПЛР-тести і може підвисити загальну ефективність діагностики. Методи. Мультиплексна система із двох ПЛР була укладена для одночасної детекції криптичної плазміди і фрагменту гена 16s рРНК. Праймери на 16s рРНК можуть давати сигнал ПЛР при аналізі низки видів Chlamydia. Додання зонду типу Taqman (необхідного для ПЛР у реальному часі) звужує спектр виявлюваних видів до C. trachomatis. В той же час ПЛР з плазміди є специ-фічною виключно до C. trachomatis. Результати. Чутливість ПЛР з плазміди і гену 16s рРНК сягала від 1 до 10 ге-ном-еквівалентів на реакцію, а ефективність ПЛР була близько 100%. Постановка реакцій в мультиплексі не зме-ншувало аналітичну чутливість. Додання реакційної суміші ДНК, приготованої із клінічних зразків, не впливало на ПЛР з чистої ДНК C. trachomatis, що також демонструє надійність системи. Кінетика цих двох реакцій була порів-няна в 49 зразках ДНК із мазків позитивних по C. trachomatis. В 45 із цих зразків реакції показали добру кореляцію порогових циклів ампліфікації Cq – основного аналітичного параметра ПЛР у реальному часі. Висновки. Одночас-на детекція хромосомної та плазмідної мішеней у мультиплексній ПЛР забезпечує високу чутливість і має особли-ві переваги для зразків, де плазміда може бути втрачена в результаті деградації ДНК чи контр-селекції при терапії. Двоцільова стратегія ПЛР, яка представлена в цій роботі, може бути покладена в основу ефективного внутрішньо-лабораторного чи комерційного діагностичного тесту. Цель. Полимеразная цепная реакция (ПЦР) является ключевым методом диагностики C. trachomatis. Мишенью тестов первого поколения является криптическая плазмида, что обеспечивает достаточно высокую чувствитель-ность. Однако адекватность этих тестов была поставлена под сомнение после открытия штаммов, где отсутствовал целевой сегмент ДНК, и такие варианты не выявлялись в ПЦР (т.н. «шведские» варианты). Более того, существуют варианты, полностью лишенные плазмиды. В этой работе, мы предлагаем использовать хромосомный ген в качес-тве дополнительной мишени, что позволит подстраховать плазмидный ПЦР-тест и может повысить общую эффек-тивность диагностики. Методы. Мультиплексная система из двух ПЦР была составлена для одновременной детек-ции криптической плазмиды и фрагмента гена 16s рРНК. Праймери на 16s рРНК могут давать сигнал ПЦР при анализе ряда видов Chlamydia. Добавление зонда типа Taqman (необходимого для ПЦР в реальном времени) сужа-ет спектр виявляемых видов до C. trachomatis. В то же время, ПЦР с плазмиды обладает специфичностью исклю-чительно к C. trachomatis. Результати. Чувствительность ПЦР с плазмиды и гена 16s рРНК достигала от 1 до 10 геном-еквивалентов на реакцию, а эффективность ПЦР была около 100%. Постановка реакций в мультиплексе не уменшало аналитическую чувствительность. Добавление к реакционнной смеси ДНК, приготовленной из клини-ческих образцов, не влияло на ПЦР с чистой ДНК C. trachomatis, что также демонстрирует надежность системы. Кинетика этих двух реакций была проанализирована в сравнении на 49 образцах ДНК из мазков, позитивных по C. trachomatis. В 45 из этих образцов реакции показали хорошую корреляцию порогових циклов амплификации Cq – основного аналитического параметра ПЦР в реальном времени. Выводы. Одновременная детекция хромосомной и плазмидной мишеней в мультиплексной ПЦР обеспечивает высокую чувствительность и имеет особенное пре-имущество при анализе образцов, где плазмида может быть утрачена в результате деградации ДНК или контр-селекции при терапии. Двух-целевая стратегия ПЦР, представленная в данной работе, может быть положена в ос-нову эффективного внутрилабораторного или коммерческого диагностичного теста. 2018 Article A dual-target strategy for the detection of Chlamydia trachomatis by real-time PCR / Y.A. Vitrenko, O.M. Deryabin // Вiopolymers and Cell. — 2018. — Т. 34, № 2. — С. 117-126. — Бібліогр.: 20 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.000976 http://dspace.nbuv.gov.ua/handle/123456789/154282 579 881.211.083 en Вiopolymers and Cell Інститут молекулярної біології і генетики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Molecular and Cell Biotechnologies Molecular and Cell Biotechnologies |
spellingShingle |
Molecular and Cell Biotechnologies Molecular and Cell Biotechnologies Vitrenko, Y.A. Deryabin, O.M. A dual-target strategy for the detection of Chlamydia trachomatis by real-time PCR Вiopolymers and Cell |
description |
Aim. Polymerase chain reaction (PCR) is a key method for the C. trachomatis diagnostics. The first-generation tests targeting a cryptic plasmid showed quite a high sensitivity; however their value has recently been compromised by the discovery of C. trachomatis strains lacking the target DNA segment (e.g. the “Swedish” variant) and thus escaping the diagnostics. Moreover, there are variants bearing no plasmid at all. We propose the addition of a chromosome gene as a PCR tar-get to back up plasmid-based assays and enhance the overall efficiency of diagnostics. Methods. Two multiplexed PCRs were set up to target C. trachomatis cryptic plasmid and the 16s rRNA gene. The 16s rRNA primers produce PCR signal from a range of Chlamydia species whereas the introduction of a Taqman probe (essential for real-time PCR) scales the assay down to C. tra-chomatis. At the same time, our plasmid PCR is specific to C. trachomatis exclusively. Results. The sensitivity of plasmid and 16s rRNA PCRs reached from one to ten genome-equivalents per reaction (geq/rxn) whereas the efficiency was always about 100%. Multiplexing did not reduce the analytical sensitivity. Addition of DNA prepared from clinical specimens to the reaction mix did not affect PCR with pure C. trachomatis DNA further demonstrating the robustness of this system. The kinetics of the two reactions was compared in 49 DNA samples prepared from C. trachomatis-positive swabs. In 45 of these samples, the reactions showed a good correlation in the threshold cycle of amplification Cq, the main analytical parameter of real-time PCR. Conclusions. The simultaneous detection of chromosomal and plasmid targets in multiplex PCR offers a high sensitivity and is particularly advantageous for specimens where the plasmid might be lost due to DNA degradation or counter-selection after treatment. The dual strategy of PCR presented here could constitute the core of a diagnostic test for both in-house and commercial use. |
format |
Article |
author |
Vitrenko, Y.A. Deryabin, O.M. |
author_facet |
Vitrenko, Y.A. Deryabin, O.M. |
author_sort |
Vitrenko, Y.A. |
title |
A dual-target strategy for the detection of Chlamydia trachomatis by real-time PCR |
title_short |
A dual-target strategy for the detection of Chlamydia trachomatis by real-time PCR |
title_full |
A dual-target strategy for the detection of Chlamydia trachomatis by real-time PCR |
title_fullStr |
A dual-target strategy for the detection of Chlamydia trachomatis by real-time PCR |
title_full_unstemmed |
A dual-target strategy for the detection of Chlamydia trachomatis by real-time PCR |
title_sort |
dual-target strategy for the detection of chlamydia trachomatis by real-time pcr |
publisher |
Інститут молекулярної біології і генетики НАН України |
publishDate |
2018 |
topic_facet |
Molecular and Cell Biotechnologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/154282 |
citation_txt |
A dual-target strategy for the detection of Chlamydia trachomatis by real-time PCR / Y.A. Vitrenko, O.M. Deryabin // Вiopolymers and Cell. — 2018. — Т. 34, № 2. — С. 117-126. — Бібліогр.: 20 назв. — англ. |
series |
Вiopolymers and Cell |
work_keys_str_mv |
AT vitrenkoya adualtargetstrategyforthedetectionofchlamydiatrachomatisbyrealtimepcr AT deryabinom adualtargetstrategyforthedetectionofchlamydiatrachomatisbyrealtimepcr AT vitrenkoya dualtargetstrategyforthedetectionofchlamydiatrachomatisbyrealtimepcr AT deryabinom dualtargetstrategyforthedetectionofchlamydiatrachomatisbyrealtimepcr |
first_indexed |
2025-07-14T05:56:09Z |
last_indexed |
2025-07-14T05:56:09Z |
_version_ |
1837600677943050240 |
fulltext |
117
Y. A. Vitrenko, O. M. Deryabin
© 2018 Y. A. Vitrenko et al.; Published by the Institute of Molecular Biology and Genetics, NAS of Ukraine on behalf of Bio-
polymers and Cell. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited
UDC 579 881.211.083
A dual-target strategy for the detection of Chlamydia trachomatis
by real-time PCR
Y. A. Vitrenko, O. M. Deryabin
State Scientific Control Institute of Biotechnology and Strains of Microorganisms
30 Donetska Str., Kyiv, Ukraine, 03151
yavit@yahoo.com, admin@biocontrol.com.ua
The first-generation tests targeting a cryptic plasmid for the C. trachomatis diagnostics showed
a relatively high sensitivity; however their usefulness has recently been compromised by the
discovery of C. trachomatis strains lacking the target DNA segment (e.g. the “Swedish”
variant) or variants bearing no plasmid at all and thus escaping the diagnostics. Aim. We
propose the addition of a C. trachomatis chromosome gene as a PCR target to back up plasmid-
based assays and enhance the overall efficiency of diagnostics. Methods. Two multiplexed
PCRs were set up to target C. trachomatis cryptic plasmid and the 16s rRNA gene. The 16s
rRNA primers produce PCR signal from a range of Chlamydia species whereas the introduc-
tion of a Taqman probe (essential for the real-time PCR) scales the assay down to C. trachoma-
tis. At the same time, our plasmid PCR is specific to C. trachomatis exclusively. Results. The
sensitivity of plasmid and 16s rRNA PCRs ranged between one to ten genome-equivalents per
reaction (geq/rxn) whereas the efficiency was always ~100%. Multiplexing did not reduce the
analytical sensitivity. Addition of DNA prepared from clinical specimens to the reaction mix
did not affect PCR with pure C. trachomatis DNA further demonstrating the robustness of this
system. The kinetics of the two reactions was compared in 49 DNA samples prepared from
C. trachomatis-positive swabs. In 45, reactions showed a good correlation in the threshold
cycle of amplification Cq, the main analytical parameter of real-time PCR. Conclusions. The
simultaneous detection of chromosomal and plasmid targets in the multiplex PCR offers a high
sensitivity and is particularly advantageous for specimens where the plasmid might be lost due
to DNA degradation or counter-selection after treatment. The dual PCR strategy constitute the
core of a diagnostic test for both in-house and commercial use.
K e y w o r d s: Chlamydia trachomatis, real-time PCR, 16s rRNA, cryptic plasmid
Introduction
Chlamydia is a causative agent of a series
of urogenital, respiratory and ocular disor-
ders in humans and animals [1]. Although in
most cases infections are asymptomatic, se-
vere outcomes occur when the pathogen-
associated damage is aggravated by an in-
Molecular and Cell
Biotechnologies
ISSN 1993-6842 (on-line); ISSN 0233-7657 (print)
Biopolymers and Cell. 2018. Vol. 34. N 2. P 117–128
doi: http://dx.doi.org/10.7124/bc.000976
mailto:yavit@yahoo.com
118
Y. A. Vitrenko, O. M. Deryabin
adequate immune response [2, 3]. C. tracho-
matis is the most clinically important and
hence best-stu died representative of the
phylum. This is a sexually transmitted obli-
gate intracellular gram-negative bacterium.
If not treated it can cause pelvic inflamma-
tory disease, infertility, ectopic pregnancy,
urethritis, infant pneumonia and blind-
ness [3]. Therapy of C.trachomatis infection
relies mainly on broad-spectrum antibiotics
such as azithromycin and doxycycline, and
no pathogen-specific treatment has been
implemented as yet [4].
The diagnostics of Chlamydia infection in
humans and animals makes a wide use of
PCR [4]. For C. trachomatis, the cryptic plas-
mid which is somehow linked with infectivi-
ty [5] has long been the primary target in PCR
tests [6]. The plasmid is present in up to 10
copies per cell [7]. However, a variant was
discovered in Sweden where the plasmid had
a deletion encompassing the target region used
in diagnostic kits of that time [8, 9]. It was
suggested that the deletion had been rapidly
selected due to the diagnostic advantage it
provided to the microorganism oppressed by
screening programs. Moreover, plasmid-less
variants have also been reported [10, 11].
Therefore, other PCR targets have been sug-
gested: momp1 (major outer membrane pro-
tein) [12], omcB (outer membrane complex
B protein) [13], gyrase A [14], 16s rRNA [10,
15], 23s rRNA
Here we present a set of PCRs targeting the
C. trachomatis cryptic plasmid, 16s rRNA
gene and a synthetic plasmid as an internal
control. These reactions could constitute the
basis of an in-house or affordable commercial
diagnostic kit. They are highly sensitive, robust
and amenable for multiplexing. The dual-target
strategy appears to be particularly useful for
problematic specimens in which a partial loss
of DNA due to degradation or deletion might
be an issue.
Methods
Samples
Chlamydia reference DNA samples were ob-
tained as a gift from the German Reference
Center for Chlamydial Infections at the Insti-
tu te of Microbiology, Friedrich-Schiller-Uni-
ver sity Jena (Jena, Germany); Bacillus cereus
DNA was a gift from Dr. Tigran Yuzbashev
(Institute for Genetics and Selection of
Industrial Microorganisms, Moscow, Russia).
Lactobacillus rhamnosus DNA was isolated
from a culture purchased at Probiotical SpA
(Novara, Italy). Escherichia coli, Bacillus ce-
reus, Listeria monocytogenes, Mycoplasma
arginini, Campylobacter pylori DNA was iso-
lated from stocks deposited at the State
Scientific Control Institute of Biotechnology
and Strains of Microorganisms (Kyiv, Ukraine).
DNA isolation was done using GeneJET
Genomic DNA Purification Kit (Thermo Fisher
Scientific, Waltham, MA, USA). Clinical spec-
imens (vaginal, endocervical and urethral
swabs) were kindly provided by several com-
mercial and hospital labs in Kyiv, Ukraine.
Patients ordering a C. trachomatis PCR test
have signed consent for research use of their
specimens. The Ethic Committee of the State
Scientific Control Institute of Biotechnology
and Strains of Microorganisms approved the
use of human clinical specimens in this re-
search. All biological materials were properly
destroyed.
119
A dual-target strategy for the detection of Chlamydia trachomatis by real-time PCR
Internal control
A pUC18 — based plasmid bearing Thermus
thermophilus tRNATyr gene as a SmaI – BamHI
insert was kindly provided by Prof. Mykhailo
Tukalo (Institute of Molecular Biology and
Genetics, Kyiv, Ukraine).
PCR
PCR was performed with oligonucleotides
(Table 1) designed with the aid of the Vector
NTI® software (Thermo Fisher Scientific,
Waltham, MA, USA) and primer-BLAST
(https://www.ncbi.nlm.nih.gov/tools/primer-
blast). The reaction volume was 25 µl. The oli-
go nucleotide quantity per reaction was as given
in Table (right column). Other components were:
1x DreamTaq PCR buffer, 0.1 mM dNTP, 3 mM
MgCl2, 0.6 mg/ml bovine serum albumin, 4 %
glycerol, DreamTaq polymerase (Thermo Fisher
Scientific, Waltham, MA, USA) or TaqF poly-
merase (Interlabservice, Moscow, Russia). PCR
program was: pre-denaturation, 95 °C for
10 min; amplification for 40–45 cycles of: 95 °C
for 10 sec, 62 °C for 20 sec, 72 °C for 30 sec.
Typically, 5 ul sample DNA were added to PCR.
Real-time PCR was done on a Biorad CFX-96
PCR system (Biorad, Hercules, CA, USA).
The threshold cycle of amplification Cq was
registered as a point at which the amplification
curve reached the intensity of fluorescence of
50 relative units. The efficiency of PCR was
calculated using the formula:
E = 10–1/slope – 1
where E — efficiency, “slope” — the slope of
the trend line of the Cq dependence on the
log10 of concentration of reference C. tracho-
matis DNA (Fig. 3B and C).
Results
Primers, probes and target regions
Our principle idea was to supplement a plasmid-
based reaction with another one targeting some
genomic fragment. Thus the test would be in-
sured from plasmid-instability issues while
keeping an elevated level of the analytical sen-
sitivity suggestively provided by several copies
of plasmid. The 16s rRNA gene was chosen as
the target genomic fragment due to a unique
pattern of conservative and hypervariable mo-
tives [15]. There are two copies of this gene in
C. trachomatis separated by about 20 kb
(Fig. 1A). Primers were designed to detect a
range of Chlamydia species thus reserving a
possibility of detecting the Chlamydia genus
without specification which might be in demand
in certain clinical and veterinary situations.
At the same time, the hexachlorofluorescein
(HEX)-labeled Taqman probe is C. trachoma-
tis — specific: mismatches to the corresponding
sequence of other species are sufficient to ab-
rogate the detection in real-time PCR (Fig. 1A).
The cryptic plasmid is detected by a pair of
primers targeting the predicted coding se-
quence CDS3 (Fig. 1B). Note that the targeted
region lies outside of the 377-bp Swedish de-
letion. The function of CDS3 is yet unknown;
interaction with other plasmid-born CDSs and
chromosomal genes has been suggested [16].
The probe is labeled by 6-carboxyfluorescein
(FAM) thus enabling multiplexing with the 16s
rRNA PCR detected by HEX fluorescence.
If PCR reaction is aimed to be used as a
diagnostic test it must be accompanied by an
internal control reaction. A positive PCR signal
from the internal control would indicate that
PCR conditions were correct and the compo-
https://www.ncbi.nlm.nih.gov/tools/primer-blast
https://www.ncbi.nlm.nih.gov/tools/primer-blast
120
Y. A. Vitrenko, O. M. Deryabin
Fig. 1. PCR targets for C. trachomatis detection. A – The
16s rRNA gene on C. trachomatis 434/Bu chromosome
(GeneBank NC_010287.1). One of the two 16s rRNA
loci is zoomed to show the region targeted by primers
(green arrowheads) and probe (red block). Rulers above
the maps show the chromosomal coordinate in kilobase
pairs. The probe sequence is given in bold. The corre-
sponding sequences of Chlamydia species are shown
with mismatches highlighted by red letters. B – C. tra-
chomatis cryptic plasmids. Plasmid with rearrangements
characteristic of the Swedish variant is shown by the in-
ner circle, wild-type by the outer. Positions of primers are
shown by arrows. This panel is adopted from a diagram
published earlier [9]. A kind permission of the author,
Dr. Helena Seth-Smith, was granted.
A
B
121
A dual-target strategy for the detection of Chlamydia trachomatis by real-time PCR
nents of the PCR machinery worked properly.
In this case, a negative result of the target reac-
tion could surely be interpreted as the absence
of the pathogen DNA in the sample (or its
presence below the sensitivity threshold), not
as a result of PCR failure. We designed a third
reaction templated by the pUC18 plasmid bear-
ing an insert in the multiple cloning site (see
Materials and Methods). This plasmid should
be added to the reaction mix along with sam-
ple DNA. The forward primer anneals to the
insert; the reverse primer anneals to the b-
Lactamase gene which is a part of the original
pUC18 backbone sequence. It was crucial to
position one of the primers to a synthetically
introduced insert. If we otherwise placed both
primers to the backbone an undesirable back-
ground PCR signal would be produced from
the homologous expression vectors usually
present in recombinant Taq polymerase stocks
as an admixture. Note that such vectors are
inevitably carried over to the PCR mix and
produce a detectable amplicon [17] after about
30 cycles (data not shown). The Taqman probe
for this reaction carries the cyanine 5 (Cy5)
dye whose maximum of fluorescence emission
(670 nm) lies away from that of FAM (517 nm)
and HEX (556 nm) labeling the 16s rRNA and
cryptic plasmid reactions, respectively. PCR
with 16s rRNA primers amplified a distinct
156-bp product from purified DNA of C. tra-
chomatis (Fig. 2, lanes 2 and 3) and some
other Chlamydia species (Fig. 2, lanes 8–14).
No 156-bp product was detected in DNA from
Escherichia coli, Bacillus cereus, Listeria
monocytogenes, Mycoplasma arginini (Fig. 2,
lanes 4–7), Bacillus thermocatenulatus,
Campylobacter pylori, Lactobacillus rhamno-
sus (data not shown). Non-specific products of
a higher molecular weight seen in PCR from
some non-Chlamydia species have no diagnos-
tic value. Cryptic plasmid, appearing as a
266-bp product, was detected only in PCR
from C. trachomatis DNA (Fig. 2, lane 3).
PCR from reference C. trachomatis DNA
A triplex PCR consisting of reactions targeting
the 16s rRNA gene and cryptic plasmid of
reference C. trachomatis along with internal
control produced a typical sigmoid curve
(Fig. 3A) and distinct electrophoretic band
(Fig. 3B) for each of the three reactions. Note
that the internal control PCR (smooth grey
curves) does not appear to be inhibited by the
two diagnostic reactions (symbol-marked
curves) even at elevated concentrations of tem-
plate DNA. The individual analytical sensitiv-
ity of the diagnostic reactions in triplex was
assayed on ten-fold dilutions of pure C. tracho-
matis DNA spanning four orders of magnitude
(Fig. 3C and D). Reproducible sigmoid curves
were observed for both reactions in the pres-
ence of as low as five genome-equivalents per
Fig. 2. PCR from the 16s rRNA gene and cryptic plasmid
on reference strains. Amplicons generated with primers to
16s rRNA (2–14) and plasmid (3–14). 1 – Molecular
weight marker producing the bands whose sizes are shown
in base pairs (bp). 2,3 – Chlamydia trachomatis, 4 – Esche-
richia coli, 5 – Bacillus cereus, 6 – Listeria monocyto-
genes, 7 – Mycoplasma arginini, 8 – Chlamydia suis, 9 –
C. mudidatum, 10 – C. abortus, 11 – C. felis, 12 – C. psit-
taci, 13 – C. avium, 14 – C. pecorum
122
Y. A. Vitrenko, O. M. Deryabin
A
C
D
B
Fig. 3. Sensitivity and efficiency of multiplex PCR for C. trachomatis. A – Triplex real-time PCR with primers to 16s
rRNA (green triangles), cryptic plasmid (blue circles) and internal control (grey). C. trachomatis DNA was added in
the amount indicated as log10 geq/rxn. The internal control was added as well. B – PCR from C.trachomatis DNA
without (lane 2) or with (lane 3) the addition of internal control plasmid. Molecular weight marker (lane 1) produces
bands whose sizes are shown in base pairs (bp). C – Of three reactions, only the one targeting cryptic plasmid is
shown. The PCR efficiency was deduced from the plot of Cq to log geq/rxn given at the right (mean of three reactions,
error bar: standard deviation). D – same as (c) but for 16s rRNA PCR.
123
A dual-target strategy for the detection of Chlamydia trachomatis by real-time PCR
reaction mix (which is equal to the value of 0.7
in the logarithmic form). We monitored Cq,
a PCR cycle at which the kinetics passes from
the lag to exponential stage. The Cq is consid-
ered as the main quantitative parameter of real-
time PCR. In our assays, a ten-fold increment
in the template concentration translated in the
Cq decrease of about 3.3 cycles throughout the
entire concentration range. Consequently, the
PCR efficiency was close to one (100 %) indi-
cating that (i) no loss of sensitivity happens
upon dilution of the sample, (ii) no inhibition
is caused by higher concentrations of tem-
plate DNA.
It is often speculated that multiplexing
might weaken PCR because of unpredictable
oligonucleotide heteroduplexes and/or ex-
hausting PCR components. We compared the
performance of our diagnostic reactions in the
monoplex versus triplex format (Fig. 4, smooth
and symbol-marked curves, respectively).
No significant change in Cq and overall shape
of curves has been observed at both high
(4.7 log10 geq/rxn) and low (0.7 log10 geq/rxn)
concentrations of pure C. trachomatis DNA.
Thus we could dispel concern of a sensitivity
loss due to multiplexing.
Clinical samples
Up to this point, the proposed strategy of dual-
target PCR has been tested only on pure refer-
ence DNA. Skepticism might hold that DNA
from real clinical specimens could perform
weaker in terms of the sensitivity and robust-
ness. In view of this, we examined our reac-
tions in triplex on reference C. trachomatis
DNA with and without DNA isolated from
C. trachomatis-negative specimens (Fig. 5,
symbol-marked and smooth curve, respec-
tively). Plasmid and 16s rRNA PCRs (Fig. 5A
and B, respectively) produced a detectable
fluorescent signal throughout a range of tem-
plate DNA concentrations spanning four orders
of magnitude. We did not observe any signifi-
cant difference between real-time PCR curves
registered in the presence or absence of clini-
cal sample DNA. Thus the proposed PCR reac-
tions are robust enough for the detection of
C. trachomatis DNA in clinical specimens.
Next we compared the performance of 16s
rRNA and cryptic plasmid reactions on real
C. trachomatis — positive samples (deemed
such by commercial PCR kits; Fig. 6). We
carried out triplex PCR (with the addition of
internal control) and plotted the results as dots
on the plane formed by two Cq values. In such
representation, the results lie along the diago-
nal line indicating that the two reactions sense
the variation of the amount of C. trachomatis
DNA in a similar manner. There were 45 such
Fig. 4. A negligible effect of multiplexing on the PCRs
for C. trachomatis. Pure C. trachomatis DNA was used
to give the indicated number of log 10 geq/rxn. PCR was
done either in triplex with primers to 16s rRNA (green
triangles) + cryptic plasmid (blue circles) + internal con-
trol (not shown) or monoplex with primers to 16s rRNA
or cryptic plasmid (green and blue curves, respectively,
without any symbol).
124
Y. A. Vitrenko, O. M. Deryabin
samples out of total 49. In four outliers, one
of the two reactions failed or poorly performed
as judged by a higher Cq: one with plasmid
and three with 16s rRNA. These results were
essentially confirmed by re-analyzing the back-
up stocks starting from DNA (data not shown).
Overall, the two reactions were equally effi-
cient on clinical specimens: the mean Cq was
28.2 and 28.3 for cryptic plasmid and 16s
rRNA, respectively. Therefore, 16s rRNA and
cryptic plasmid PCRs can complement each
other in problematic cases thereby minimizing
the chance of a false-negative result.
Discussion
About 90 million cases of C. trachomatis infec-
tion are diagnosed worldwide and the incidence
has grown within the last decade [18]. A large
proportion of infections proceeds asymptho-
matic and undetected, yet pelvic inflammatory
disease could develop with a various probabil-
ity and cause infertility in up to 18 % of cases
[19]. Despite screening programs have been
designed and promoted recently [20], many
communities and regions still have a limited
access to high-quality C. trachomatis diagnos-
tics. The advent of molecular techniques, such
A
B
Fig. 5. A negligible effect of DNA
prepared from a clinical specimen on
the PCRs for C. trachomatis. Pure
C. trachomatis DNA was used to
give the indicated number of log10
geq/rxn. PCR was done in triplex
with primers to 16s rRNA + cryptic
plasmid + internal control. Of the
three reactions, only cryptic plasmid
(A) or 16s rRNA (B) PCRs are
shown. Curves registered in the pres-
ence of DNA from a C. trachoma-
tis – negative clinical sample are la-
belled with triangles or circles.
125
A dual-target strategy for the detection of Chlamydia trachomatis by real-time PCR
Fig. 6. Scatter of Cq values of PCR from clinical sam-
ples. Forty nine clinical C. trachomatis – positive sam-
ples were assayed by 16s rRNA and plasmid PCR and
plotted on the plane of the corresponding Cq values.
as PCR, holds a great promise to improve the
management of infectious diseases at the pop-
ulation level in general.
Here we suggested that targeting two loci
could greatly improve C. trachomatis PCR
diagnostics. We chose the 16s rRNA gene as
the chromosomal target to supplement plas-
mid-born PCR. First, it is present in at least
two copies (Fig. 1A) thus backing up the test
if one of the copies picks up a mutation affect-
ing the primer — template interaction. Second,
we wanted to reserve an option to detect non-
trachomatis Chlamydiaceae which would ex-
pand the use of 16s rRNA reaction in clinical
and veterinary diagnostics. The 16s RNA gene
offers enough conserved motives for designing
primers to 16s rRNA sequence from a range
of Chlamydia species (Fig. 2). At the same
time, our Taqman probe (Fig. 1A) was suffi-
ciently restrictive narrowing down the range
to C. trachomatis (Fig. 3 and data not shown).
The sensitivity and efficiency were similar
for 16s rRNA and plasmid PCR, on both pure
DNA (Fig. 3) and clinical samples (Fig. 6).
The reactions were performed well in the
multiplex format (Figs. 3 and 4). Thus the
system does not appear to be affected by a
reciprocal inhibiting effect of the reactions
and exhaust of active components towards the
end of PCR. Furthermore, the reactions were
not perturbed by inhibitors potentially carried
through the DNA isolation step (Fig. 5 and
data not shown). Thus this PCR set could be
combined with various DNA isolation kits and
integrated into an existing laboratory work-
flow. Despite a high analytical sensitivity, the
clinical sensitivity of a test based on the pro-
posed reactions remains to be determined.
This should be done on a panel of reference
clinical samples prepared under the same con-
ditions and deemed C. trachomatis-positive
by a “golden standard” test.
For the quantification of C. trachomatis, 16s
rRNA PCR appears more advantageous be-
cause the plasmid copy number is a variable
parameter per se. Our results show that 16s
rRNA, as a PCR target, is not worse than plas-
mid used traditionally. However, it would be
premature to refuse from targeting the plasmid
which is believed to be somehow associated
with virulence [5]. It is plausible that the di-
agnostics of the future will be focused more
on highly virulent stages and variants in order
to avoid unnecessary therapeutic measures.
In rare samples, one of the two reactions
failed (Fig. 6) which could be caused by (i)
partial DNA degradation, (ii) sequence varia-
tion in primer target sites, (iii) infection erad-
ication. In general, since many aspects of
C. trachomatis biology and pathogenesis still
126
Y. A. Vitrenko, O. M. Deryabin
remain unclear we suggest that a PCR diag-
nostic kit must be somewhat redundant. The
use of two reactions, able to back-up each
other on problematic samples, appears to be
advantageous for the test’s reliability.
Conclusions
The dual-target strategy for PCR detection of
C. trachomatis presented here benefits from
the simultaneous targeting the cryptic plasmid
and 16s rRNA gene. Such a strategy offers a
high sensitivity and reproducibility, performs
well upon multiplexing, and ensures an effi-
cient C. trachomatis detection in samples
where one of the targets is lost. Adoption of
these reactions could be a launching point in
the development of a quantitative kit for both
in-house use and commercial production.
List of abbreviations
PCR, polymerase chain reaction; Cq – thresh-
old cycle in PCR amplification; geq/rxn, ge-
nome-equivalents per reaction; bp, base pairs.
FAM,6-carboxyfluorescein; HEX, hexachlo-
rofluorescein; Cy5, cyanine-5; BHQ-1,2 and
3, black-hole quencher-1,2 and 3, respectively.
Funding
This research was performed in the framework
of the ”Program for Typing and Certification
of Microbial and Virial Stocks in Profile
Institutions” curated by the State Scientific
Control Institute of Biotechnology and Strains
of Microorganisms. Y.V. was supported by
Ukrmedspilka, Ltd, Kyiv, Ukraine
Acknowledgements
We are grateful to Dr. Maria Obolenska (Institute
of Molecular Biology and Genetics, Kyiv,
Ukraine) for providing her lab premises for some
experiments. We also thank Mykhailo Tukalo
(Institute of Molecular Biology and Genetics,
Kyiv, Ukraine) for the pUC18-tRNATyr plasmid.
REFERENCES
1. Hooppaw AJ, Fisher DJ. A Coming of Age Story:
Chlamydia in the Post-Genetic Era. Infect Immun.
2015;84(3):612–21.
2. Beatty WL, Morrison RP, Byrne GI. Persistent chla-
mydiae: from cell culture to a paradigm for chlamyd-
ial pathogenesis. Microbiol Rev. 1994;58(4):686–99.
3. Elwell C, Mirrashidi K, Engel J. Chlamydia cell
biology and pathogenesis. Nat Rev Microbiol.
2016;14(6):385–400.
Table. Oligonucleotides used in this study
Name Target 5’ - mod Sequence 3’ - mod Quantity,
pmol/rxn
CT 16s OD fwd
16s rRNA
AGTGGCGGAAGGGTTAGTAATG 10
CT 16s OD rev TCACATAGACTCTCCCTTAACCGA 10
CT 16s OD probe HEX TGTGGCGATATTTGGGCATCCGAG BHQ2 3
CT CP OD fwd
Cryptic
plasmid
GCGAATCAGATCCGGTTGC 15
CT CP OD rev CACATCTGCCGTCTTGCTCTATTTG 15
CT CP OD probe FAM TGCTTTCAGATTTGCGAGACAGCGGT BHQ1 3
bLctm fwd
pUC18
plasmid
TTTCCGTGTCGCCCTTATTC 5
bLctm rev CCCAACTGATCTTCAGCATCTT 5
bLctm probe Сy5 TGCTCACCCAGAAACGCTGG BHQ3 2
127
A dual-target strategy for the detection of Chlamydia trachomatis by real-time PCR
4. Lanjouw E, Ouburg S, de Vries HJ, Stary A, Rad-
cliffe K, Unemo M. 2015 European guideline on the
management of Chlamydia trachomatis infections.
Int J STD AIDS. 2016;27(5):333–48.
5. Carlson JH, Whitmire WM, Crane DD, Wicke L,
Virtaneva K, Sturdevant DE, Kupko JJ 3rd, Porcella
SF, Martinez-Orengo N, Heinzen RA, Kari L, Caldwell
HD. The Chlamydia trachomatis plasmid is a tran-
scriptional regulator of chromosomal genes and a
virulence factor. Infect Immun. 2008;76(6):2273–83.
6. Ostergaard L, Birkelund S, Christiansen G. Use of
polymerase chain reaction for detection of Chlamydia
trachomatis. J Clin Microbiol. 1990;28(6):1254–60.
7. Palmer L, Falkow S. A common plasmid of Chla-
mydia trachomatis. Plasmid. 1986;16(1):52–62.
8. Unemo M, Clarke IN. The Swedish new variant of
Chlamydia trachomatis. Curr Opin Infect Dis.
2011;24(1):62–9.
9. Seth-Smith HM, Harris SR, Persson K, Marsh P,
Barron A, Bignell A, Bjartling C, Clark L, Cutclif-
fe LT, Lambden PR, Lennard N, Lockey SJ,
Quail MA, Salim O, Skilton RJ, Wang Y, Holland MJ,
Parkhill J, Thomson NR, Clarke IN. Co-evolution
of genomes and plasmids within Chlamydia tracho-
matis and the emergence in Sweden of a new vari-
ant strain. BMC Genomics. 2009;10:239.
10. An Q, Olive DM. Molecular cloning and nucleic
acid sequencing of Chlamydia trachomatis 16S
rRNA genes from patient samples lacking the cryp-
tic plasmid. Mol Cell Probes. 1994;8(5):429–35.
11. Yeow TC, Wong WF, Sabet NS, Sulaiman S, Shah-
hosseini F, Tan GM, Movahed E, Looi CY, Shan-
kar EM, Gupta R, Arulanandam BP, Hassan J, Abu
Bakar S. Prevalence of plasmid-bearing and plas-
mid-free Chlamydia trachomatis infection among
women who visited obstetrics and gynecology clin-
ics in Malaysia. BMC Microbiol. 2016;16:45.
12. Dutilh B, Bébéar C, Rodriguez P, Vekris A, Bonnet J,
Garret M. Specific amplification of a DNA sequence
common to all Chlamydia trachomatis serovars us-
ing the polymerase chain reaction. Res Microbiol.
1989;140(1):7–16.
13. Pickett MA, Everson JS, Pead PJ, Clarke IN. The
plasmids of Chlamydia trachomatis and Chlamydophi-
la pneumoniae (N16): accurate determination of copy
number and the paradoxical effect of plasmid-curing
agents. Microbiology. 2005;151(Pt 3):893–903.
14. Patel AL, Sachdev D, Nagpal P, Chaudhry U, Son-
kar SC, Mendiratta SL, Saluja D. Prevalence of
Chlamydia infection among women visiting a gyn-
aecology outpatient department: evaluation of an
in-house PCR assay for detection of Chlamydia
trachomatis. Ann Clin Microbiol Antimicrob.
2010;9:24. doi: 10.1186/1476-0711-9–24.
15. Monstein HJ, Kihlström E, Tiveljung A. Detection
and identification of bacteria using in-house broad
range 16S rDNA PCR amplification and genus-
specific DNA hybridization probes, located within
variable regions of 16S rRNA genes. APMIS.
1996;104(6):451–8.
16. Gong S, Yang Z, Lei L, Shen L, Zhong G. Characteriza-
tion of Chlamydia trachomatis plasmid-encoded open
reading frames. J Bacteriol. 2013;195(17):3819–26.
17. Chiang CS, Liu CP, Weng LC, Wang NY, Liaw GJ.
Presence of beta-lactamase gene TEM-1 DNA se-
quence in commercial Taq DNA polymerase. J Clin
Microbiol. 2005;43(1):530–1.
18. Mylonas I. Female genital Chlamydia trachomatis
infection: where are we heading? Arch Gynecol
Obstet. 2012;285(5):1271–85.
19. Haggerty CL, Gottlieb SL, Taylor BD, Low N, Xu F,
Ness RB. Risk of sequelae after Chlamydia tracho-
matis genital infection in women. J Infect Dis.
2010;201 Suppl 2:S134–55.
20. Phillipson L, Gordon R, Telenta J, Magee C, Jans-
sen M. A review of current practices to increase
Chlamydia screening in the community – a consum-
er-centred social marketing perspective. Health
Expect. 2016;19(1):5–25.
Двоцільова стратегія виявлення Chlamydia
trachomatis за допомогою ПЛР у реальному часі
Я. О. Вітренко, О. М. Дерябін
Мішенню тестів діагностики C. trachomatis першого
покоління є криптична плзмда. Нещодавно відкриті
штами без цільового сегмента ДНК (т.зв. «Шведскі»
варіанти) або повністю позбавлені плазміди не діа-
гностуються ПЛР. Мета. Запропоновано використову-
вати хромосомний ген в якості додаткової мішені, що
дозволить підстрвахувати плазмідний ПЛР-тест і може
128
Y. A. Vitrenko, O. M. Deryabin
підвищити загальну ефективність діагностики.
Методи. Мультиплексна система з двох ПЛР була
складена для одночасної детекції криптичної плазміди
і фрагмента гена 16s рРНК. Праймери на 16s рРНК
можуть давати сигнал ПЛР при аналізі ряду видів
Chlamydia. Додавання зонда типу Taqman (необхідно-
го для ПЛР в реальному часі) звужує спектр виявляв
видів до C. trachomatis. У той же час, ПЛР з пла-зміди
володіє специфічністю виключно до C. trachomatis.
Результати. Чутливість ПЛР з плазміди і гена 16s
рРНК досягала від 1 до 10 геном-еквівалентів на ре-
акцію, а ефективність – близько 100 %. Реакція в муль-
типлексі не зменшує аналітичну чутливість. Додавання
до реакційної суміші ДНК клінічних зразків не впли-
вало на ПЛР з чистою ДНК C. trachomatis, що також
демонструє надійність системи. Кінетику цих двох
реакцій проаналізовано на 49 зразках ДНК з мазків,
позитивних до C. trachomatis. Для 45 зразках показано
хорошу кореляцію порогових циклів ампліфікації Cq –
основного аналітичного параметра ПЛР у реальному
часі. Висновки. Одночасна детекція хромосомної і
плазмідной мішені в мультиплексній ПЛР забезпечує
високу чутливість і має перевагу при аналізі зразків з
втраченою плазмидою через деградацію ДНК або
контрселекціі при терапії. Двоцільова стратегія ПЛР,
може бути основою для ефективного внутрішньола-
бораторного або комерційного діагностичного тесту.
К л юч ов і с л ов а: Chlamydia trachomatis, ПЛР у
реальному часі, ген 16s рРНК, криптична плазміда
Двухцелевая стратегия выявления Chlamydia
trachomatis с помощью ПЦР в реальном
времени
Я. А. Витренко, О. Н. Дерябин
Мишенью тестов диагностики C. trachomatis первого
поколения является криптическая плазмида. Недавно
открытые штаммы без целевого сегмента ДНК(т.н.
«шведские» варианты) или полностью лишенные плаз-
миды не диагностируются ПЦР. Цель. Предложено
использовать хромосомный ген в качестве дополни-
тельной мишени, что позволит подстраховать плазмид-
ный ПЦР-тест и может повысить общую эффектив-
ность диагностики. Методы. Мультиплексная система
из двух ПЦР была составлена для одновременной де-
текции криптической плазмиды и фрагмента гена 16s
рРНК. Праймери на 16s рРНК могут давать сигнал ПЦР
при анализе ряда видов Chlamydia. Добавление зонда
типа Taqman (необходимого для ПЦР в реальном вре-
мени) сужает спектр виявляемых видов до
C. trachomatis. В то же время, ПЦР с плазмиды обла-
дает специфичностью исключительно к C. trachomatis.
Результаты. Чувствительность ПЦР с плазмиды и гена
16s рРНК достигала от 1 до 10 геном-эквивалентов на
реакцию, а эффективность – около 100 %. Реакция в
мультиплексе не уменшала аналитическую чувстви-
тельность. Добавление к реакционнной смеси ДНК из
клинических образцов не влияло на ПЦР с чистой ДНК
C. trachomatis, что также демонстрирует надежность
системы. Кинетика этих двух реакций проанализиро-
вана на 49 образцах ДНК из мазков, позитивных по
C. trachomatis. В 45 образцах реакции показали хоро-
шую корреляцию порогових циклов амплификации
Cq – основного аналитического параметра ПЦР в ре-
альном времени. Выводы. Одновременная детекция
хромосомной и плазмидной мишеней в мультиплексной
ПЦР обеспечивает высокую чувствительность и имеет
преимущество при анализе образцов с утраченой плаз-
мидой из-за деградации ДНК или контрселекции при
терапии. Двух-целевая стратегия ПЦР, может быть
основой для эффективного внутрилабораторного или
коммерческого диагностичного теста.
К л юч е в ы е с л ов а: Chlamydia trachomatis, ПЦР у
реальном времени, ген 16s рРНК, криптичская плазмида
Received 13.09.2017
|