The effect of waaL genes deletion from Yersinia enterocolitica O:3 genome on bacteria LPS’ phenotype
Aim. To estimate WaaL ligase contribution in the lipopolysaccharide (LPS) phenotype profile formation of Y. enterocolitica O:3 (YeO3) bacteria. Methods. The waaL-knock-out mutants were created by an allelic exchange strategy. The LPS phenotypes of created mutants were visualized by silver-stained DO...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут молекулярної біології і генетики НАН України
2014
|
Назва видання: | Вiopolymers and Cell |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154571 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The effect of waaL genes deletion from Yersinia enterocolitica O:3 genome on bacteria LPS’ phenotype / J.I. Shevchenko, V.K. Pozur, M. Skurnik // Вiopolymers and Cell. — 2014. — Т. 30, № 6. — С. 443-447. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-154571 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1545712019-06-16T01:31:30Z The effect of waaL genes deletion from Yersinia enterocolitica O:3 genome on bacteria LPS’ phenotype Shevchenko, J.I. Pozur, V.K. Skurnik, M. Structure and Function of Biopolymers Aim. To estimate WaaL ligase contribution in the lipopolysaccharide (LPS) phenotype profile formation of Y. enterocolitica O:3 (YeO3) bacteria. Methods. The waaL-knock-out mutants were created by an allelic exchange strategy. The LPS phenotypes of created mutants were visualized by silver-stained DOC-PAGE and immunoblotting with specific outer core (core oligosaccharide, hexasaccharide, OC) and O-polysaccharide (OPS or O-Ag) monoclonal antibodies. Results. Deletion of waaLOS gene from YeO3 genome has a marked effect on OC ligation in either single or double mutants. The waaLPS deletion has an opposite effect on the OPS ligation – barely detected increasing of OPS bands. Conclusions. The LPS ligases of YeO3 exhibit relaxed donor substrate specificity. Under given conditions the effect of WaaLOS ligase is more significant for OC and OPS ligation onto lipid A than that of WaaLPS. Мета. Дослідити участь лігаз WaaL у формуванні фенотипу ліпополісахариду (LPS) серед бактерій Y. enterocolitica O:3 (YeO3). Методи. Нокаутні мутанти по генах лігаз waaL створено внаслідок обміну алелями. Фенотипи LPS отриманих мутантів візуалізували, забарвлюючи сріблом гель DOC-PAGE, а також використовували імуноблот зі специфічними моноклональними антитілами до кору (корового олігосахариду, гексасахариду, ОC) та О-полісахариду (OPS, O-Ag). Результати. Делеція гена лігази waaLOS з геному бактерій YeO3 чинить помітний вплив на лігування ОC як в одиночних, так і в подвійних мутантах. Проте маніпуляції з геном лігази waaLPS призводять до ледь помітної стимуляції утворення OPS. Висновки. Лігази LPS бактерій YeO3 демонструють низьку субстратну специфічність. Участь лігази WaaLOS у формуванні повноцінної структури LPS є суттєвішою, аніж WaaLPS, за даних умов. Цель. Исследовать участие лигаз WaaL в формировании фенотипа липополисахарида (LPS) среди бактерий Y. enterocolitica O:3 (YeO3). Методы. Нокаутные мутанты по генам лигаз waaL созданы вследствие обмена аллелями. Фенотипы LPS полученных мутантов визуализировали, окрашивая серебром гель DOC-PAGE, а также с использованием иммуноблота со специфическими моноклональными антителами к кору (коровому олигосахариду, гексасахариду, OC) и О-полисахариду (OPS, O-Ag). Результаты. Делеция гена лигазы waaLOS из генома бактерий YeO3 оказывает заметное влияние на лигирование OC как в одиночных, так и двойных мутантах. Однако манипуляции с геном лигаз waaLPS приводят к едва заметной стимуляции образования OPS. Выводы. Лигазы LPS бактерий YeO3 демонстрируют низкую субстратную специфичность. Участие лигазы WaaLOS в образовании полноценной структуры LPS является более существенным, чем WaaLPS, при данных условиях. 2014 Article The effect of waaL genes deletion from Yersinia enterocolitica O:3 genome on bacteria LPS’ phenotype / J.I. Shevchenko, V.K. Pozur, M. Skurnik // Вiopolymers and Cell. — 2014. — Т. 30, № 6. — С. 443-447. — Бібліогр.: 8 назв. — англ. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.0008BE http://dspace.nbuv.gov.ua/handle/123456789/154571 579.234 en Вiopolymers and Cell Інститут молекулярної біології і генетики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Structure and Function of Biopolymers Structure and Function of Biopolymers |
spellingShingle |
Structure and Function of Biopolymers Structure and Function of Biopolymers Shevchenko, J.I. Pozur, V.K. Skurnik, M. The effect of waaL genes deletion from Yersinia enterocolitica O:3 genome on bacteria LPS’ phenotype Вiopolymers and Cell |
description |
Aim. To estimate WaaL ligase contribution in the lipopolysaccharide (LPS) phenotype profile formation of Y. enterocolitica O:3 (YeO3) bacteria. Methods. The waaL-knock-out mutants were created by an allelic exchange strategy. The LPS phenotypes of created mutants were visualized by silver-stained DOC-PAGE and immunoblotting with specific outer core (core oligosaccharide, hexasaccharide, OC) and O-polysaccharide (OPS or O-Ag) monoclonal antibodies. Results. Deletion of waaLOS gene from YeO3 genome has a marked effect on OC ligation in either single or double mutants. The waaLPS deletion has an opposite effect on the OPS ligation – barely detected increasing of OPS bands. Conclusions. The LPS ligases of YeO3 exhibit relaxed donor substrate specificity. Under given conditions the effect of WaaLOS ligase is more significant for OC and OPS ligation onto lipid A than that of WaaLPS. |
format |
Article |
author |
Shevchenko, J.I. Pozur, V.K. Skurnik, M. |
author_facet |
Shevchenko, J.I. Pozur, V.K. Skurnik, M. |
author_sort |
Shevchenko, J.I. |
title |
The effect of waaL genes deletion from Yersinia enterocolitica O:3 genome on bacteria LPS’ phenotype |
title_short |
The effect of waaL genes deletion from Yersinia enterocolitica O:3 genome on bacteria LPS’ phenotype |
title_full |
The effect of waaL genes deletion from Yersinia enterocolitica O:3 genome on bacteria LPS’ phenotype |
title_fullStr |
The effect of waaL genes deletion from Yersinia enterocolitica O:3 genome on bacteria LPS’ phenotype |
title_full_unstemmed |
The effect of waaL genes deletion from Yersinia enterocolitica O:3 genome on bacteria LPS’ phenotype |
title_sort |
effect of waal genes deletion from yersinia enterocolitica o:3 genome on bacteria lps’ phenotype |
publisher |
Інститут молекулярної біології і генетики НАН України |
publishDate |
2014 |
topic_facet |
Structure and Function of Biopolymers |
url |
http://dspace.nbuv.gov.ua/handle/123456789/154571 |
citation_txt |
The effect of waaL genes deletion from Yersinia enterocolitica O:3 genome on bacteria LPS’ phenotype / J.I. Shevchenko, V.K. Pozur, M. Skurnik // Вiopolymers and Cell. — 2014. — Т. 30, № 6. — С. 443-447. — Бібліогр.: 8 назв. — англ. |
series |
Вiopolymers and Cell |
work_keys_str_mv |
AT shevchenkoji theeffectofwaalgenesdeletionfromyersiniaenterocoliticao3genomeonbacterialpsphenotype AT pozurvk theeffectofwaalgenesdeletionfromyersiniaenterocoliticao3genomeonbacterialpsphenotype AT skurnikm theeffectofwaalgenesdeletionfromyersiniaenterocoliticao3genomeonbacterialpsphenotype AT shevchenkoji effectofwaalgenesdeletionfromyersiniaenterocoliticao3genomeonbacterialpsphenotype AT pozurvk effectofwaalgenesdeletionfromyersiniaenterocoliticao3genomeonbacterialpsphenotype AT skurnikm effectofwaalgenesdeletionfromyersiniaenterocoliticao3genomeonbacterialpsphenotype |
first_indexed |
2025-07-14T06:37:32Z |
last_indexed |
2025-07-14T06:37:32Z |
_version_ |
1837603281427234816 |
fulltext |
UDC 579.234
The effect of waaL genes deletion from Yersinia
enterocolitica O:3 genome on bacteria LPS’ phenotype
J. I. Shevchenko1, 2, V. K. Pozur1, M. Skurnik2
1Educational and Scientific Center «Institute of Biology»
Taras Shevchenko National University of Kyiv
64/13, Volodymyrska Str., Kyiv, Ukraine, 01601
2Haartman Institute, University of Helsinki
Haartmaninkatu 3 (P. O. Box 21), Finland, FIN-00014
julia.i.shevchenko@gmail.com
Aim. To estimate WaaL ligase contribution in the lipopolysaccharide (LPS) phenotype profile formation of Y. en-
terocolitica O:3 (YeO3) bacteria. Methods. The waaL-knock-out mutants were created by an allelic exchange
strategy. The LPS phenotypes of created mutants were visualized by silver-stained DOC-PAGE and immunoblot-
ting with specific outer core (core oligosaccharide, hexasaccharide, OC) and O-polysaccharide (OPS or O-Ag)
monoclonal antibodies. Results. Deletion of waaL
OS
gene from YeO3 genome has a marked effect on OC ligation
in either single or double mutants. The waaL
PS
deletion has an opposite effect on the OPS ligation – barely
detected increasing of OPS bands. Conclusions. The LPS ligases of YeO3 exhibit relaxed donor substrate spe-
cificity. Under given conditions the effect of WaaL
OS
ligase is more significant for OC and OPS ligation onto lipid
A than that of WaaL
PS
.
Keywords: WaaL ligase, LPS, Yersinia enterocolitica, DOC-PAGE.
Introduction. In Europe, yersiniosis is the third most
common bacterial zoonosis after campylobacteriosis
and salmonellosis [1]. Y. enterocolitica is a well known
human and animal pathogen. Among humans, the path-
way of Y. enterocolitica is associated with intestinal di-
sease, such as enterocolitis, with inflammatory diarrhea,
ileitis, mesenteric appendicitis and gastroenteritis. A di-
arrheal disease is sometimes followed by post-infecti-
ous reactive arthritis.
It is well known that all Gram-negative bacteria con-
tain an outer leaflet with a large amount of lipopolysac-
charide (LPS). LPS is a glycolipid consisting of three
domains: the lipid A moiety, the core and the distal O-
polysaccharide (OPS or O-Ag). The homopolymeric
O-Ag is composed of�1,2-linked 6-deoxy-L-altrose re-
sidues. Together with the hexasaccharide core, the O-
Ag is linked to the inner core (IC) of LPS to form a bran-
ched structure [2]. The antigenic variations of OPS in
the Y. enterocolitica isolates are distinguished serologi-
cally. Nowadays, more than 50 serotypes are known, of
which O:3, O:5, 27, O:8 and O:9 are pathogenic [3].
The LPS biosynthesis is a complex process that in-
cludes the stepwise transformation of the primary sub-
strate under enzymatic treatment. The WaaL proteins
are involved in the ligation of OC and O-Ag onto the li-
pid A core. According to the in silico investigations,
the Y. enterocolitica O:3 (YeO3) genome contains at
least three genes responsible for the WaaL proteins ex-
pression. Yersinia pestis and Yersinia pseudotubercu-
losis, however, carry only the waaLPS gene, whereas ei-
ther waaLOS or waaLXS or both are additionally present in
other Yersinia species.
It was shown that deletion of waaLOS and waaLPS ge-
nes correlate with the OPS and the OC expression. For
this purpose LPS ligases were named as WaaLPS and
WaaLOS respectively. The third ligase named as WaaLXS
was not involved in the LPS or ESA biosynthesis [4].
The current study is aimed at the estimation of a ro-
le of the ligases in the Y. enterocolitica’ LPS phenotype
profile formation. The waaL-knock-out mutants of YeO3
443
ISSN 0233–7657. Biopolymers and Cell. 2014. Vol. 30. N 6. P. 443–447 doi: http://dx.doi.org/10.7124/bc.0008BE
� Institute of Molecular Biology and Genetics, NAS of Ukraine, 2014
444
were created by the allelic exchange strategy. Pheno-
types of created mutants were visualized by silver-stai-
ned DOC-PAGE and immunoblotting with specific OC
and O-Ag monoclonal antibodies.
Materials and methods. Bacterial strains and cul-
ture conditions. Bacterial strains are listed in Table.
Yersinia strains were grown at 22–25 oC (RT) and Es-
cherichia coli strains at 37 oC in Luria Broth (LB) me-
dia. LB supplemented with 1.5 % Bacto Agar was used
for all solid cultures. As a selective medium CIN agar
supplemented with appropriate antibiotics was used.
When appropriate, the antibiotics were added to the me-
dia at the following concentrations: kanamycin (Km),
100 µg/ml in agar plates and 20 µg/ml in broth; chlo-
ramphenicol (Clm), 20 µg/ml.
General DNA techniques. Isolation of plasmids and
genomic DNA was done with kits. All enzymes were
used according to the supplier’s specifications. Small-
scale plasmid DNA preparations were carried out using
plasmid mini prep kits. Plasmid DNA was moved by
electroporation into Y. enterocolitica or heat shock trans-
formation. Recombinant plasmids were mobilized from
E. coli strains to Y. enterocolitica by conjugation.
Mutants construction. The waaLOS and waaLPS ge-
nes were amplified by PCR with primer pairs O3lig
YE1727F5 & O3ligYE1727R5 and O3ligYE532F2 &
O3ligYE532R2 with DyNAzyme DNA-polymerase
(«Thermo Scientific», USA) from isolated genomical
DNA of YeO3. Amplified DNA was purified with Kit
method and digested with NsiI (Mph 1103I) for the
waaLOS gene and PstI for waaLPS. The digested and pu-
rified fragments were cloned into the PstI digested suici-
de vector pSW23T and the constructed plasmids were
named as pSW23T-waaLOS and pSW23T-waaLPS respec-
tively. The constructions were mobilized from E. coli
�7249 into YeO3 strains by conjugation as described
earlier [5]. For elimination of suicide vector and the wild-
type genes, the optimized cycloserine enrichment me-
thod was used [5].
For large-scale screening of knock-out mutants
among Clm sensitive bacteria (ClmS) colonies we used
Colony hybridization kit method («Roche», France).
Isolated genomical DNA from negative colonies were
diluted and used as a template for PCR with different
primer pairs. DNA of wild-type strain YeO3 was used
as a control.
Complementation. The waaLOS and waaLPS genes
were amplified with Phusion DNA polymerase from
YeO3-c with O3ligYe1727f & O3ligYe1727r, O3lig
Ye532f & O3ligYe532r primer pairs. PCR fragments
were phosphorylated with polynucleotide kinase in the
presence of 10 mM ATP, digested with EcoRI and liga-
ted with EcoRI and ScaI digested, SAP-treated pTM100.
The constructed plasmids were named pEPlig1727 &
pEPlig532 and electroporated into S17-1� pir with fur-
ther mobilization into YeO3 ligase mutants by conjuga-
tion. Obtained colonies were screened on appropriate
antibiotic plates with CIN agar [4].
SHEVCHENKO J. I. ET AL.
Strain Genotype Reference
Yersinia enterocolitica
6471/76 YeO3 wild type strain, patient isolate [6]
6471/76-c YeO3-c virulence plasmid cured derivative of 6471/76 [6]
YeO3_�os waaLOS::pSW23Tlig1727su This work
YeO3_�ps waaLPS::pSW29-lig532del, Km
R
This work
YeO3_�os_�ps waaLOS::pSW23T-lig1727su waaLPS::pSW29-lig532del, Km
R
This work
Escherichia coli
�7249 B2163 �nic35, E. coli strain for suiside vector delivery, requirement for diaminopimelic acid 0.3 mM, Km
R
[7]
S17-1�pir A-pir lysogen of S17-1, E. coli strain for suiside vector delivery [8]
DH10B
F-mcrA �(mrr-hsdRMS-mcrBC), �80lacZ�M15 �lacX74 recA1 endA1 araD139 �(ara, leu)7697 galU
galK �-rpsL nupG tonA
Life Tech-
nologies
Bacterial strains
DOC-PAGE analysis. The bacteria were grown 16–
20 h at RT in 5 ml of LB medium with appropriate an-
tibiotics. The exact optical density of the cultures was
measured at 600 nm (OD600), 3 ml of the cultures were
centrifuged and the pellets were resuspended in deoxy-
cholate lysis buffer (2 % DOC, 4 % 2-mercaptoethanol,
10 % glycerol and 0.002 % bromophenol blue in 1 M
Tris-HCl buffer, pH 6.8) in a volume adjusted accor-
ding to density of the culture (100 l/OD600 ~ 1). Lypo-
polysaccaride phenotypes were analyzed by silver stai-
ned DOC-PAGE with previous proteinase K treated
whole cell lysates [4]. The Western blotting O-polysac-
charide, outer core and inner core expression were de-
tected by O:3 specific mAbs 2B5 and TomA6.
Results and discussion. Mutants construction. The
waaLOS and waaLPS mutants of YeO3 were constructed
from fully virulent serotype O:3 patient isolate expres-
sing complete LPS. With help of the allelic exchange
strategy we managed to inactivate waaLOS and waaLPS
encoding regions in the YeO3 genome. The construc-
ted single and double mutants were complemented with
the pEPlig1727 & pEPlig532 plasmids, which were sup-
plemented with the functional waaL gene.
Traditional cycloserine enrichment method was ad-
ditionally optimized [5]. The possibility was conside-
red that constructed merodiploids (MD) are not fully re-
sistant to Clm, as it should be (weak operon, etc.). To
examine this possibility we tested several lines of condi-
tions (concentration of Clm, incubation time, density of
bacteria, etc.). According to these experimental data, the
next improvements were done: reducing the Clm con-
centration in media to 2.5 l v/v (instead of 10 l v/v)
and prolongation of incubation to 4–5 h (instead of 2–3
h) before D-cycloserition solution was added. A current
modification of the method allowed us to pick up only
bacteria after second crossing over (Fig. 1).
The colony hybridization method was used for spe-
cific detection of deletion in the waaL gene among
ClmS. Further justifications of deletion were performed
by PCR (Fig. 2).
Phenotype analysis. We used two approaches to
analyze the difference in the expression of OC and O-
Ag: 1) Silver staining of DOC-PAGE; 2) Immuno-
blotting with OC and O-Ag specific antibodies.
It is noticeable from silver staining of DOC-PAGE
that deletion in the waaLOS gene leads to a dramatic de-
crease in the OC expression and appearance of strong IC
band (Fig. 3). However, the level of O-Ag expression
reduced, as well, compared to the mutant with deletion
in the waaLPS gene. The deletion in the waaLPS gene
445
THE EFFECT OF waaL GENES DELETION FROM Yersinia enterocolitica O:3 GENOME
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
1 2 3.5 4.5Time, h
O
D
6
0
0
1 2 3 4 5 6
Fig. 1. Optimization of cycloserine en-
richment method: 1 – YeO3 wild ty-
pe (WT), 2.5 l v/v; 2 – WT, 5 l v/v;
3 – WT, 10 l v/v; 4 – merodiploids
(MD), 2.5 l v/v; 5 – MD, 5 l v/v; 6 –
MD, 10 l v/v
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Fig. 2. Amplification of waaL
OS
gene
by PCR with pair of primers O3lig
Ye1727f & O3ligYe1727r: 1–11 –
checking colonies; 12 – gene ruler; 13 –
waaL
OS
-knock-out mutant; 14 – YeO3
wild type control
seems to be insignificant for the OC expression and even
to stimulate the OPS formation. In case of the double
YeO3_�os_�ps mutants, it is noticeable a strong ex-
pression of IC bands, the absence of OC in both vari-
ants and the absence of O-Ag expression in one variant.
Western blotting analysis of LPS samples of the
YeO3 ligase mutants and their complementation of sin-
gle and double mutants were performed with the OC-
specific mAb 2B5 and O-Ag-specific mAb TomA6
(Fig. 4). The deletion in the waaLOS gene resulted in re-
duction of the OC expression, as it was shown with sil-
ver staining of DOC-PAGE. Also, the waaLOS-knock-
out mutant complemented with the functional waaLOS
gene showed full recovery of OC and the decreasing of
O-Ag expression at the same time.
Similar results were obtained with the double mu-
tant and complementation variants. The LPS profile of
the double YeO3_�os_�ps mutant in immunoblotting
was similar to that with silver staining where only the
O-Ag expression took place. The complementation with
the functional waaLOS and waaLPS genes showed inhibi-
tion of O-Ag expression and full recovery of OC in both
cases. Disruption in the waaLPS gene as a single muta-
tion leads to hardly noticeable stimulation of the O-Ag
expression.
Thereby, the data obtained from silver staining and
immunoblotting of DOC-PAGE evidence the participa-
tion of WaaL ligase in the LPS phenotype creation. How-
ever, strict substrate specificity of the LPS ligase in YeO3
was not detected.
Conclusions. Summarizing the obtained data we
can conclude that the LPS ligases of YeO3 exhibit rela-
xed donor substrate specificity. It has been established
that under given conditions the effect of the WaaLOS li-
gase is more significant for the OC and OPS ligation on-
to lipid A than for the WaaLPS ligase. It is possible that
deletion of the waaLOS and waaLPS genes and changes
in the OC or O-Ag moieties of LPS enhance the ability
of pathogen to evade host defenses. Further work is re-
quired to elucidate the biological significance of these
different settings.
Funding. This work was supported by grants from
Center for International Mobility (CIMO), Finland
TM-12-8286.
446
SHEVCHENKO J. I. ET AL.
YeO3 YeO3 YeO3 YeO3
wt �os �ps �os_�ps
6dA
GaNa
6dA
6dA
6dA
6dA
6dA
6dA
Glc
Glc
Glc
Glc
GlcN GlcN
Gal
GaNa
FuNa
Hep2 Hep4Hep3
Hep1
Kdo
O-antigen
Outer
core
Inner
core
Lipid A
O-Ag
Fig. 3. Silver-stained DOC-PAGE
analysis of LPS phenotypes of dif-
ferent ligase mutants
wt �os �os + os �ps �ps + ps d� d� + os d� + ps
Fig. 4. Immunoblot analysis of LPS phenotypes of waaL mutants of
YeO3. DOC-PAGE membrane was probed with mAb 2B5 and TomA6
Âïëèâ äåëåö³é ãåí³â ë³ãàç waaL íà ôåíîòèï ë³ïîïîë³ñàõàðèä³â
ó áàêòåð³é Yersinia enterocolitica O:3
Þ. ². Øåâ÷åíêî , Â. Ê. Ïîçóð, Ì. Ñêóðíèê
Ðåçþìå
Ìåòà. Äîñë³äèòè ó÷àñòü ë³ãàç WaaL ó ôîðìóâàíí³ ôåíîòèïó ë³ïî-
ïîë³ñàõàðèäó (LPS) ñåðåä áàêòåð³é Y. enterocolitica O:3 (YeO3).
Ìåòîäè. Íîêàóòí³ ìóòàíòè ïî ãåíàõ ë³ãàç waaL ñòâîðåíî âíàñë³-
äîê îáì³íó àëåëÿìè. Ôåíîòèïè LPS îòðèìàíèõ ìóòàíò³â â³çóàë³-
çóâàëè, çàáàðâëþþ÷è ñð³áëîì ãåëü DOC-PAGE, à òàêîæ âèêîðè-
ñòîâóâàëè ³ìóíîáëîò ç³ ñïåöèô³÷íèìè ìîíîêëîíàëüíèìè àíòèò³-
ëàìè äî êîðó (êîðîâîãî îë³ãîñàõàðèäó, ãåêñàñàõàðèäó, ÎC) òà Î-
ïîë³ñàõàðèäó (OPS, O-Ag). Ðåçóëüòàòè. Äåëåö³ÿ ãåíà ë³ãàçè waaLOS
ç ãåíîìó áàêòåð³é YeO3 ÷èíèòü ïîì³òíèé âïëèâ íà ë³ãóâàííÿ ÎC
ÿê â îäèíî÷íèõ, òàê ³ â ïîäâ³éíèõ ìóòàíòàõ. Ïðîòå ìàí³ïóëÿö³¿ ç
ãåíîì ë³ãàçè waaLPS ïðèçâîäÿòü äî ëåäü ïîì³òíî¿ ñòèìóëÿö³¿ óò-
âîðåííÿ OPS. Âèñíîâêè. ˳ãàçè LPS áàêòåð³é YeO3 äåìîíñòðó-
þòü íèçüêó ñóáñòðàòíó ñïåöèô³÷í³ñòü. Ó÷àñòü ë³ãàçè WaaLOS ó
ôîðìóâàíí³ ïîâíîö³ííî¿ ñòðóêòóðè LPS º ñóòòºâ³øîþ, àí³æ
WaaLPS, çà äàíèõ óìîâ.
Êëþ÷îâ³ ñëîâà: ë³ãàçè WaaL, LPS, Yersinia enterocolitica, DOC-
PAGE.
Âëèÿíèå äåëåöèé ãåíîâ ëèãàç waaL íà ôåíîòèï
ëèïîïîëèñàõàðèäîâ ó áàêòåðèé Yersinia enterocolitica O:3
Þ. È. Øåâ÷åíêî, Â. Ê. Ïîçóð, Ì. Ñêóðíèê
Ðåçþìå
Öåëü. Èññëåäîâàòü ó÷àñòèå ëèãàç WaaL â ôîðìèðîâàíèè ôåíîòè-
ïà ëèïîïîëèñàõàðèäà (LPS) ñðåäè áàêòåðèé Y. enterocolitica O:3
(YeO3). Ìåòîäû. Íîêàóòíûå ìóòàíòû ïî ãåíàì ëèãàç waaL ñî-
çäàíû âñëåäñòâèå îáìåíà àëëåëÿìè. Ôåíîòèïû LPS ïîëó÷åííûõ
ìóòàíòîâ âèçóàëèçèðîâàëè, îêðàøèâàÿ ñåðåáðîì ãåëü DOC-PAGE,
à òàêæå ñ èñïîëüçîâàíèåì èììóíîáëîòà ñî ñïåöèôè÷åñêèìè ìî-
íîêëîíàëüíûìè àíòèòåëàìè ê êîðó (êîðîâîìó îëèãîñàõàðèäó, ãåê-
ñàñàõàðèäó, OC) è Î-ïîëèñàõàðèäó (OPS, O-Ag). Ðåçóëüòàòû. Äå-
ëåöèÿ ãåíà ëèãàçû waaLOS èç ãåíîìà áàêòåðèé YeO3 îêàçûâàåò çà-
ìåòíîå âëèÿíèå íà ëèãèðîâàíèå OC êàê â îäèíî÷íûõ, òàê è äâîé-
íûõ ìóòàíòàõ. Îäíàêî ìàíèïóëÿöèè ñ ãåíîì ëèãàç waaLPS ïðèâî-
äÿò ê åäâà çàìåòíîé ñòèìóëÿöèè îáðàçîâàíèÿ OPS. Âûâîäû. Ëè-
ãàçû LPS áàêòåðèé YeO3 äåìîíñòðèðóþò íèçêóþ ñóáñòðàòíóþ
ñïåöèôè÷íîñòü. Ó÷àñòèå ëèãàçû WaaLOS â îáðàçîâàíèè ïîëíîöåí-
íîé ñòðóêòóðû LPS ÿâëÿåòñÿ áîëåå ñóùåñòâåííûì, ÷åì WaaLPS,
ïðè äàííûõ óñëîâèÿõ.
Êëþ÷åâûå ñëîâà: ëèãàçû WaaL, LPS, Yersinia enterocolitica, DOC-
PAGE.
REFERENCES
1. Ortiz Martinez P, Mylona S, Drake I, Fredriksson-Ahomaa M,
Korkeala H, Corry JE. Wide variety of bioserotypes of entero-
pathogenic Yersinia in tonsils of English pigs at slaughter. Int J
Food Microbiol. 2010;139(1–2):64–9.
2. Skurnik M, Venho R, Toivanen P, al-Hendy A. A novel locus of
Yersinia enterocolitica serotype O:3 involved in lipopolysaccha-
ride outer core biosynthesis. Mol Microbiol. 1995;17(3):575–94.
3. Sabina Y, Rahman A, Ray RC, Montet D. Yersinia enterocoliti-
ca: mode of transmission, molecular insights of virulence, and
pathogenesis of infection. J Pathog. 2011;2011:429069.
4. Pinta E, Li Z, Batzilla J, et al. Identification of three oligo-poly-
saccharide-specific ligases in Yersinia enterocolitica. Mol Mic-
robiol. 2012;83(1):125–36.
5. Biedzka-Sarek M, Venho R, Skurnik M. Role of YadA, Ail, and li-
popolysaccharide in serumresistance of Yersinia enterocolitica
serotype O:3. Infect Immun. 2005;73(4):2232–44.
6. Skurnik M. Lack of correlation between the presence of plas-
mids and fimbriae in Yersinia enterocolitica and Yersinia pseu-
dotuberculosis. J Appl Bacteriol. 1984;56(3):355–63.
7. Babic A, Guerout AM, Mazel D. Construction of an improved RP4
(RK2)-based conjugative system. Res Microbiol. 2008;159(7–
8):545–9.
8. Wilson KJ, Sessitsch A, Corbo JC, Giller KE, Akkermans AD,
Jefferson RA. beta-Glucuronidase (GUS) transposons for ecolo-
gical and genetic studies of rhizobia and other gram-negative
bacteria. Microbiology. 1995;141 (Pt 7):1691–705.
Received 11.07.14
447
THE EFFECT OF waaL GENES DELETION FROM Yersinia enterocolitica O:3 GENOME
|