Unrepairable substrates of nucleotide excision repair and their application to suppress the activity of this repair system

In the previous studies, the DNA with the bulky Fap-dC derivative was demonstrated to be a difficult substrate for the nucleotide excision repair (NER), a system which is involved in the removal of bulky lesions from DNA. This type of compounds could be of particular interest as possible selective N...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Popov, A.A., Evdokimov, A.N., Lukyanchikova, N.V., Petruseva, I.O., Lavrik, O.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут молекулярної біології і генетики НАН України 2019
Назва видання:Вiopolymers and Cell
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154395
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Unrepairable substrates of nucleotide excision repair and their application to suppress the activity of this repair system / A.A. Popov, A.N. Evdokimov, N.V. Lukyanchikova, I.O. Petruseva, O.I. Lavrik // Вiopolymers and Cell. — 2019. — Т. 35, № 2. — С. 107-117. — Бібліогр.: 34 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-154395
record_format dspace
spelling irk-123456789-1543952019-07-07T13:04:18Z Unrepairable substrates of nucleotide excision repair and their application to suppress the activity of this repair system Popov, A.A. Evdokimov, A.N. Lukyanchikova, N.V. Petruseva, I.O. Lavrik, O.I. Structure and Function of Biopolymers In the previous studies, the DNA with the bulky Fap-dC derivative was demonstrated to be a difficult substrate for the nucleotide excision repair (NER), a system which is involved in the removal of bulky lesions from DNA. This type of compounds could be of particular interest as possible selective NER, considerably reducing the potency of DNA repair due to competitive immobilization of protein factors involved in this process. This approach can be potentially useful to increase the efficiency of chemotherapy. Aim. To identify DNA structures containing multiple bulky adducts that can efficiently inhibit the nucleotide excision repair. Methods. Enzymatic DNA synthesis, PCR, NER-competent cell extract preparation, in vitro NER assay, HPLC. Results. The conditions for the synthesis of extended DNA containing multiple unrepairable lesions were established. A wide range of DNA structures containing modified nucleotides was obtained. All modified DNAs were shown to inhibit the in vitro activity of the NER system. The DNA structure that inhibits the NER activity with the highest efficiency was selected. Conclusions. The model DNA structures effectively inhibiting the activity of NER were found. The new data obtained here can potentially be used for both basic and applied research. У наших попередніх дослідженнях було показано, що ДНК з об'ємним похідним Fap-dC є складнорепарованим субстратом для системи ексцизійної репарації нуклеотидів (Ерн). З'єднання такого типу можуть становити особливий інтерес як можливі селективні інгібітори системи Ерн, значно знижуючи ефективність репарації ДНК шляхом зв'язування білкових чинників, залучених до даного процесу. Цей підхід може бути потенційно корисний для підвищення ефективності хіміотерапії. Мета. Дане дослідження спрямоване на пошук ДНК-структур, що містять множинні об'ємні аддукти, які з найбільшою ефективністю можуть пригнічувати активність системи. Методи. Ферментативний синтез ДНК, ПЛР, приготування Ерн-компетентних клітинних екстрактів, реакція вирізання, що каталізується білками Ерн in vitro, ВЕРХ. Результати. Проведено підбір умов синтезу протяжних модельних ДНК з множинним включенням нерепарованого пошкодження Fap-dC. Отримано ряд ДНК-структур, що містить в своєму складі різну кількість модифікованих ланок. Показано, що всі отримані ДНК пригнічують активність системи Ерн in vitro. Обрана ДНК-структура, яка пригнічує NER найбільш високою ефективністю. Висновки. Модельні ДНК з нерепарованими ушкодженнями, здатні високою ефективністю пригнічувати NER, можуть розглядатися в якості інгібіторів системи Ерн. Виявлені в даній роботі закономірності потенційно можуть бути використані для проведення як фундаментальних, так і прикладних досліджень. В наших предыдущих исследованиях было показано, что ДНК с объемным производным Fap-dC является труднорепарируемым субстратом для системы эксцизионной репарации нуклеотидов (ЭРН). Соединения такого типа могут представлять особый интерес как возможные селективные ингибиторы системы ЭРН, значительно снижая эффективность репарации ДНК путем связывания белковых факторов, вовлеченных в этот процесс. Этот подход может быть потенциально полезен для повышения эффективности химиотерапии. Цель.Текущее исследование направлено на поиск ДНК-структур, содержащих множественные объемные аддукты, которые с наибольшей эффективностью могут подавлять активность системы. Методы. Ферментативный синтез ДНК, ПЦР, приготовление ЭРН-компетентных клеточных экстрактов, реакция вырезания, катализируемая белками ЭРН in vitro, ВЭЖХ. Результаты. Проведен подбор условий синтеза протяженных модельных ДНК с множественным включением нерепарируемого повреждения Fap-dC. Получен ряд ДНК-структур, содержащий в своем составе различное количество модифицированных звеньев. Показано, что все полученные ДНК подавляют активность системы ЭРН in vitro. Выбрана ДНК-структура, которая ингибирует NER наиболее высокой эффективностью. Выводы. Модельные ДНК с нерепарируемыми повреждениями, способные высокой эффективностью подавлять NER, могут рассматриваться в качестве ингибиторов системы ЭРН. Обнаруженные в настоящей работе закономерности потенциально могут быть использованы для проведения не только фундаментальных, но и прикладных исследований. 2019 Article Unrepairable substrates of nucleotide excision repair and their application to suppress the activity of this repair system / A.A. Popov, A.N. Evdokimov, N.V. Lukyanchikova, I.O. Petruseva, O.I. Lavrik // Вiopolymers and Cell. — 2019. — Т. 35, № 2. — С. 107-117. — Бібліогр.: 34 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.00099C http://dspace.nbuv.gov.ua/handle/123456789/154395 577.213.3 en Вiopolymers and Cell Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Structure and Function of Biopolymers
Structure and Function of Biopolymers
spellingShingle Structure and Function of Biopolymers
Structure and Function of Biopolymers
Popov, A.A.
Evdokimov, A.N.
Lukyanchikova, N.V.
Petruseva, I.O.
Lavrik, O.I.
Unrepairable substrates of nucleotide excision repair and their application to suppress the activity of this repair system
Вiopolymers and Cell
description In the previous studies, the DNA with the bulky Fap-dC derivative was demonstrated to be a difficult substrate for the nucleotide excision repair (NER), a system which is involved in the removal of bulky lesions from DNA. This type of compounds could be of particular interest as possible selective NER, considerably reducing the potency of DNA repair due to competitive immobilization of protein factors involved in this process. This approach can be potentially useful to increase the efficiency of chemotherapy. Aim. To identify DNA structures containing multiple bulky adducts that can efficiently inhibit the nucleotide excision repair. Methods. Enzymatic DNA synthesis, PCR, NER-competent cell extract preparation, in vitro NER assay, HPLC. Results. The conditions for the synthesis of extended DNA containing multiple unrepairable lesions were established. A wide range of DNA structures containing modified nucleotides was obtained. All modified DNAs were shown to inhibit the in vitro activity of the NER system. The DNA structure that inhibits the NER activity with the highest efficiency was selected. Conclusions. The model DNA structures effectively inhibiting the activity of NER were found. The new data obtained here can potentially be used for both basic and applied research.
format Article
author Popov, A.A.
Evdokimov, A.N.
Lukyanchikova, N.V.
Petruseva, I.O.
Lavrik, O.I.
author_facet Popov, A.A.
Evdokimov, A.N.
Lukyanchikova, N.V.
Petruseva, I.O.
Lavrik, O.I.
author_sort Popov, A.A.
title Unrepairable substrates of nucleotide excision repair and their application to suppress the activity of this repair system
title_short Unrepairable substrates of nucleotide excision repair and their application to suppress the activity of this repair system
title_full Unrepairable substrates of nucleotide excision repair and their application to suppress the activity of this repair system
title_fullStr Unrepairable substrates of nucleotide excision repair and their application to suppress the activity of this repair system
title_full_unstemmed Unrepairable substrates of nucleotide excision repair and their application to suppress the activity of this repair system
title_sort unrepairable substrates of nucleotide excision repair and their application to suppress the activity of this repair system
publisher Інститут молекулярної біології і генетики НАН України
publishDate 2019
topic_facet Structure and Function of Biopolymers
url http://dspace.nbuv.gov.ua/handle/123456789/154395
citation_txt Unrepairable substrates of nucleotide excision repair and their application to suppress the activity of this repair system / A.A. Popov, A.N. Evdokimov, N.V. Lukyanchikova, I.O. Petruseva, O.I. Lavrik // Вiopolymers and Cell. — 2019. — Т. 35, № 2. — С. 107-117. — Бібліогр.: 34 назв. — англ.
series Вiopolymers and Cell
work_keys_str_mv AT popovaa unrepairablesubstratesofnucleotideexcisionrepairandtheirapplicationtosuppresstheactivityofthisrepairsystem
AT evdokimovan unrepairablesubstratesofnucleotideexcisionrepairandtheirapplicationtosuppresstheactivityofthisrepairsystem
AT lukyanchikovanv unrepairablesubstratesofnucleotideexcisionrepairandtheirapplicationtosuppresstheactivityofthisrepairsystem
AT petrusevaio unrepairablesubstratesofnucleotideexcisionrepairandtheirapplicationtosuppresstheactivityofthisrepairsystem
AT lavrikoi unrepairablesubstratesofnucleotideexcisionrepairandtheirapplicationtosuppresstheactivityofthisrepairsystem
first_indexed 2025-07-14T06:32:55Z
last_indexed 2025-07-14T06:32:55Z
_version_ 1837602992314908672
fulltext 107 A. Popov, A. Evdokimov, N. Lukyanchikova © 2019 A. Popov et al.; Published by the Institute of Molecular Biology and Genetics, NAS of Ukraine on behalf of Biopoly- mers and Cell. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited UDC 577.213.3 Unrepairable substrates of nucleotide excision repair and their application to suppress the activity of this repair system A. A. Popov1, A. N. Evdokimov1, N. V. Lukyanchikova1, I. O. Petruseva1, O. I. Lavrik1,2 1 Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences 8, Akademika Lavrentieva Ave., Novosibirsk, Russian Federation, 630090 2 Novosibirsk State University 2, Pirogova Str., Novosibirsk, Russian Federation, 630090 lavrik@niboch.nsc.ru In the previous studies, the DNA with the bulky Fap-dC derivative was demonstrated to be a difficult substrate for the nucleotide excision repair (NER), a system which is involved in the removal of bulky lesions from DNA. This type of compounds could be of particular interest as possible selective NER, considerably reducing the potency of DNA repair due to competi- tive immobilization of protein factors involved in this process. This approach can be poten- tially useful to increase the efficiency of chemotherapy. Aim. To identify DNA structures containing multiple bulky adducts that can efficiently inhibit the nucleotide excision repair. Methods. Enzymatic DNA synthesis, PCR, NER-competent cell extract preparation, in vitro NER assay, HPLC. Results. The conditions for the synthesis of extended DNA containing multiple unrepairable lesions were established. A wide range of DNA structures containing modified nucleotides was obtained. All modified DNAs were shown to inhibit the in vitro activity of the NER system. The DNA structure that inhibits the NER activity with the highest efficiency was selected. Conclusions. The model DNA structures effectively inhibiting the activity of NER were found. The new data obtained here can potentially be used for both basic and applied research. K e y w o r d s: DNA repair, nucleotide excision repair, unrepairable DNA lesions, model DNA substrates Introduction The nucleotide excision repair system (NER) removes from the DNA a wide range of bulky adducts that are induced into DNA by ultra- violet light (UV), various chemically active compounds (drugs, mutagenic environmental compounds), active forms of oxygen and ion- izing radiation [1]. The damages removed by the NER system include the products of pho- tocrosslinking of adjacent pyrimidine bases, platinum adducts, protein-DNA crosslinking; ISSN 1993-6842 (on-line); ISSN 0233-7657 (print) Biopolymers and Cell. 2019. Vol. 35. N 2. P 107–117 doi: http://dx.doi.org/10.7124/bc.00099C 108 A. Popov, A. Evdokimov, N. Lukyanchikova et al. adducts arising from the interaction of active derivatives of benzo[a]pyrene, benzo[c]anthra- cene, acetylaminofluorene with DNA, as well as with other bulky adducts, significantly dis- turbing the regular structure of double-stran ded DNA [2]. About 30 proteins are involved in the NER process, forming functional complexes at each stage of the reparative process [1, 3]. These proteins carry out the search for damage, its verification and subsequent removal of short oligonucleotide containing the lesion. The re- synthesis of the nucleotide sequence is per- formed by the specialized DNA repair poly- merases and several proteins of the DNA rep- lication. One of the approaches to the study of NER mechanism includes the use of the synthetic substrate analogues — double-stranded DNAs containing bulky modification in the defined position of a molecule, as well as structural analogs of the intermediates of NER process [4–9]. The model DNAs mimicking various NER intermediates can be used as a tool for determining the parameters of protein affinity to damaged DNA [10, 11]. The extended linear DNA duplexes can be also used to study the stage of damage elimination and the changes of protein-DNA complexes that occur in the NER process. Thus, the substrates with bulky groups, which are highly recognized and re- moved from the DNA by the NER system, can serve as a tool for determining the activity of this system in vitro [12]. The model DNAs containing photoactivat- able or chemically active groups are of great interest, as it can be regarded as the probes for affinity modification of proteins [13]. Various DNA derivatives containing arylazido groups have been used most widely to design photoactivatable DNA probes. Their rapid activation by exposure to UV light after the formation of a complex of photoreactive sub- strate with the protein makes it possible to study the dynamics of the process of protein- DNA interactions in NER [14]. For instance new details of the mechanism of primary dam- age recognition during the NER process were estimated using photoactivatable analogs of the NER substrates. The method of photoaf- finity modification was used to determine a character of protein-DNA interactions for the main proteins involved in the recognition and verification of the damage - XPC, RPA and XPA [10, 15–17]. Among the previously used photoactivable model DNAs, the 4-azido-2,5-difluoro-3-chlo- ropyridin-6-yl derivative of dC (Fap-dC) is of particular interest. It was shown that Fap-dC in the DNA duplex with a length of 137 bp is a practically unrepairable damage for the NER system [18]. At the same time, DNA containing Fap-dC can efficiently bind [the] NER factors [19, 20]. Fap-dC demonstrated a high effi- ciency as a probe for [the] photoaffinity modi- fication of DNA binding proteins in [the] NER- competent HeLa cell extracts [11, 18]. Thus, DNA of various lengths and structures contain- ing Fap-dC residue at the defined position was successfully used to study the NER system. The extended model DNA structures con- taining reactive and hardly repairable damage can serve as a useful tool for comparative as- sessments of the ability to suppress NER, as well as for investigations which include visu- alization of nucleoprotein complexes. The pur- pose of this work was to obtain extended model DNAs containing multiple Fap-dC 109 Unrepairable substrates of nucleotide excision repair and their application to suppress the activity of this repair system groups, and to analyze the possible use of such DNAs to suppress the activity of the NER system. Materials and Methods T4-polynucleotide kinase, T4-DNA ligase and Taq DNA polymerase were from “Biosan” (Novosibirsk); DNA polymerase β was kindly provided by S. N. Khodyreva; the set of the enzymes for DNA digestion “DNA Degradase” was produced by “ZymoResearch”; ɑ-[³²P]- dCTP and ɣ-[³²P]-ATP (3000 Ci/mmol) were produced at ICBFM SB RAS; Fap-dCTP (Fig. 1A) was synthesized as described in [21] and kindly provided by I. V. Safronov; oligo- deoxyribonucleotide containing non-nucleo- side insertion nAnt (ONT-1, Table 1; Fig. 1B) was synthesized as described in [12]; C33A (human cervical cancer cell line) cells were kindly provided by N. P. and F L. Kisselev. Furthermore, proteinase K, dNTP’s (“Biosan”, Novosibirsk), urea, N,N’-methylenbi sacrila- mide (“Amersco”), acrilamide (“Applichem”), TEMED (“Helicon”), DEAE filters DE-81 (“Whatman”), DNA Gel Extraction Kit QIAquick (“Qiagen”), Quick Start Bradford Protein Assay Kit (“Biorad”) were used in this work. The sequences of the oligodeoxyribonucle- otides (ONT) used are shown in Table 1. Synthesis of 137-nt DNA duplex containing non-nucleoside insertion nAnt. ONT-1 contain- ing non-nucleoside fragment with N-[6-(9- Table 1. The numbering, sequence and length of oligonucleotides (ONT) used. ONT # Sequence length, nt 1 5’-caccgtcMccctggat* 16 2 5’-caccgtcgccctggat 16 3 5’-tggacgatatcccgcaagaggcccggcagtaccggcataaccaagcctatgcctacagcatccaggg 67 4 5’-gacggtgccgaggatgacgatgagcgcattgttagatttcatacacggtgcctgactgcgttagcaatt 69 5 5’-gcctacagcatccagggcgacggtgccgaggatg 34 6 5’-atcaccggcgccaca 15 7 5’-gtatccgctcatgagacaat 20 8 5’-gggggctcggcaccgtcaccctggatgctgtagg 34 *M – non-nucleoside insertion nAnt. Fig. 1. Structures of model lesion used. Exo-N-{2-[N-(4- azido-2,5-difluoro-3-chloropyridin-6-yl)-3-aminopropio- nyl]aminoethyl}-deoxycytidinine (Fap-dC, A) and the non- nucleoside fragment of the modified DNA strand, contain- ing N-[6-(9-antracenylcarbomoyl)hexanoyl]-3-amino-1,2- propandiol (nAnt, B)]. A B 110 A. Popov, A. Evdokimov, N. Lukyanchikova et al. antracenylcarbomoyl)hexanoyl]-3-amino-1,2- propandiol (nAnt), flanking 5’-[³²P]-ОNТ-3 and ОNТ-4 were mixed with template ОNТ-5 in equimolar amount. The mixture was heated at 95ºС for 5 min, than slowly cooled (about of 1ºС per minute) to the room temperature. The ligation of the single strand breaks was carried out by the addition of Т4 DNA ligase and ATP with the following incubation at 12°С for 12 h. Single-stranded DNA obtained was purified by electrophoresis in polyacrylamide gel under denaturing conditions according to [22]. Briefly, the target DNA was separated by electrophoresis and was isolated from gel by electroelution to DEAE filter. The elution of oligonucleotide from DEAE filter was per- formed at 70ºС by 3 М LiClO4. DNA was precipitated with acetone and dissolved in TE buffer. The resulting modified DNA was an- nealed with the appropriate complementary strand. Synthesis of 756-nt DNA by PCR. Non- modified 756 bp DNA was obtained by PCR using pBR322 as template and ОNT-6 and ОNТ-7 as primers. The 100 μl of reaction mixture contained 25 ng of a template, 0.5 µМ primers, 0.2 mМ dNTP’s, 1.5 mM MgCl2 and 6 units of Taq DNA polymerase in Taq DNA polymerase reaction buffer. In order to obtain the modified DNA of the same length, PCR was carried out under the same conditions with addition of 5 to 160 µМ Fap-dCTP in the reac- tion mixture. PCR products were precipitated with ethanol in 0.3 M CH3COONa (pH 5.5) with linear polyacrylamide as a co-precipitant and then dissolved in TE buffer. Purification of PCR products was carried out by electro- phoresis in 1 % agarose gel. Isolation of DNA from agarose gel was performed using QIAquick Kit (“Qiagen”) according to proto- col provided by manufacturer. Resulting DNAs concentrations were deter- mined by measuring the optical density of the solution at 260 nM. The concentration of DNA obtained was calculated using “OligoCalculator”. NER-competent C33A cell extract was ob- tained by the standard method described in [23]. The concentration of protein in the ex- tract was determined using Quick Start Bradford Protein Assay Kit (“Bio Rad”), using BSA as a standard for the calibration curve. Analysis of relative NER efficiency was car- ried out by the method described in [12] using 137 bp DNA containing nAnt lesion, and ОNТ-8 as a template for detection of the exci- sion products. Briefly, the excision products were detected by annealing to the template followed by end-labeling using α-[32P]-dCTP and Taq DNA polymerase. The analysis of the excision products was performed by electro- phoresis in 10 % polyacrilamide under dena- turating conditions. Mixture of [³²P]-5ꞌ-labeled oligodeoxyribonucleotides was used as a DNA ladder. To estimate the influence of 756 bp Fap-dC- and non-modified DNA on specific excision of nAnt lesion from the model DNA the extended DNA was added into reaction mixtures during the excision reaction. Enzymatic hydrolysis of 756-strand DNA to deoxymononucleotides was performed using the DNA Degradase kit (“Zymo Researsh”) according to the manufacturer’s protocol. Analysis of a mixture of mononucleotides was performed using high performance liquid chromatography (HPLC) with chromatograph Milichrom A-02 and ProntoSIL-120-5-C18 AQ column. Gradient from 0 % acetonitrile in 0.05 triethylamine acetate (TEEAAc) to 100 % 111 Unrepairable substrates of nucleotide excision repair and their application to suppress the activity of this repair system acetonitrile in 0.05 TEEAAc was used at pH 7.5, 40°С, 0.15 ml/min and 3.9 MPa. Results and Discussion Synthesis of 756 bp DNA duplexes was per- formed using PCR. To ensure the specificity and productivity of the synthesis of the target product, the conditions for PCR were opti- mized: the time of each stage of the cycle was determined, the optimal composition of the buffer, the concentration of dNTP and primers were selected. A modified analogue of nitrogenous bases - exo-N-{2-[N-(4-azido-2,5-difluoro-3-chloro- pyridin-6-yl)-3-aminopropionyl]aminoethyl}- deoxycytidinine (Fap-dC, Fig. 1A) was used as one as the model lesion. Extended (756 bp) Fap-dC-DNAs were obtained by adding the Fap-dCTP (up to 5, 10, 20, 40, 80, and 160 μM) to the reaction mixture during PCR (Table 2). In addition to the 756 bp Fap-dC-DNA containing different number of modified nu- cleotides and non-modified DNA of the same length and sequence, 137 bp nAnt-DNA (Fig 1B) was obtained. Table 2. DNA obtained using the PCR and modified triphosphate. DNA formal name The concentration of Fap-dCTP in the reaction mixture during PCR, μM nm DNA 0 5-Fap-dC-DNA 5 10-Fap-dC-DNA 10 20-Fap-dC-DNA 20 40-Fap-dC-DNA 40 80-Fap-dC-DNA 80 160-Fap-dC-DNA 160 It was previously shown that nAnt is ef- fectively removed by proteins of the NER system from model DNA in vitro [12, 19]. The properties of nAnt-DNA as a NER substrate allow us to use it in our study for estimation of NER activity in vitro. To assess the ability of model DNAs to suppress the activity of the NER system, the influence of such DNA on NER efficiency in vitro was studied. The efficiency of excision was estimated using extracts of human cervical cancer cells C33A. The incubation of 20 nM 137 bp nAnt-DNA with cell extracts was car- ried out in [the] presence or absence of 3 nM 756 bp competitive DNA. Non-modified DNA (nm DNA) or DNA containing the Fap-dC groups was used as a competitive DNA. The products of the specific excision obtained dur- ing the reaction were analyzed in 10 % PAAG under denaturing conditions. It was found that Fap-dC-containing DNA effectively suppresses the excision of bulky lesion from nAnt-containing DNA. The ob- served decrease in the relative efficiency of nAnt excision was 50–80 %, depending on the concentration of Fap-dCTP used in the synthe- sis of Fap-dC-DNA (Fig. 2). The greatest effect was observed in the experiment, where 40-Fap- dC-DNA was used as a competitor (Fig. 2A, line 6). Thus, this DNA structure can be con- sidered as DNA with unrepairable damage, which most effectively inhibits the activity of the NER system. To estimate the number of modified nucle- otides included in 756 bp DNA during PCR, 40-Fap-dC-DNA was enzymatically hydro- lyzed using “DNA Degradase” kit. The resulting mixture of mononucleotides was analyzed by high performance liquid chro- matography (HPLC) with chromatograph Milichrom A-02 and ProntoSIL-120-5-C18 AQ column. Modified Fap-dC nucleotide has sig- 112 A. Popov, A. Evdokimov, N. Lukyanchikova et al. nificantly higher retention time in the condi- tions used, so it was possible to calculate the corresponding peak area precisely. The peak areas corresponding to unmodified nucleotides were also calculated. Taking into account the values of extinction of nucleotides at the used wavelength, the amount of the modified nu- cleotide in the resulting mixture was estimated. It was found that hydrolyzate, and, conse- quently, the 40-Fap-dC-DNA contains approx- imately one modification per 20 non-modified nucleotides. The ratio of the modified to non- modified triphosphates in the reaction mixture during PCR was also 1:20. Thus we can con- clude that the modified dC is incorporated into the DNA during DNA synthesis catalyzed with Taq DNA polymerase with high efficiency matching the efficiency of unmodified dCTP incorporation. The results are consistent with the data obtained in the study of the substrate properties of Fap-dCTP in another incorpora- tion reaction – the reaction catalyzed by DNA polymerase β [21]. For the ability of model DNA to bind repair factors, not only the DNA sequence is crucial [24], but also the spatial organization of the DNA fragment in the damaged region [25–27]. According to our previous studies, Fap-dC lesion incorporated into DNA significantly affects the double-stranded structure of DNA. The long and flexible linker enables intercala- tion of the fluoroazido-pyridyl ring into the DNA helix. It results in stacking this residue with the purine rings of the opposite dG, and no destabilization of the regular DNA duplex structure was found at the damaged site. The destabilized helical element is located on the 3′ side of the lesion [19]. Considering the Fig. 2. A — NER dual incision activity of C33A cell extract on nAnt-DNA, detected after 40 min incubation of model DNAs with cell extract. Reaction mixtures containing 20 nM nAnt-DNA were incubated with C33A cells extract for 40 min at 30°C in the absence (lane 1) or presence of 3 nM competitive DNA (lane 2 – non-modified duplex, lane 3 – 5-Fap-dC-DNA, lane 4 – 10-Fap-dC-DNA, lane 5 – 20-Fap-dC-DNA, lane 6 – 40-Fap-dC-DNA, lane 7 – 80-Fap-dC- DNA, lane 8 – 160-Fap-dC-DNA). M – markers of DNA length (nt, nucleotide), the lengths of the marker DNAs are given on the right. B — The dependence of relative efficiency of the NER on the type of competitive DNA. Maximum product accumulation was taken as unit and was detected for nAnt-DNA incubated with cell extract for 40 min. Each experiment was performed three times, error bars indicate standard deviation of the relative NER efficiency at each experimental point. A B 113 Unrepairable substrates of nucleotide excision repair and their application to suppress the activity of this repair system previously obtained data and the calculated number of the modified groups into model DNA, we can assume the possible location of Fap-dC and the destabilization caused by le- sions in Fap-dC-DNA. We assume that the ratio of modified to non-modified nucleotides into 756 bp DNA under 1:20 allows the forma- tion of several separate sites of DNA structure destabilization (Fig 3A). Such destabilization sites can be recognized by repair factors, such as XPC-HR23B, increasing their affinity for this type of structure. Being bound in unpro- ductive complexes with Fap-dC-DNA, repair proteins can no longer participate in reparative processes. The copy number of NER proteins in the cell, and hence in cell extracts, is rela- tively small [28, 29]. Therefore, even a small amount of the extended DNA is sufficient to significantly suppress the activity of NER. An increase in the ratio of modified to non- modified nucleotides in the DNA composition up to 1:20 leads to the appearance of the ad- ditional binding sites for repair factors, and hence to a more pronounced suppression of the NER activity. But a further increase in the number of modified groups leads to the inter- ference of areas of the regular double-stranded structure destabilization (Fig. 3B). The ques- tion of the spatial organization of such DNA needs additional research. However, it can be assumed that significant distortions of the ge- ometry and structure of the DNA duplex in this case interfere with their recognition as a NER substrate, and prevent the binding of repair factors with such model DNA. The model DNAs with unrepairable lesions that can inhibit NER with high efficiency are of considerable interest. It is known that the main drugs used in the treatment of malignant tumors are cytostatics. Such drugs are able to disrupt the structure of the DNA in the cell, which leads to the activation of damage repair A B Fig. 3. Estimated patterns of duplex structure destabilization in Fap-dC- DNA. The low ratio of modified to non-modified nucleotides presumably leads to the formation of separate re- gions of duplex structure destabiliza- tion (blue rectangles), while high ratio - to the formation of interfered regions (red rectangles). The most probable hydrogen bonds are also indicated: bold lines represent the hydrogen bonds occurring with more than 90 % probability, thin lines – 50–90 %, dashed line – 10–50 %. 114 A. Popov, A. Evdokimov, N. Lukyanchikova et al. systems. In case of adequate regimens of treat- ment and suitable cytostatic agent selection, the tumor cells are eliminated as a result of the induction of irreversible apoptosis or another mechanism of elimination. In this regard, the basis of successful treatment is the therapeutic “competence” of the drug used and the number of cytostatic molecules in the cell (the drug dose). However the activity of the NER system can eliminate the damage and reduce the ther- apeutic effect of anticancer drugs [30, 31]. The cytostatics with different mechanisms of action are used in the world practice. These are drugs that disrupt the DNA structure, and drugs that induce intrastrand or interstrand crosslinks. In all cases, if any of these lesions occur, a nu- cleotide excision repair system is induced as one of the earliest cell defense systems [32, 33]. If the damages have [been] detected and the repair process has occurred, the amount of damage per cell could decrease to [the] under- therapeutic levels. A cancer cell has significant genetic plasticity [34]. They are quite often highly resistant for cytostatic actions and sur- vive, increasing the chance of relapse. Therefore, the DNA structures capable of ef- fective inhibition of the activity of the NER system can be considered as potential anti- cancer drugs. The model DNA with bulky unrepairable adducts could inhibit the repair process by binding the key protein factors of the NER system. In this regard, the presence of model DNA with unreparable damage should increase the cytotoxicity of anticancer therapy based on the cytostatic agents, induc- ing inter- and intrastrand crosslinks into cell DNA, as well as the bulky lesions formation. Thus, the results of our investigation can po- tentially be used for design of DNA repair inhibitors and potentially in the applied re- search. Conclusions In the present report a new approach to the synthesis of DNA with unrepairable lesions was described. The obtained DNA structures were shown to inhibit the nucleotide excision repair in vitro. The DNA structure that inhibits the NER with the highest efficiency was se- lected for the further study and analyzed. The suggestion concerning the possible connection between the number of the modified nucleo- tides introduced in the model DNAs and their ability to inhibit the NER process was made. The data obtained in this paper will be useful for fundamental and medical research. Funding This study was supported by the Russian Science Foundation (project №17-74-10086); and Russian State funded budget project V1.57.1.2, 0309-2016-0001. REFERENCES 1. Gillet LC, Schärer OD. Molecular mechanisms of mammalian global genome nucleotide excision re- pair. Chem Rev. 2006;106(2):253–76. 2. Sugasawa K. Regulation of damage recognition in mammalian global genomic nucleotide excision repair. Mutat Res. 2010;685(1-2):29–37. 3. Volker M, Moné MJ, Karmakar P, van Hoffen A, Schul W, Vermeulen W, Hoeijmakers JH, van Driel R, van Zeeland AA, Mullenders LH. Sequential as- sembly of the nucleotide excision repair factors in vivo. Mol Cell. 2001;8(1):213–24. 4. Sugasawa K, Okamoto T, Shimizu Y, Masutani C, Iwai S, Hanaoka F. A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev. 2001;15(5):507–21. 115 Unrepairable substrates of nucleotide excision repair and their application to suppress the activity of this repair system 5. Hey T, Lipps G, Sugasawa K, Iwai S, Hanaoka F, Krauss G. The XPC-HR23B complex displays high affinity and specificity for damaged DNA in a true- equilibrium fluorescence assay. Biochemistry. 2002;41(21):6583–7. 6. Tapias A, Auriol J, Forget D, Enzlin JH, Schärer OD, Coin F, Coulombe B, Egly JM. Ordered con- formational changes in damaged DNA induced by nucleotide excision repair factors. J Biol Chem. 2004;279(18):19074–83. 7. DellaVecchia MJ, Croteau DL, Skorvaga M, Dezhu- rov SV, Lavrik OI, Van Houten B. Analyzing the handoff of DNA from UvrA to UvrB utilizing DNA- protein photoaffinity labeling. J Biol Chem. 2004;279(43):45245–56. 8. Buterin T, Meyer C, Giese B, Naegeli H. DNA qual- ity control by conformational readout on the undam- aged strand of the double helix. Chem Biol. 2005;12(8):913–22. 9. Trego KS, Turchi JJ. Pre-steady-state binding of damaged DNA by XPC-hHR23B reveals a kinetic mechanism for damage discrimination. Biochemis- try. 2006;45(6):1961–9. 10. Maltseva EA, Rechkunova NI, Petruseva IO, Sil- nikov VN, Vermeulen W, Lavrik OI. Interaction of nucleotide excision repair factors RPA and XPA with DNA containing bulky photoreactive groups imitating damages. Biochemistry (Mosc). 2006;71(3):270–8. 11. Petruseva IO, Tikhanovich IS, Chelobanov BP, Lavrik OI. RPA repair recognition of DNA contain- ing pyrimidines bearing bulky adducts. J Mol Recognit. 2008;21(3):154–62. 12. Evdokimov A, Petruseva I, Tsidulko A, Koroleva L, Serpokrylova I, Silnikov V, Lavrik O. New syn- thetic substrates of mammalian nucleotide excision repair system. Nucleic Acids Res. 2013;41(12):e123. 13. Khodyreva SN, Lavrik OI. Photoaffinity labeling technique for studying DNA replication and DNA repair. Curr Med Chem. 2005;12(6):641–55. 14. Rechkunova NI, Lavrik OI. Nucleotide excision repair in higher eukaryotes: mechanism of primary damage recognition in global genome repair. Subcell Biochem. 2010;50:251–77. 15. Maltseva EA, Rechkunova NI, Gillet LC, Petruseva IO, Schärer OD, Lavrik OI. Crosslinking of the NER da- ma ge recognition proteins XPC-HR23B, XPA and RPA to photoreactive probes that mimic DNA damages. Biochim Biophys Acta. 2007;1770(5):781–9. 16. Krasikova YS, Rechkunova NI, Maltseva EA, Petru- seva IO, Silnikov VN, Zatsepin TS, Oretskaya TS, Schärer OD, Lavrik OI. Interaction of nucleotide excision repair factors XPC-HR23B, XPA, and RPA with damaged DNA. Biochemistry (Mosc). 2008; 73(8):886–96. 17. Krasikova YS, Rechkunova NI, Maltseva EA, Petru- seva IO, Lavrik OI. Localization of xeroderma pig- mentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair. Nucleic Acids Res. 2010;38(22):8083–94. 18. Evdokimov AN, Petruseva IO, Pestryakov PE, Lavrik OI. Photoactivated DNA analogs of sub- strates of the nucleotide excision repair system and their interaction with proteins of NER-competent extract of HeLa cells. Synthesis and application of long model DNA. Biochemistry (Mosc). 2011; 76(1):157–66. 19. Evdokimov AN, Tsidulko AY, Popov AV, Vorobiev YN, Lomzov AA, Koroleva LS, Silnikov VN, Petru- seva IO, Lavrik OI. Structural basis for the recogni- tion and processing of DNA containing bulky le- sions by the mammalian nucleotide excision repair system. DNA Repair (Amst). 2018;61:86–98. 20. Evdokimov AN, Lavrik OI, Petruseva IO. Model DNA for investigation of mechanism of nucleotide excision repair. Biopolym Cell. 2014; 30(3): 167–83. 21. Dezhurov SV, Khodyreva SN, Plekhanova ES, Lav- rik OI. A new highly efficient photoreactive analogue of dCTP. Synthesis, characterization, and application in photoaffinity modification of DNA binding pro- teins. Bioconjug Chem. 2005;16(1):215–22. 22. Petruseva IO, Tikhanovich IS, Maltseva EA, Saf- ronov IV, Lavrik OI. Photoactivated DNA analogs of substrates of the nucleotide excision repair system and their interaction with proteins of NER-compe- tent HeLa cell extract. Biochemistry (Mosc). 2009;74(5):491–501. 23. Manley JL, Fire A, Cano A, Sharp PA, Gefter ML. DNA-dependent transcription of adenovirus genes in a soluble whole-cell extract. Proc Natl Acad Sci U S A. 1980;77(7):3855–9. 116 A. Popov, A. Evdokimov, N. Lukyanchikova et al. 24. Kropachev K, Kolbanovskii M, Cai Y, Rodríguez F, Kolbanovskii A, Liu Y, Zhang L, Amin S, Patel D, Broyde S, Geacintov NE. The sequence dependence of human nucleotide excision repair efficiencies of benzo[a]pyrene-derived DNA lesions: insights into the structural factors that favor dual incisions. J Mol Biol. 2009;386(5):1193–203. 25. Krzeminski J, Kropachev K, Kolbanovskiy M, Ree- ves D, Kolbanovskiy A, Yun BH, Geacintov NE, Amin S, El-Bayoumy K. Inefficient nucleotide exci- sion repair in human cell extracts of the N- (deoxyguanosin-8-yl)-6-aminochrysene and 5-(de- oxyguanosin-N(2)-yl)-6-aminochrysene adducts derived from 6-nitrochrysene. Chem Res Toxicol. 2011;24(1):65–72. 26. Ding S, Kropachev K, Cai Y, Kolbanovskiy M, Du- randina SA, Liu Z, Shafirovich V, Broyde S, Geacin- tov NE. Structural, energetic and dynamic properties of guanine(C8)-thymine(N3) cross-links in DNA provide insights on susceptibility to nucleotide exci- sion repair. Nucleic Acids Res. 2012;40(6):2506–17. 27. Mu H, Kropachev K, Wang L, Zhang L, Kolbanovs- kiy A, Kolbanovskiy M, Geacintov NE, Broyde S. Nucleotide excision repair of 2-acetylaminofluo- rene- and 2-aminofluorene-(C8)-guanine adducts: molecular dynamics simulations elucidate how le- sion structure and base sequence context impact repair efficiencies. Nucleic Acids Res. 2012;40(19): 9675–90. 28. Araújo SJ, Nigg EA, Wood RD. Strong functional in- teractions of TFIIH with XPC and XPG in human DNA nucleotide excision repair, without a preassem- bled repairosome. Mol Cell Biol. 2001;21(7):2281–91. 29. Mu D, Hsu DS, Sancar A. Reaction mechanism of human DNA repair excision nuclease. J Biol Chem. 1996;271(14):8285–94. 30. RRocha JC, Busatto FF, Guecheva TN, Saffi J. Role of nucleotide excision repair proteins in response to DNA damage induced by topoisomerase II inhibi- tors. Mutat Res Rev Mutat Res. 2016;768:68–77. 31. Bowden NA. Nucleotide excision repair: why is it not used to predict response to platinum-based che- motherapy? Cancer Lett. 2014;346(2):163–71. 32. Clauson C, Schärer OD, Niedernhofer L. Advances in understanding the complex mechanisms of DNA interstrand cross-link repair. Cold Spring Harb Per- spect Biol. 2013;5(10):a012732. 33. De Silva IU, McHugh PJ, Clingen PH, Hartley JA. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol Cell Biol. 2000;20(21):7980–90. 34. Sarasin A, Dessen P. DNA repair pathways and hu- man metastatic malignant melanoma. Curr Mol Med. 2010;10(4):413-8. Нерепаровані аналоги субстатті ексцизійної репарації нуклеотидів і їх застосування для придушення активності цієї системи О. О. Попов, А. М. Євдокимов, Н. В. Лук'янчикова, І. О. Петрусева, О. І. Лаврик У наших попередніх дослідженнях було показано, що ДНК з об'ємним похідним Fap-dC є складнорепарова- ним субстратом для системи ексцизійної репарації нуклеотидів (Ерн). З'єднання такого типу можуть ста- новити особливий інтерес як можливі селективні ін- гібітори системи Ерн, значно знижуючи ефективність репарації ДНК шляхом зв'язування білкових чинників, залучених до даного процесу. Цей підхід може бути потенційно корисний для підвищення ефективності хіміотерапії. Мета. Дане дослідження спрямоване на пошук ДНК-структур, що містять множинні об'ємні аддукти, які з найбільшою ефективністю можуть при- гнічувати активність системи. Методи. Фермен та тив- ний синтез ДНК, ПЛР, приготування Ерн-компетентних клітинних екстрактів, реакція вирізання, що каталізу- ється білками Ерн in vitro, ВЕРХ. Результати. Проведено підбір умов синтезу протяжних модельних ДНК з множинним включенням нерепарованого по- шкодження Fap-dC. Отримано ряд ДНК-структур, що містить в своєму складі різну кількість модифікованих ланок. Показано, що всі отримані ДНК пригнічують активність системи Ерн in vitro. Обрана ДНК- структура, яка пригнічує NER найбільш високою ефек- тивністю. Висновки. Модельні ДНК з нерепаровани- ми ушкодженнями, здатні високою ефективністю при- гнічувати NER, можуть розглядатися в якості інгібіто- рів системи Ерн. Виявлені в даній роботі закономір- ності потенційно можуть бути використані для 117 Unrepairable substrates of nucleotide excision repair and their application to suppress the activity of this repair system проведення як фундаментальних, так і прикладних досліджень. К л юч ов і с л ов а: репарація, Ексцизійна репарація нуклеотидів, нерепаріруемие пошкодження ДНК, мо- дельні ДНК-субстрати Нерепарируемые аналоги субстатов эксцизионной репарации нуклеотидов и их применение для подавления активности этой системы А. А. Попов, А. Н. Евдокимов, Н. В. Лукьянчикова, И. О. Петрусева, О. И. Лаврик В наших предыдущих исследованиях было показано, что ДНК с объемным производным Fap-dC является труднорепарируемым субстратом для системы эксци- зионной репарации нуклеотидов (ЭРН). Соединения такого типа могут представлять особый интерес как возможные селективные ингибиторы системы ЭРН, значительно снижая эффективность репарации ДНК путем связывания белковых факторов, вовлеченных в этот процесс. Этот подход может быть потенциально полезен для повышения эффективности химиотерапии. Цель. Текущее исследование направлено на поиск ДНК-структур, содержащих множественные объемные аддукты, которые с наибольшей эффективностью мо- гут подавлять активность системы. Методы: фермен- тативный синтез ДНК, ПЦР, приготовление ЭРН- компетентных клеточных экстрактов, реакция выреза- ния, катализируемая белками ЭРН in vitro, ВЭЖХ. Результаты: был проведен подбор условий синтеза протяженных модельных ДНК с множественным вклю- чением нерепарируемого повреждения Fap-dC. Получен ряд ДНК-структур, содержащий в своем составе различное количество модифицированных звеньев. Было показано, что все полученные ДНК подавляют активность системы ЭРН in vitro. Была выбрана ДНК-структура, которая ингибирует NER наиболее высокой эффективностью. Выводы: модель- ные ДНК с нерепарируемыми повреждениями, спо- собные высокой эффективностью подавлять NER, могут рассматриваться в качестве ингибиторов систе- мы ЭРН. Обнаруженные в настоящей работе законо- мерности потенциально могут быть использованы для проведения не только фундаментальных, но и приклад- ных исследований. К л юч е в ы е с л ов а: эксцезионная репарация ну- клеотидов, нерепарируемые повреждения ДНК, мо- дельные ДНК-субстраты. Received 03.01.2019