Phylogenetic analysis of Ukrainian seed-transmitted isolate of Soybean mosaic virus
Soybean mosaic virus (SMV) is seed transmitted and can cause significant reductions in the yield and seed quality in soybean (Glycine max). The seed transmission rate of different SMV isolates is 0–43 %. The question regarding SMV genes involved in the seed transmission of its isolates remains open....
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут молекулярної біології і генетики НАН України
2018
|
Назва видання: | Вiopolymers and Cell |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154339 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Phylogenetic analysis of Ukrainian seed-transmitted isolate of Soybean mosaic virus / L.T. Mishchenko, A.A. Dunich, I.S. Shcherbatenko // Вiopolymers and Cell. — 2018. — Т. 34, № 3. — С. 229-238. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-154339 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1543392019-07-07T12:23:48Z Phylogenetic analysis of Ukrainian seed-transmitted isolate of Soybean mosaic virus Mishchenko, L.T. Dunich, A.A. Shcherbatenko, I.S. Genomics, Transcriptomics and Proteomics Soybean mosaic virus (SMV) is seed transmitted and can cause significant reductions in the yield and seed quality in soybean (Glycine max). The seed transmission rate of different SMV isolates is 0–43 %. The question regarding SMV genes involved in the seed transmission of its isolates remains open. The phylogenetic studies of Ukrainian seed-transmitted SMV isolates have not been conducted. Aim. Phylogenetic analysis of the CP gene region of the SMV isolate, which has the ability to seed transmission. Methods. RNA extraction from plant material, RT-PCR, sequencing, phylogenetic analysis. Results. For the first time, the phylogenetic analysis of 430 nt CP gene sequence of seed-transmitted SMV isolate SKS-18 was performed. The highest level of the nucleotide sequences identity (98.8 %) and amino acid sequences (98.6 %), the isolate SKS-18 has with the Iranian isolates Ar33, Lo3, American isolate VA2, and Ukrainian isolate UA1Gr. Two unique amino acid substitutions (Ser→Cys at position 1 and Lys→Ala at position 2) in the studied CP gene region of SKS-18 are revealed. Conclusions. The isolate SKS-18 is localized in the same cluster with the isolates of the highest nucleotide identity, that may be due to their similar variability. Unique amino acid substitutions in the studied CP gene region of SKS-18 can be involved to its seed transmission and other important functions of the infectious cycle, the identification of which is necessary for the development of effective plant protection measures against viral diseases. Вірус мозаїки сої (ВМС) передається насінням і може спричиняти значні зниження врожаїв та якості насіння рослин сої (Glycine max). Ступінь насіннєвої передачі різних ізолятів ВМС складає 0–43 %. Питання про те, які саме гени ВМС задіяні у процесі насіннєвої передачі його ізолятів досі залишається відкритим. Філогенетичних досліджень для українських ізолятів ВМС, які передаються насінням, не проводилось. Мета. Провести філогенетичний аналіз гена CP ізоляту ВМС, який передається насінням. Методи. Виділення тотальної РНК із рослинного матеріалу, RT-PCR, сиквенування, філогенетичний аналіз. Результати. Вперше проведено філогенетичний аналіз послідовностей ділянки (430 пн) гена капсидного білка ВМС ізоляту SKS-18, який передається насінням. Найвищий відсоток ідентичності за нуклеотидною (98,8 %) та за амінокислотною (98,6 %) послідовністю ізолят SKS-18 має з іранськими ізолятами Ar33, Lo3, американським ізолятом VA2, а також українським ізолятом UA1Gr. У досліджуваній ділянці гену CP ізоляту SKS-18 виявлено унікальні амінокислотні заміщення у позиціях 1 (Ser→Cys) та 2 (Lys→Ala). Висновки. Ізолят SKS-18 локалізується в одному кластері з ізолятами з найбільшою ідентичністю нуклеотидів, що може бути наслідком їх подібної мінливості. Унікальні амінокислотні заміщення у досліджуваній ділянці гену CP ізоляту SKS-18 можуть бути залучені до насіннєвої передачі вірусу та інших важливих функцій інфекційного циклу, з’ясування яких необхідне для розроблення ефективних засобів захисту рослин від вірусних хвороб. Вирус мозаики сои (ВМС) передается семенами и может вызывать значительные снижения урожая и качества семян растений сои (Glycine max). Степень семенной передачи различных изолятов ВМС составляет 0–43 %. Вопрос о том, какие именно гены ВМС задействованы в процессе семенной передачи его изолятов, до сих пор остается открытым. Филогенетических исследований для украинских изолятов ВМС, передающихся семенами, не проводилось. Цель. Провести филогенетический анализ гена CP изолята ВМС, который передается семенами. Методы. Выделение тотальной РНК из растительного материала, RT-PCR, сиквенирование, филогенетический анализ. Результаты. Впервые проведен филогенетический анализ последовательностей участка (430 пн) гена капсидного белка изолята ВМС SKS-18, который передается семенами. Наиболее высокий процент идентичности по нуклеотидной (98,8 %) и аминокислотной (98,6 %) последовательности изолят SKS-18 имеет с иранскими изолятами Ar33, Lo3, американским изолятом VA2, а также украинским изолятом UA1Gr. В исследуемом участке гена CP изолята SKS-18 выявлены уникальные аминокислотные замещения в положении 1 (Ser→Cys) и в положении 2 (Lys→Ala). Выводы. Изолят SKS-18 локализуется в одном кластере с изолятами с наибольшей идентичностью нуклеотидов, что может быть следствием их подобной изменчивости. Уникальные аминокислотные замещения в исследуемом участке гена CP изолята SKS-18 могут быть задействованы в семенной передаче вируса и других важных функциях инфекционного цикла, выяснение которых необходимо для разработки эффективных средств защиты растений от вирусных болезней. 2018 Article Phylogenetic analysis of Ukrainian seed-transmitted isolate of Soybean mosaic virus / L.T. Mishchenko, A.A. Dunich, I.S. Shcherbatenko // Вiopolymers and Cell. — 2018. — Т. 34, № 3. — С. 229-238. — Бібліогр.: 27 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.00097D http://dspace.nbuv.gov.ua/handle/123456789/154339 578.864/578.32 en Вiopolymers and Cell Інститут молекулярної біології і генетики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Genomics, Transcriptomics and Proteomics Genomics, Transcriptomics and Proteomics |
spellingShingle |
Genomics, Transcriptomics and Proteomics Genomics, Transcriptomics and Proteomics Mishchenko, L.T. Dunich, A.A. Shcherbatenko, I.S. Phylogenetic analysis of Ukrainian seed-transmitted isolate of Soybean mosaic virus Вiopolymers and Cell |
description |
Soybean mosaic virus (SMV) is seed transmitted and can cause significant reductions in the yield and seed quality in soybean (Glycine max). The seed transmission rate of different SMV isolates is 0–43 %. The question regarding SMV genes involved in the seed transmission of its isolates remains open. The phylogenetic studies of Ukrainian seed-transmitted SMV isolates have not been conducted. Aim. Phylogenetic analysis of the CP gene region of the SMV isolate, which has the ability to seed transmission. Methods. RNA extraction from plant material, RT-PCR, sequencing, phylogenetic analysis. Results. For the first time, the phylogenetic analysis of 430 nt CP gene sequence of seed-transmitted SMV isolate SKS-18 was performed. The highest level of the nucleotide sequences identity (98.8 %) and amino acid sequences (98.6 %), the isolate SKS-18 has with the Iranian isolates Ar33, Lo3, American isolate VA2, and Ukrainian isolate UA1Gr. Two unique amino acid substitutions (Ser→Cys at position 1 and Lys→Ala at position 2) in the studied CP gene region of SKS-18 are revealed. Conclusions. The isolate SKS-18 is localized in the same cluster with the isolates of the highest nucleotide identity, that may be due to their similar variability. Unique amino acid substitutions in the studied CP gene region of SKS-18 can be involved to its seed transmission and other important functions of the infectious cycle, the identification of which is necessary for the development of effective plant protection measures against viral diseases. |
format |
Article |
author |
Mishchenko, L.T. Dunich, A.A. Shcherbatenko, I.S. |
author_facet |
Mishchenko, L.T. Dunich, A.A. Shcherbatenko, I.S. |
author_sort |
Mishchenko, L.T. |
title |
Phylogenetic analysis of Ukrainian seed-transmitted isolate of Soybean mosaic virus |
title_short |
Phylogenetic analysis of Ukrainian seed-transmitted isolate of Soybean mosaic virus |
title_full |
Phylogenetic analysis of Ukrainian seed-transmitted isolate of Soybean mosaic virus |
title_fullStr |
Phylogenetic analysis of Ukrainian seed-transmitted isolate of Soybean mosaic virus |
title_full_unstemmed |
Phylogenetic analysis of Ukrainian seed-transmitted isolate of Soybean mosaic virus |
title_sort |
phylogenetic analysis of ukrainian seed-transmitted isolate of soybean mosaic virus |
publisher |
Інститут молекулярної біології і генетики НАН України |
publishDate |
2018 |
topic_facet |
Genomics, Transcriptomics and Proteomics |
url |
http://dspace.nbuv.gov.ua/handle/123456789/154339 |
citation_txt |
Phylogenetic analysis of Ukrainian seed-transmitted isolate of Soybean mosaic virus / L.T. Mishchenko, A.A. Dunich, I.S. Shcherbatenko // Вiopolymers and Cell. — 2018. — Т. 34, № 3. — С. 229-238. — Бібліогр.: 27 назв. — англ. |
series |
Вiopolymers and Cell |
work_keys_str_mv |
AT mishchenkolt phylogeneticanalysisofukrainianseedtransmittedisolateofsoybeanmosaicvirus AT dunichaa phylogeneticanalysisofukrainianseedtransmittedisolateofsoybeanmosaicvirus AT shcherbatenkois phylogeneticanalysisofukrainianseedtransmittedisolateofsoybeanmosaicvirus |
first_indexed |
2025-07-14T05:58:29Z |
last_indexed |
2025-07-14T05:58:29Z |
_version_ |
1837600824135516160 |
fulltext |
229
L. T. Mishchenko, A. A. Dunich, I. S. Shcherbatenko
© 2018 L. T. Mishchenko et al.; Published by the Institute of Molecular Biology and Genetics, NAS of Ukraine on behalf
of Biopolymers and Cell. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any
medium, provided the original work is properly cited
UDC 578.864/578.32
Phylogenetic analysis of Ukrainian seed-transmitted isolate of Soybean
mosaic virus
L. T. Mishchenko1, A. A. Dunich1, I. S. Shcherbatenko2
1 Educational and Scientific Center "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv
64/13, Volodymyrska Str., Kyiv, Ukraine, 01601
2 D. K. Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
154, Academika Zabolotnogo Str., Kyiv, Ukraine, 03143
lmishchenko@ukr.net, korenevochka1983@ukr.net
Soybean mosaic virus (SMV) is seed transmitted and can cause significant reductions in the
yield and seed quality in soybean (Glycine max). The seed transmission rate of different SMV
isolates is 0-43%. The question regarding SMV genes involved in the seed transmission of its
isolates remains open. The phylogenetic studies of Ukrainian seed-transmitted SMV isolates
have not been conducted. Aim. Phylogenetic analysis of the CP gene region of the SMV
isolate, which has the ability to seed transmission. Methods. RNA extraction from plant ma-
terial, RT-PCR, sequencing, phylogenetic analysis. Results. For the first time, the phyloge-
netic analysis of 430 nt CP gene sequence of seed-transmitted SMV isolate SKS-18 was
performed. The highest level of the nucleotide sequences identity (98.8%) and amino acid
sequences (98.6%), the isolate SKS-18 has with the Iranian isolates Ar33, Lo3, American
isolate VA2, and Ukrainian isolate UA1Gr. Two unique amino acid substitutions (Ser→Cys
at position 1 and Lys→Ala at position 2) in the studied CP gene region of SKS-18 are revealed.
Conclusions. The isolate SKS-18 is localized in the same cluster with the isolates of the high-
est nucleotide identity, that may be due to their similar variability. Unique amino acid substitu-
tions in the studied CP gene region of SKS-18 can be involved to its seed transmission and
other important functions of the infectious cycle, the identification of which is necessary for
the development of effective plant protection measures against viral diseases.
K e y w o r d s: Soybean mosaic virus, Glycine max, seed transmission, sequencing, phyloge-
netic analysis.
Introduction
Fourteen of 35 economically important vi-
ruses and viroid species are aphid-transmitted
and, among these, ten belong to the potyvi-
ruses [1]. In this list Soybean mosaic virus
(SMV) is present too.
The SMV seed transmission rate is 0-43%.
As with other members of the Potyviridae, the
efficiency with which SMV is transmitted
Genomics, Transcriptomics
and Proteomics
ISSN 1993-6842 (on-line); ISSN 0233-7657 (print)
Biopolymers and Cell. 2018. Vol. 34. N 3. P 229–238
doi: http://dx.doi.org/10.7124/bc.00097D
mailto:lmishchenko@ukr.net
mailto:korenevochka1983@ukr.net
230
L. T. Mishchenko, A. A. Dunich, I. S. Shcherbatenko
through seed is dependent upon the strain of
virus analyzed, the genotype of the host and
the time of infection [2-4]. Recent studies [5]
showed that SMV transmission occurs via
infection of embryo. But it was also revealed
that SMV is present in all seed parts: seed coat,
radicle and cotyledon — 23%, 18% and 33%,
respectively. For the virus to be transmitted
through seed, it must infect embryos and sur-
vive during seed germination.
The genetics of viruse seed transmission
has not been studied enough. It is known that
the hosts resistance to the seed transmission
of BSMV is controlled by a single recessive
gene. In contrast, the seed transmission of
PSbMV and Alfalfa mosaic virus is controlled
by multiple genes in a quantitative manner.
The study on the viral and host determinants
of the strain-specific transmission of SMV
through seed has started only recently. So, it
was revealed that the CP sequences are re-
quired for the transmission of SMV through
seed [3]. The highest nucleotide divergence
is noted for the P1 gene (involved in host
adaptation) of potyviruses and the P3 gene
(experimentally verified as the SMV virulence
determinants with the HC-Pro and CI pro-
teins) [6-7]. In contrast, the CP gene of SMV,
like many other potyviruses, is more conser-
vative [6, 8-10]. But recently it was shown
that SMV is highly replicated in the develop-
ing seed. Several single nucleotide variations
(SNVs) in different regions of genome of the
seed-transmitted SMV were found [11].
Moreover, it was found that only a single-
amino-acid change near the C terminus of the
CP of certain SMV strains led to the impos-
sibility to seed transmission [3] that testifies
to the involving of the CP gene sequences
into theseed transmission of Soybean mosaic
virus.
So, the aim of the study was to perform
phylogenetic analysis of the CP gene region
of the Ukrainian seed-transmitted SMV isolate.
Materials and methods
Molecular analyzes
Total RNA was extracted from fresh leaves
using Genomic DNA purification kit (Thermo
Scientific, USA) following the manufacturer’s
instructions.
Two step RT-PCR was performed. The re-
verse transcription was performed using
RevertAid Reverse Transcriptase — geneti-
cally modified MMuLV RT (Thermo Scientific,
USA) according to the manufacturer’s instruc-
tions. Specific oligonucleotide primers to part
of SMV CP gene were used: SMV-CPf:
5’-CAAGCAGCAAAGATGTAAATG-3’) and
SMV-CPr: 5’-GTCCATATCTAGGCATA-
TACG-3’ [12]. DNA product 469 bp was am-
plified. Amplification of the part of SMV CP
gene was performed in 12.5 µl of Dream Taq
PCR Master Mix (2x) buffer (containing
Dream Taq DNA polymerase, 2X Dream Taq
buffer, 0.4 mM of each dNTP and 4 mM of
MgCl2), 7.5 µl nuclease-free water, 1 µl of
each primer (10 µM), and 3 µl of cDNA. The
temperature regime for amplification reactions
was as follows: initial denaturation for 3 min
at 95 °C, followed by 35 cycles of 95 °C for
30 s, 55 °C for 30 s, and 72 °C for 30 s. The
final extension was at 72 °C for 10 min. PCR
products were separated on a 1.5% agarose gel
with DNA markers MassRuler DNA Ladder
Mix ready-to-use (SM 0403, Thermo Scientific,
USA).
231
Phylogenetic analysis of Ukrainian seed-transmitted isolate of Soybean mosaic virus
The PCR products were purified from the
agarose gel using a QIAquick Gel Extraction
Kit (Qiagen, Great Britain) following the man-
ufacturer’s instructions. Sequencing of the
purified amplified DNA fragments carried out
with the 3130 Genetic Analyzer (Applied
Biosystems, USA).
Phylogenetic analysis
The CP gene sequences of the Ukrainian
SMV isolate were compared with the SMV
sequences in the NCBI database using the
BLAST program. SMV isolates used in this
study are presented in Table 1. Nucleotide and
amino acid sequences were aligned using
Clustul W in MEGA 7 [13]. Phylogenetic trees
for the part of SMV coat protein gene were
constructed by the maximum-likelihood meth-
od (ML) [14] using the best-fitting evolution-
ary models. To check the reliability of the
constructed trees, the bootstrap test with 1000
bootstrap replications was used. Aligned CP
amino acid sequences were visualized and
compared using BioEdit sequence alignment
editor.
Synonymous/nonsynonymous (dN/dS) muta-
tion ratio calculations. To calculate the dN/dS
ratio, an indicator of the evolutionary direc-
tion, the CP nucleotide sequences of all SMV
isolates were codon-aligned. The ratio of the
rate of nonsynonymous (dN) to the rate of
synonymous (dS) mutations was calculated
using the Nei-Gojoboori method in the SNAP
program [15].
Results and Discussion
Phylogenetic analysis was performed for SMV
isolated from soybean plants cv. Kordoba
(Sumy region) named as SKS-18. The rate of
seed transmission of SKS-18 was determined
as 3.3% that was shown by us earlier [16].
Nucleotide (nt) and amino acid (aa) sequence,
430 nt of the CP gene region of the seed-
transmitted SMV isolate SKS-18, localized at
the genomic position 8640-9069, was com-
pared with the sequences of 33 SMV isolates/
strains from GenBank (Tabl.1).
It has been established that the 430 nt region
of the CP gene of SKS-18 has nucleotide se-
quence identity from 98.8% to 89.8%, that is
from 5 to 44 nucleotide substitutions.
According to the nt sequence of the studied
region of the CP gene, the isolate SKS-18 has
the highest percentage of identity (98.8%, 4 nt
substitutions) with Iranian isolates Ar33 and
Lo3, American isolate VA2, as well as
Ukrainian isolate UA1Gr. SKS-18 has a high
identity with other isolates studied in China —
XFQ014 (98.6%) and HB-S19 (97.6%),
Poland — M (98.6%), Iran — Go11 (98.4%)
and in USA — the strain 1083 (97.9%), which
are 6, 10, 6, 7 and 9 nucleotide substitutions,
respectively (Table 1).
The phylogenetic tree presented in the Fig.
1a is fully consistent with the data in Table 1
-the isolate SKS-18 is located in one cluster
with isolates of the highest nucleotide identity:
Ar33 and Lo3, VA2, UA1Gr, XFQ014, HB-
S19, M, Go11 strain 1083, as well as strain C,
the isolate SV-15. Unlike nucleotide, the vast
majority of isolates (29 out of 33) are com-
pletely identical with each other by amino acid
sequences. Only G7A, G7, G6H have 1 aa
substitution, G7d and SKS-18 have two aa
substitutions (Fig. 1b, Table 1).
Classification of strains/isolates of SMV is
rather complicated. In the United States Cho
and Goodman (1979) 98 SMV isolates are
232
L. T. Mishchenko, A. A. Dunich, I. S. Shcherbatenko
Table 1. Identity of Ukrainian SMV isolate SKS-18 with isolates from other countries for nucleotide and amino acid
sequences of the part of CP gene, %
No Isolate name Accession No
in GenBank
Country
of origin Reference
nt аа
%
Su
bs
tit
ut
io
ns
%
Su
bs
tit
ut
io
ns
1 UA1Gr JF431105 Ukraine [12] 98.8 5 98.6 0
2 HB-S19 KR065491 China GenBank 97.6 10 98.6 0
3 XFQ014 KP710876 China [8] 98.6 6 98.6 0
4 SC7-N KP710868 China [8] 91.6 36 98.6 0
5 A KM886930 Poland [17] 89.8 44 98.6 0
6 M KM886929 Poland [17] 98.6 6 98.6 0
7 Ar33 KF297335 Iran [6] 98.8 5 98.6 0
8 Go11 KF135491 Iran [6] 98.4 7 98.6 0
9 Lo3 KF135490 Iran [6] 98.8 5 98.6 0
10 G1 FJ640977 USA [9] 90.1 43 98.6 0
11 G2 S42280 USA [9] 91.6 36 98.6 0
12 G3 FJ640978 USA [9] 89.8 44 98.6 0
13 G4 FJ640979 USA [9] 91.4 37 98.6 0
14 G5 AY294044 South Korea [18] 92.4 33 98.6 0
15 G5H FJ807701 South Korea [19] 93.2 29 98.6 0
16 G6 FJ640980 USA [10] 91.4 37 98.6 0
17 G6H FJ640981 South Korea [19] 90.3 42 97.9 1
18 G7 AY216010 USA [20] 90.3 42 97.9 1
19 G7A FJ640982 USA [9] 90.3 42 97.9 1
20 G7d AY216987 USA [20] 90.1 43 97.2 2
21 G7H-clone FJ807700 South Korea [21] 92.4 33 98.6 0
22 Strain 1083 AY216481 USA [10] 97.9 9 98.6 0
23 VA2 AF200584 USA [10] 98.8 5 98.6 0
24 L EU871724 Canada [22] 91.6 36 98.6 0
25 L-RB EU871725 Canada [22] 91.6 36 98.6 0
26 NP-C-L HQ166265 Canada [23] 91.4 37 98.6 0
27 NP-L HQ166266 Canada [23] 91.6 36 98.6 0
28 India KM979229 India GenBank 91.9 35 98.6 0
29 strain A, isolate SV-10 AB100444 Japan [24] 91.6 36 98.6 0
30 strain B, isolate SV-18 AB100445 Japan [24] 91.6 36 98.6 0
31 strain C, isolate SV-15 AB100446 Japan [24] 93.7 27 98.6 0
32 strain D, isolate SV-70 AB100447 Japan [24] 91.6 36 98.6 0
33 strain E, isolate SV-127 AB100448 Japan [24] 91.4 37 98.6 0
233
Phylogenetic analysis of Ukrainian seed-transmitted isolate of Soybean mosaic virus
classified into seven strains, namely G1–G7.
In addition to the difference in symptom sever-
ity, the SMV strains G1 through G7 also differ
in the efficiency with which they are transmit-
ted. The same differential system was also
utilized in Korea, resulting in additional SMV
strains such as G5H, G6H, and G7H identified.
In Japan and China, however, different sets of
soybean cultivars were used, and the isolates
of SMV collected in these two countries were
finally classified into five (A to E) and 21 (SC1
to SC21) strains, respectively. Later, Shigemori
[25] and Kanematsu, Nakano [26] attempted
to unify the classification of SMV strains from
U.S. and Japan. The investigation by the arti-
ficial inoculation of U.S. differential varieties
with the Japanese strains showed that the
Japanese strains were classified into three
groups: 1). containing A and B (corresponded
to strain G3), 2). containing strains C and D,
a b
Fig. 1. Maximum likelihood (ML) of phylogenetic tree resulting sequences of 430 bp part of the CP gene of Ukrai-
nian SMV isolates SKS-18 and isolates from other countries. Names and GenBank accession numbers are given in
Table 2: a — nucleotide sequences, Jukes-Cantor model; b — amino acids sequences, p-distance model. The values
at the nodes indicate the percentage of replicate trees in which associated taxa are clustered together (number of boot-
strap trails: 1000 replicates). The scale bar shows the number of substitutions per base.
234
L. T. Mishchenko, A. A. Dunich, I. S. Shcherbatenko
and 3). containing only E. Strains C, D, and E
corresponded to no U.S. strains [25].
Kanematsu and Nakano [26] artificially in-
oculated the Japanese differential varieties
with the U.S. strains. The U.S. strains were
also classified into three groups: 1) containing
G1 and G4 (corresponded to strain B); 2) con-
taining G2, G3, G6, and G7 (corresponded to
strain A); 3) containing only G5 (correspond-
ed to strain C), whereas strains D and E cor-
responded to no U.S. strains.
Ukrainian isolate SKS-18 was clustered into
the one clade with Japanese strain C (Fig. 1a).
According to Kanematsu and Nakano [26]
classification, Ukrainian isolate SKS-18 be-
longs to G5-group. Among all taken to the
study Japanese and US strains, SKS-18 has the
highest nucleotide and amino acid identity with
G5 strain and G5H -clone (Tabl.1).
Noteworthy, Ukrainian SMV isolate Pol-17
which was earlier studied by us had some
other phylogenetic relationships [27]. It indi-
cates the differences between these Ukrainian
SMV isolates.
To explore the evolutionary forces acting
on the SMV CP gene, the dN/dS values were
calculated for all of the SMV CP sequences
in our study (Tabl. 1). This ratio indicates the
amount of nonsynonymous to synonymous
mutations. dN/dS ratio for isolate SKS-18
compared to all other isolates was 0.0315,
for the rest of isolates — from 0.0090 to
0.0219. This indicates a higher nucleotide
diversity of the isolate SKS-18 compared to
all selected in this study SMV isolates. The
global dN/dS ratio for all sequences studied
was 0.014 (p < 0.01). The value below 1
indicates that the SMV CP gene experiences
a negative (purifying) selection pressure —
selection to maintain the sustainability of
the gene.
It was revealed 2 aa substitutions in the part
of SKS-18 CP gene: Ser→Cys — at 1st position
and Lys→Ala — at 2nd position (Fig. 2).
Only 71 aa from 143 are presented in Fig.2,
because at positions 72-143 the sequences
were identical for all SMV isolates. Amino
acid substitutions were observed also for the
isolates G6H, G7, G7A and G7d. It has been
established that the aa substitutions in SKS-18
at positions 1 and 2 are unique in comparison
with all SMV isolates taken for the analysis.
Substitution Ser → Cys requires transition
g → c (tcc → tgc or agc → tgc or simultane-
ous substitution of two nucleotides in the
codons tcg, tca, tct, agt to form the tgc codon).
The formation of the second cysteine codon
(tgt) also requires two nucleotide substitutions
in the serine codons. Lys → Ala substitution
requires two nucleotide substitutions in the
alanine codon gcg to form the lysine codon
aag, or three nucleotide substitutions in all
codons of alanine to form the lysine codon
aaa. Such simultaneous substitutions of two
or three nucleotides are of low probability, so
the mechanisms of the identified substitutions
of these amino acids are of interest for under-
standing the features of the SMV variability,
as well as their role in the seed transmission
of the virus, since only few single-amino-
acid changes near the C- terminus of the CP
of certain SMV strains led to the impossibi lity
of seed transmission [3]. The P1, CP, and the
DAG motif are also associated with seed
transmission of potyviruses, which suggests
that CP interactions with HC-Pro are impor-
tant for multiple functions in the SMV infec-
tion cycle.
235
Phylogenetic analysis of Ukrainian seed-transmitted isolate of Soybean mosaic virus
The results obtained by Domeir et al. [2]
indicated that the most poorly seed- and aphid-
transmitted SMV isolates G7 and G7F had two
mutations and G5 one mutation in the DAG
motif. However, the isolate G2 with a low seed
transmission rate had no mutations is this mo-
tif but was characterized by aa substitution in
other position (Q264 to P). Some potyviruses,
e.g., the isolates of PSbMV, have no DAG
triplets and are still transmitted efficiently by
aphids and through seed. While HC-Pro and
CP have been implicated in both aphid and
seed transmission [2], different regions of the
proteins may be involved in the two modes of
transmission.
Conclusions
By the nucleotide sequences of CP gene region,
the isolate SKS-18 has identity from 98.8% to
89.8%, that is from 5 to 44 nt substitutions. The
highest percentage of identity (98.8%, 4 nt
substitutions) is revealed with the Iranian iso-
Fig. 2. Multiple alignments of the CP part amino acid sequences of SMV isolates/strains. Numbers on top represent
the deduced CP amino acid position. Only the differences are shown
236
L. T. Mishchenko, A. A. Dunich, I. S. Shcherbatenko
lates Ar33 and Lo3, American isolate VA2, and
Ukrainian isolate UA1Gr. The isolate SKS-18
is localized in one cluster alongside the isolates
with the highest nucleotide identity: Ar33, Lo3,
VA2, UA1Gr, XFQ014, HB-S19, M, Go11,
1083, that may be due to similar variability.
The dN/dS ratio below 1 testifies to the influ-
ence of negative selection pressure on the SMV
CP gene. However, SKS-18 has a higher nu-
cleotide diversity compared to all SMV isolates
selected in this study.
By the amino acid sequences, unlike nucle-
otide, the vast majority of isolates (29 out of
33) are completely identical. It has been estab-
lished that the aa substitutions in SKS-18 at
positions 1 and 2 are unique in comparison
with all SMV isolates taken for the analysis,
because the simultaneous substitutions of two
or three nucleotides, required for the amino
acid replacement, have a very low probability.
The mechanisms of such substitutions are of
interest to understand the features of the SMV
variability, as well as its role in the seed trans-
mission of the virus. Additional phylogenetic
studies of other SMV genes are required to
identify the SMV genes involved in the seed
transmission.
REFERENCES
1. Hull R. Matthews’ Plant Virology, 4th edn. London:
Academic Press, 2002; 1029 p.
2. Domier LL, Steinlage TA, Hobbs HA, Wang Y, Her-
rera-Rodriguez G, Haudenshield JS, McCoppin NK,
Hartman GL. Similarities in seed and aphid trans-
mission among Soybean mosaic virus isolates. Plant
Dis. 2007; 91(5):546–50.
3. Jossey S, Hobbs HA, Domier LL. Role of soybean
mosaic virus-encoded proteins in seed and aphid
transmission in soybean. Phytopathology.
2013;103(9):941–8.
4. Song Y, Li C, Zhao L, Karthikeyan A, Li N, Li K,
Zhi H. Disease spread of a popular Soybean mo-
saic virus strain (SC7) in Southern China and effects
on two susceptible soybean cultivars. Philippine
Agricultural Scientist. 2016; 99(4):355–64.м
5. Bashar T. Characterization of seed transmission of
Soybean mosaic virus in soybean. Electronic Thesis
and Dissertation Repository. 2015; 105 p.
6. Ahangaran A, Habibi MK, Mohammadi GH, Win-
ter S, García-Arenal F. Analysis of Soybean mosaic
virus genetic diversity in Iran allows the characteriza-
tion of a new mutation resulting in overcoming Rsv4-
resistance. J Gen Virol. 2013;94(Pt 11): 2557–68.
7. Eggenberger AL, Hajimorad MR, Hill JH. Gain of
virulence on Rsv1-genotype soybean by an avirulent
Soybean mosaic virus requires concurrent mutations
in both P3 and HC-Pro. Mol Plant Microbe Interact.
2008;21(7):931–6.
8. Zhou GC, Shao ZQ, Ma FF, Wu P, Wu XY, Xie ZY,
Yu DY, Cheng H, Liu ZH, Jiang ZF, Chen QS,
Wang B, Chen JQ. The evolution of soybean mo-
saic virus: An updated analysis by obtaining 18 new
genomic sequences of Chinese strains/isolates. Virus
Res. 2015;208:189–98.
9. Seo JK, Ohshima K, Lee HG, Son M, Choi HS,
Lee SH, Sohn SH, Kim KH. Molecular variability
and genetic structure of the population of soybean
mosaic virus based on the analysis of complete
genome sequences. Virology. 2009;393(1):91–103.
10. Domier LL, Latorre IJ, Steinlage TA, McCoppin N,
Hartman GL. Variability and transmission by Aphis
glycines of North American and Asian Soybean mo-
saic virus isolates. Arch Virol. 2003;148(10):1925–41.
11. Jo Y, Choi H, Bae M, Kim SM, Kim SL, Lee BC,
Cho WK, Kim KH. De novo Genome Assembly and
Single Nucleotide Variations for Soybean Mosaic
Virus Using Soybean Seed Transcriptome Data.
Plant Pathol J. 2017;33(5):478–487.
12. Sherepitko DV, Budzanivska IG, Polischuk VP,
Boyko AL. Sequencing and phylogenetic analysis of
Soybean mosaic virus isolated in Ukraine. Biopolym.
Cell. 2011; 27(6):472–79.
13. Kumar S, Stecher G, Tamura K. MEGA7: Molecular
Evolutionary Genetics Analysis Version 7.0 for Big-
ger Datasets. Mol Biol Evol. 2016;33(7):1870–4.
237
Phylogenetic analysis of Ukrainian seed-transmitted isolate of Soybean mosaic virus
14. Huelsenbeck JP, Rannala B. Maximum likelihood
estimation of phylogeny using stratigraphic data.
Paleobiology. 1997; 23(2):174–80.
15. Korber B. HIV signature and sequence variation
analysis. In: Computational analysis of HIV mo-
lecular sequences, Eds. Rodrigo AG, Learn GH.
Dordrecht, Netherlands: Kluwer Academic Publish-
ers, 2002. 55–72.
16. Mishchenko LT, Polischuk VP, Molchanetc OV,
Dunich AA Seed transmission of Soybean mosaic
virus and its phylogenetic analysis. ScienceRise:
Biological Science. 2016; 3(3):18–25.
17. Jezewska M, Trzmiel K, Zarzyn´ska-Nowak A, Le-
wandowska M. Identification of Soybean mosaic
virus in Poland. J Plant Pathol. 2015; 97(2):357–62.
18. Kim W-S, Lim Y-H, Kim K-H. Complete genome
sequences of the genomic RNA of Soybean mosaic
virus strains G7H and G5. Plant Pathol J. 2003;
19(3):171–6.
19. Seo JK, Lee HG, Choi HS, Lee SH, Kim KH. Infec-
tious in vivo transcripts from a full-length clone of
Soybean mosaic virus strain G5H. Plant Pathol J.
2009; 25(1):54–61.
20. Hajimorad MR, Eggenberger AL, Hill JH. Evolution
of Soybean mosaic virus-G7 molecularly cloned
genome in Rsv1-genotype soybean results in emer-
gence of a mutant capable of evading Rsv1-medi-
ated recognition. Virol. 2003; 314(2):497–509.
21. Seo JK, Lee HG, Kim KH. Systemic gene delivery
into soybean by simple rub-inoculation with plasmid
DNA of a Soybean mosaic virus-based vector. Arch
Virol. 2009;154(1):87–99.
22. Gagarinova AG, Babu M, Poysa V, Hill JH, Wang A.
Identification and molecular characterization of two
naturally occurring Soybean mosaic virus isolates
that are closely related but differ in their ability to
overcome Rsv4 resistance. Virus Res. 2008;138(1–
2):50–6.
23. Chowda-Reddy RV, Sun H, Chen H, Poysa V, Lin H,
Gijzen M, Wang A. Mutations in the P3 protein of
Soybean mosaic virus G2 isolates determine viru-
lence on Rsv4-genotype soybean. Mol Plant Mi-
crobe Interaction. 2011; 24(1):37–43.
24. Kanematsu S, Hidaka S, Naito S. Nucleotide se-
quences of the coat protein genes of soybean mo-
saic virus 5 strains. Ann Phytopathol Soc Jpn. 1995;
61:284–85.
25. Shigemori I. Studies on the breeding on soybeans
for the resistance to soybean mosaic virus (SMV).
Bull Nagano Chushin Agr. Ex. Station. 1991; 10:
1–61.
26. Kanematsu S, Nakano M. Comparison between
Japanese and US strain of soybean mosaic virus
using differential soybean cultivars. Bull Tohoku
Agric. Res. Cent. 2015; 117: 59–62.
27. Mishchenko LT, Dunich AA, Shevchenko TP, Bud-
zanivska IG, Polischuk VP, Andriychuk OM, Mol-
chanets OV, Antipov IO. Detection of Soybean mo-
saic virus in some left-bank forest-steppe regions of
Ukraine. Mikrobiol Zh. 2017; 79(3):125–36.
Філогенетичний аналіз українського ізоляту
вірусу мозаїки сої, який передається насінням
Л. Т. Міщенко, А. А. Дуніч, І. С. Щербатенко
Вірус мозаїки сої (ВМС) передається насінням і може
спричиняти значні зниження врожаїв та якості насіння
рослин сої (Glycine max). Ступінь насіннєвої передачі
різних ізолятів ВМС складає 0–43 %. Питання про те,
які саме гени ВМС задіяні у процесі насіннєвої пере-
дачі його ізолятів досі залишається відкритим.
Філогенетичних досліджень для українських ізолятів
ВМС, які передаються насінням, не проводилось.
Мета. Провести філогенетичний аналіз гена CP ізо-
ляту ВМС, який передається насінням. Методи.
Виділення тотальної РНК із рослинного матеріалу,
RT-PCR, сиквенування, філогенетичний аналіз.
Результати. Вперше проведено філогенетичний аналіз
послідовностей ділянки (430 нт) гена капсидного біл-
ка ВМС ізоляту SKS-18, який передається насінням.
Найвищий відсоток ідентичності за нуклеотидною
(98,8 %) та за амінокислотною (98,6 %) послідовністю
ізолят SKS-18 має з іранськими ізолятами Ar33, Lo3,
американським ізолятом VA2, а також українським
ізолятом UA1Gr. У досліджуваній ділянці гену CP
ізоляту SKS-18 виявлено унікальні амінокислотні за-
міщення у позиціях 1 (Ser→Cys) та 2 (Lys→Ala).
Висновки. Ізолят SKS-18 локалізується в одному клас-
тері з ізолятами з найбільшою ідентичністю нуклео-
тидів, що може бути наслідком їх подібної мінливості.
238
L. T. Mishchenko, A. A. Dunich, I. S. Shcherbatenko
Унікальні амінокислотні заміщення у досліджуваній
ділянці гену CP ізоляту SKS-18 можуть бути залучені
до насіннєвої передачі вірусу та інших важливих функ-
цій інфекційного циклу, з’ясування яких необхідне для
розроблення ефективних засобів захисту рослин від
вірусних хвороб.
Ключові слова: вірус мозаїки сої, Glycine max,
насіннєва передача, сиквенування, філогенетичний
аналіз.
Филогенетический анализ украинского изолята
вируса мозаики сои, который передается
семенами
Л. Т. Мищенко, А. А. Дунич, И. С. Щербатенко
Вирус мозаики сои (ВМС) передается семенами и
может вызывать значительные снижения урожая и
качества семян растений сои (Glycine max). Степень
семенной передачи различных изолятов ВМС состав-
ляет 0–43 %. Вопрос о том, какие именно гены ВМС
задействованы в процессе семенной передачи его изо-
лятов, до сих пор остается открытым. Фило гене ти-
ческих исследований для украинских изолятов ВМС,
передающихся семенами, не проводилось. Цель.
Провести филогенетический анализ гена CP изолята
ВМС, который передается семенами. Методы.
Выделение тотальной РНК из растительного материа-
ла, RT-PCR, сиквенирование, филогенетический анализ.
Результаты. Впервые проведен филогенетический
анализ последовательностей участка (430 нт) гена
капсидного белка изолята ВМС SKS-18, который пере-
дается семенами. Наиболее высокий процент идентич-
ности по нуклеотидной (98,8 %) и аминокислотной
(98,6 %) последовательности изолят SKS-18 имеет с
иранскими изолятами Ar33, Lo3, американским изоля-
том VA2, а также украинским изолятом UA1Gr. В ис-
следуемом участке гена CP изолята SKS-18 выявлены
уникальные аминокислотные замещения в положении
1 (Ser→Cys) и в положении 2 (Lys→Ala). Выводы.
Изолят SKS-18 локализуется в одном кластере с изо-
лятами с наибольшей идентичностью нуклеотидов, что
может быть следствием их подобной изменчивости.
Уникальные аминокислотные замещения в исследуе-
мом участке гена CP изолята SKS-18 могут быть задей-
ствованы в семенной передаче вируса и других важных
функциях инфекционного цикла, выяснение которых
необходимо для разработки эффективных средств за-
щиты растений от вирусных болезней.
К л юч е в ы е с л ов а: вирус мозаики сои, Glycine
max, семенная передача, сиквенирование, филогене-
тический анализ.
Received 01.12.2017
|