Units of some group algebras of groups of order 12 over any finite field of characteristic 3

The structure of the unit groups of the group algebra of the groups D₁₂ and C₃⋊C₄ over any finite field of characteristic 3 is established.

Gespeichert in:
Bibliographische Detailangaben
Datum:2011
Hauptverfasser: Gildea, J., Monaghan, F.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2011
Schriftenreihe:Algebra and Discrete Mathematics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/154761
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Units of some group algebras of groups of order 12 over any finite field of characteristic 3 / J. Gildea, F. Monaghan // Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 1. — С. 46–58. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-154761
record_format dspace
spelling irk-123456789-1547612019-06-16T01:32:41Z Units of some group algebras of groups of order 12 over any finite field of characteristic 3 Gildea, J. Monaghan, F. The structure of the unit groups of the group algebra of the groups D₁₂ and C₃⋊C₄ over any finite field of characteristic 3 is established. 2011 Article Units of some group algebras of groups of order 12 over any finite field of characteristic 3 / J. Gildea, F. Monaghan // Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 1. — С. 46–58. — Бібліогр.: 11 назв. — англ. 1726-3255 2000 Mathematics Subject Classification:16U60, 16S34 http://dspace.nbuv.gov.ua/handle/123456789/154761 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The structure of the unit groups of the group algebra of the groups D₁₂ and C₃⋊C₄ over any finite field of characteristic 3 is established.
format Article
author Gildea, J.
Monaghan, F.
spellingShingle Gildea, J.
Monaghan, F.
Units of some group algebras of groups of order 12 over any finite field of characteristic 3
Algebra and Discrete Mathematics
author_facet Gildea, J.
Monaghan, F.
author_sort Gildea, J.
title Units of some group algebras of groups of order 12 over any finite field of characteristic 3
title_short Units of some group algebras of groups of order 12 over any finite field of characteristic 3
title_full Units of some group algebras of groups of order 12 over any finite field of characteristic 3
title_fullStr Units of some group algebras of groups of order 12 over any finite field of characteristic 3
title_full_unstemmed Units of some group algebras of groups of order 12 over any finite field of characteristic 3
title_sort units of some group algebras of groups of order 12 over any finite field of characteristic 3
publisher Інститут прикладної математики і механіки НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/154761
citation_txt Units of some group algebras of groups of order 12 over any finite field of characteristic 3 / J. Gildea, F. Monaghan // Algebra and Discrete Mathematics. — 2011. — Vol. 11, № 1. — С. 46–58. — Бібліогр.: 11 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT gildeaj unitsofsomegroupalgebrasofgroupsoforder12overanyfinitefieldofcharacteristic3
AT monaghanf unitsofsomegroupalgebrasofgroupsoforder12overanyfinitefieldofcharacteristic3
first_indexed 2025-07-14T06:52:08Z
last_indexed 2025-07-14T06:52:08Z
_version_ 1837604199857127424
fulltext Algebra and Discrete Mathematics RESEARCH ARTICLE Volume 11 (2011). Number 1. pp. 46 – 58 c© Journal “Algebra and Discrete Mathematics” Units of some group algebras of groups of order 12 over any finite field of characteristic 3 Joe Gildea, Faye Monaghan Communicated by M. Ya. Komarnytskyj Abstract. The structure of the unit groups of the group algebra of the groups D12 and C3 ⋊ C4 over any finite field of characteristic 3 is established. 1. Introduction Let U(RG) be the group of units of the group ring RG of the group G over the commutative ring R. It is well known that U(RG) = V (RG)× U(R), where V (RG) = { ∑ g∈G αgg ∈ U(RG) | ∑ g∈G αg = 1} is the group of normalized units of RG and U(R) is the group of units of R. For further details and background see Polcino Milies and Sehgal [9]. We are interested in the structure of U(KG) when of order apk where p is a prime, a, k ∈ N0 and (a, p) = 1. It is well known that |V (KG)| = |K||G|−1 if G is a finite p-group and K is a finite field of characteristic p. A basis for V (FpG) is determined in [10], where Fp is the Galois field of p elements and G is an abelian p-group. Note that several results were obtained in the case where K is a field of characteristic p and G is a non-abelian p-group, see [1, 2, 3] for further detials. In [6], the order of U(FpkD2pm) is determined where Fpk is the Galois field of pk-elements, D2pm = 〈a, b | ap n = 1, b2 = 1, ab = a−1〉 is the 2000 Mathematics Subject Classification: 16U60, 16S34. Key words and phrases: unit group, group ring, group algebra. J. Gildea, F. Monaghan 47 dihedral group of order 2pm and p is an odd prime. In [4], the structure of U(F3kD6) was determined in terms of split extensions of elementary abelian groups. Additionally in [8], it is shown that Z(V1) and V1/Z(V1) are elementary abelian 3-groups where V1 = 1+J(F3kD6), J(F3kD6) is the Jacobson Radical of F3kD6 and Z(V1) is the center of V1. The structure of FA4 is established in [11] where F is any finite field and A4 is the alternating group of degree 4. Our main result is the following: Theorem 1. Let V (FG) be the group of normalized units of the group algebra FG of a group G over a finite field F of 3k elements. The following conditions hold: (i) If G = 〈x, y | x6 = y2 = 1, xy = x−1〉 ∼= D12, then V (FG) ∼= (C3 6k ⋊ C3 2k)⋊ C3 3k−1 . (ii) If G = 〈x, y | x4 = y3 = 1, yxy = x〉 ∼= C3 ⋊ C4, then V (FG) ∼= { (C3 6k ⋊ C3 2k)⋊ C3 3k−1 if 4 | (3k − 1) (C3 6k ⋊ C3 2k)⋊ (C3k−1 × C32k−1) if 4 ∤ (3k − 1). The next two results can be found in [7]. Theorem 2. Let F be an arbitrary field of characteristic p > 0, let G be a p-solvable group and c be the sum of all p-elements of G including 1, then J(FG) = lann(c) where J(FG) is the Jacobson Radical of FG and lann(c) is the left anni- hilator of c. Theorem 3. Let N be a normal subgroup of G such that G/N is p-solvable. If |G/N | = npa where (n, p) = 1, then J(FG)p a ⊆ FG · J(FN) ⊆ J(FG) where F is a field of characteristic p > 0. In particular, if G is p-solvable of order npa where (n, p) = 1, then J(FG)p a = 0. Denote by ĝ = ∑ h∈〈g〉 h ∈ RG. 48 Units of some group algebras 2. Proof of Main Theorem Case (i). Let G = D12. Consider the ring homomorphism θ : F3kD12 → F3k(C2 × C2) given by 2∑ i=0 x2i(ai + ai+3x 3 + ai+6y + ai+9x 3y) 7→ 2∑ i=0 (ai + ai+3x̄+ ai+6ȳ + ai+9x̄ȳ). where C2 × C2 = 〈x, y |x2 = y2 = 1, x y = y x〉 and αi ∈ F3k . We can now construct the group homomorphism θ′ : U(F3kD12) → U(F3k(C2 × C2)), since units gets mapped to units. We define the group epimorphism φ : U(F3k(C2 × C2)) → U(F3kD12) given by a+ bx̄+ cȳ + dx̄ȳ 7→ a+ bx3 + cy + dx3y where a, b, c, d ∈ F3k . Clearly θ′ ◦ φ = 1 and therefore U(F3kD12) ∼= H ⋊ U(F3k(C2 × C2)) where H = ker(θ′). Let α = 2∑ i=0 x2i(ai + ai+3x 3 + ai+6y + ai+9x 3y) ∈ F3kD12, where αi ∈ F3k . Then α ∈ H iff 2∑ i=0 ai = 1, 2∑ j=0 aj+3 = 2∑ k=0 ak+6 = 2∑ l=0 al+9 = 0. Lemma 1. H has exponent 3. Proof. D12 is solvable and hence p-solvable. Clearly |D12| = 4.3 and by Theorem 3, J(F3kD12) 3 = 0 and 1 + J(F3kD12) has exponent 3. Now by Theorem 2, J(F3kD12) = {α ∈ F3kD12|αx̂2 = 0}. Let α = 2∑ i=0 x2i [ αi+1 + αi+4x 3 + αi+7y + αi+10x 3y ] ∈ U(F3kD12), then α ∈ J(F3kD12) ⇐⇒ 3∑ i=1 αi = 3∑ j=1 αj+3 = 3∑ l=1 αl+6 = 3∑ m=1 αm+9 = 0 where αi ∈ F3k . Therefore H ∼= 1 + J(F3kD12). J. Gildea, F. Monaghan 49 Lemma 2. Every element of the centralizer of x2 in H (CH(x2)) has the form 2∑ i=0 x2i(αi+αi+3x 3)+ (α6+α7x 3)x̂2y where 2∑ i=0 αi = 1, 2∑ i=0 αi+3 = 0 and αi ∈ F3k . Also CH(x2) ∼= C3 6k. Proof. CH(x2) = {h ∈ H | hx2 = x2h}. Let h = ∑ 2 i=0 x2i(αi + αi+3x 3 + αi+6y + αi+9x 3y) ∈ H where αi ∈ F3k , ∑ 2 i=0 αi = 1 and ∑ 2 i=0 αi+3 =∑ 2 i=0 αi+6 = ∑ 2 i=0 αi+9 = 0. (hx2 − x2h) = ( 2∑ i=0 αi+6x 2iy + 2∑ i=0 αi+9x 2i+3y ) x2− − x2 ( 2∑ i=0 αi+6x 2iy + 2∑ i=0 αi+9x 2i+3y ) = 2∑ i=0 αi+6x 2i+4y + 2∑ i=0 αi+9x 2i+1y − 2∑ i=0 αi+6x 2i+2y − 2∑ i=0 αi+9x 2i+5y = 2∑ i=0 [ αi+6x 2i+4y − αi+6x 2i+2y ] + 2∑ i=0 [ αi+9x 2i+1y − αi+9x 2i+5y ] = (α6 − α7) x̂2y + (α9 − α10)x 3x̂2y. Therefore h ∈ CH(x2) if and only if α6 = α7 = α8 and α9 = α10 = α11. Hence every element of CH(x2) has the form ∑ 2 i=0 x2i(αi+αi+3x 3)+(α6+ α7x 3)x̂2y where 2∑ i=0 αi = 1, 2∑ i=0 αi+3 = 0 and αi ∈ F3k . It remains to show thatCH(x2) is abelian. Let α = ∑ 2 i=0 x2i ( αi + αi+3x 3 ) +(α6+α7x 3)x̂2y ∈ CH(x2) and β = ∑ 2 i=0 x2i ( βi + βi+3x 3 ) +(β6+β7x 3)x̂2y ∈ CH(x2) where 2∑ i=0 αi = 1, 2∑ i=0 αi+3 = 0, 2∑ i=0 βi = 1, 2∑ i=0 βi+3 = 0 and αi, βj ∈ F3k . Note that (x̂2)2 = 0. Then αβ = 2∑ i=0 x2i ( ai + ai+3x 3 ) 2∑ i=0 x2i ( bi + bi+3x 3 ) + 2∑ i=0 x2i ( ai + ai+3x 3 ) (b6 + b7x 3)x̂2y + (a6 + a7x 3)x̂2y 2∑ i=0 ( bix 2i + bi+3x 2i+3 ) 50 Units of some group algebras + (a6 + a7x 3)x̂2y(b6 + b7x 3)x̂2y = 2∑ i=0 x2i ( ai + ai+3x 3 ) 2∑ i=0 x2i ( bi + bi+3x 3 ) + 2∑ i=0 ( ai + ai+3x 3 ) x̂2(b6 + b7x 3)y + 2∑ i=0 ( bi + bi+3x 3 ) x̂2(a6 + a7x 3)y = 2∑ i=0 x2i ( ai + a3x 2i+3 ) 2∑ i=0 x2i ( bi + bi+3x 3 ) + x̂2(b6 + b7x 3)y + x̂2(a6 + a7x 3)y = 2∑ i=0 x2i ( ai + ai+3x 3 ) 2∑ i=0 x2i ( bix 2i + bi+3x 2i+3 ) + ((a6 + b6) + (a7 + b7)x 3)x̂2y and βα = 2∑ i=0 x2i ( bi + bi+3x 3 ) 2∑ i=0 x2i ( ai + ai+3x 3 ) + 2∑ i=0 x2i ( bi + bi+3x 3 ) (a6 + a7x 3)x̂2y + (b6 + b7x 3)x̂2y 2∑ i=0 x2i ( ai + ai+3x 3 ) + (b6 + b7x 3)x̂2y(a6 + a7x 3)x̂2y = 2∑ i=0 x2i ( bi + bi+3x 3 ) 2∑ i=0 x2i ( ai + ai+3x 3 ) + 2∑ i=0 ( bi + bi+3x 3 ) x̂2(a6 + a7x 3)y + 2∑ i=0 ( ai + ai+3x 3 ) x̂2(b6 + b7x 3)y = 2∑ i=0 x2i ( bi + bi+3x 3 ) 2∑ i=0 x2i ( ai + ai+3x 3 ) J. Gildea, F. Monaghan 51 + x̂2(a6 + a7x 3)y + x̂2(b6 + b7x 3)y = 2∑ i=0 x2i ( bi + bi+3x 3 ) 2∑ i=0 x2i ( ai + ai+3x 3 ) + ((a6 + b6) + (a7 + b7)x 3)x̂2y. Let γ = ∑ 2 i=0 x2i ( βi + βi+3x 3 ) ∈ H and δ = ∑ 2 i=0 x2i ( αi + αi+3x 3 ) ∈ H . Clearly γ, δ ∈ V (F3kC6) and γδ = δγ since V (F3kC6) is abelian. There- fore CH(x2) is abelian. Lemma 3. Let S be the subgroup of H consisting of elements of the form 1+ x̆(r+ r1x 3)(1 + y) where x̆ = 2∑ i=0 ix2i and r, r1 ∈ F3k . Then S ∼= C3 2k. Proof. Let s1 = 1+x̆(r+r1x 3)(1+y) ∈ S and s2 = 1+x̆(s+s1x 3)(1+y) ∈ S where r, s, r1, s1 ∈ F3k , then s1s2 = 1 + x̆(s+ s1x 3)(1 + y) + x̆(r + r1x 3)(1 + y) + x̆(r + r1x 3)(1 + y)x̆(s+ s1x 3)(1 + y) = 1 + x̆ ( (s+ r) + (s1 + r1)x 3 ) (1 + y) + x̆(r + r1x 3)(1 + y)(1− y)x̆(s+ s1x 3) = 1 + x̆ ( (s+ r) + (s1 + r1)x 3 ) (1 + y) + x̆(r + r1x 3)(1− 1)x̆(s+ s1x 3) = 1 + x̆ ( (s+ r) + (s1 + r1)x 3 ) (1 + y). Therefore S is closed. Lemma 4. H ∼= CH(x2)⋊ S. Proof. Clearly H = CH(x2).S since CH(x2) ∩ S = {1}. It remains to show that S normalizes CH(x2). Let s = 1 + x̆(r + r1x 3)(1 + y) , then s−1 = 1− x̆(r+ r1x 3)(1 + y) where r, r1 ∈ F3k . Also let c = ∑ 2 i=0 x2i(αi + αi+3x 3) + (α6 + α7x 3)x̂2y ∈ CH(x2) where 2∑ i=0 αi = 1, 2∑ i=0 αi+3 = 0 and αi ∈ F3k . Note that x̆2 = x̂2x̆ = 0. Then cs = ( 1− x̆(r + r1x 3)(1 + y) )( 2∑ i=0 x2i(αi + αi+3x 3) + (α6 + α7x 3)x̂2y ) × ( 1 + x̆(r + r1x 3)(1 + y) ) 52 Units of some group algebras = ( 1− x̆(r + r1x 3)(1 + y) ) ( 2∑ i=0 x2i(αi + αi+3x 3) + 2∑ i=0 x2i(αi + αi+3x 3)(x̆(r + r1x 3)(1 + y)) + (α6 + α7x 3)x̂2y ) = 2∑ i=0 x2i(αi + αi+3x 3) + 2∑ i=0 x2i(αi + αi+3x 3)(x̆(r + r1x 3)(1 + y)) + (α6 + α7x 3)x̂2y − x̆(r + r1x 3)(1 + y) 2∑ i=0 x2i(αi + αi+3x 3) = 2∑ i=0 x2i(αi + αi+3x 3) + 2∑ i=0 x2i(αi + αi+3x 3)(x̆(r + r1x 3)(y)) + (α6 + α7x 3)x̂2y − x̆(r + r1x 3)(y) 2∑ i=0 x2i(αi + αi+3x 3) = ( 2∑ i=0 x2i(αi + αi+3x 3) + ((α6 + δ) + (α7 + δ)x3)x̂2y ) ∈ CH(x2) where δ = r(α1 − α2) + r1(α4 − α5) and αi, r, r1 ∈ F3k . Recall that U(F3kD12) ∼= H⋊U(F3k(C2×C2)). Consider F3k(C2×C2). F3k(C2 × C2) ∼= (F3kC2)C2 ∼= (F3k ⊕ F3k)C2 ∼= F3kC2 ⊕ F3kC2 ∼= F3k ⊕ F3k ⊕ F3k ⊕ F3k . Thus U(F3k(C2 × C2)) ∼= C3k−1 4. Therefore U(F3kD12) ∼= [C3 6k × C3 2k]⋊ C3k−1 4 ∼= [(C3 6k × C3 2k)⋊ C3k−1 3]× U(F3k) Case (ii). Let G ∼= C3 ⋊ C4. Define the group epimorphism τ : U(F3k(C3 ⋊ C4)) −→ U(F3kC4) given by J. Gildea, F. Monaghan 53 2∑ i=0 (αi + αi+3x+ αi+6x 2 + αi+9x 3)yi 7→ 2∑ i=0 (αi + αi+3x+ αi+6x 2 + αi+9x 3) where x generates C4. Define the group homomorphism φ : U(F3kC4) −→ U(F3k(C3 ⋊ C4)) by a+ bx+ cx2 + dx3 7→ a+ bx+ cx2 + dx3 where a, b, c, d ∈ F3k . Then τ ◦ φ = 1, therefore U(F3k(C3 ⋊ C4)) ∼= L⋊ U(F3kC4) where L ∼= ker(τ). Let l = 2∑ i=0 (αi + αi+3x+ αi+6x 2 + αi+9x 3)yi ∈ U(F3k(C3 ⋊ C4)), then l ∈ L if and only if ∑ 2 i=0 αi = 1 and 2∑ j=0 αj+3 = 2∑ l=0 αl+6 = 2∑ m=0 αm+9 = 0 (αi ∈ F3k) Therefore |L| = 38k. Lemma 5. L has exponent 3. Proof. By Theorem 3, J(F3k(C3⋊C4)) 3 = 0 and 1+J(F3k(C3⋊C4)) has exponent 3. By Theorem 2, J(F3k(C3⋊C4)) = {α ∈ F3k(C3⋊C4)|αŷ = 0}. Therefore L ∼= 1 + J(F3k(C3 ⋊ C4)). Lemma 6. Every element of the centralizer of y in L (CL(y)) has the form 2∑ i=0 (αi + αi+4x 2)yi + (α3x+ α7x 3)ŷ where 2∑ i=0 αi = 1, 2∑ i=0 αi+3 = 0 and αi ∈ F3k . Also CL(y) ∼= C3 6k. Proof. CL(y) = {l ∈ L | ly = yl}. Let l = 2∑ i=0 (αi + αi+3x+ αi+6x 2 + αi+9x 3)yi ∈ L. where 2∑ i=0 αi = 1, 2∑ i=0 αi+3 = 0, 2∑ i=0 αi+6 = 0, 2∑ i=0 αi+9 = 0 and αi ∈ F3k . 54 Units of some group algebras Then ly − yl = ( 2∑ i=0 (αi+3x+ αi+9x 3)yi ) y − y ( 2∑ i=0 (αi+3x+ αi+9x 3)yi ) = 2∑ i=0 (αi+3x+ αi+9x 3)yi+1 − 2∑ i=0 (αi+3yx+ αi+9yx 3)yi = (α5 − α4)xŷ + (α11 − α10)x 3ŷ. Therefore l ∈ CL(y) if and only if α3 = α4 = α5 and α9 = α10 = α11. Thus every element of CL(y) is of the form 2∑ i=0 (αi + αi+4x 2)yi + (α3x+ α7x 3)ŷ where 2∑ i=0 αi = 1, 2∑ i=0 αi+3 = 0 and αi ∈ F3k . Let α = ∑ 2 i=0 (αi+αi+4x 2)yi+ (α3x+ α7x 3)ŷ ∈ CL(y) and β = ∑ 2 i=0 (βi + βi+4x 2)yi + (β3x+ β7x 3)ŷ ∈ CL(y) 2∑ i=0 αi = 1, 2∑ i=0 αi+3 = 0, 2∑ i=0 βi = 1, 2∑ i=0 βi+3 = 0 and αi, βj ∈ F3k . Then αβ = 2∑ i=0 (αi + αi+4x 2)yi 2∑ i=0 (βi + βi+4x 2)yi + 2∑ i=0 (αi + αi+4x 2)yi(β3x+ β7x 3)ŷ + (α3x+ α7x 3)ŷ 2∑ i=0 (βi + βi+4x 2)yi + (α3x+ α7x 3)ŷ(β3x+ β7x 3)ŷ = 2∑ i=0 (αi + αi+4x 2)yi 2∑ i=0 (βi + βi+4x 2)yi + 2∑ i=0 (αi + αi+4x 2)ŷ(β3x+ β7x 3) + (α3x+ α7x 3) 2∑ i=0 (βi + βi+4x 2)ŷ = 2∑ i=0 (αi + αi+4x 2)yi 2∑ i=0 (βi + βi+4x 2)yi + ŷ(β3x+ β7x 3) + (α3x+ α7x 3)ŷ J. Gildea, F. Monaghan 55 = 2∑ i=0 (αi + αi+4x 2)yi 2∑ i=0 (βi + βi+4x 2)yi + ((α3 + β3)x+ (α7 + β7)x 3)ŷ βα = 2∑ i=0 (βi + βi+4x 2)yi 2∑ i=0 (αi + αi+4x 2)yi + 2∑ i=0 (βi + βi+4x 2)yi(α3x+ α7x 3)ŷ + (β3x+ β7x 3)ŷ 2∑ i=0 (αi + αi+4x 2)yi + (β3x+ β7x 3)ŷ(α3x+ α7x 3)ŷ = 2∑ i=0 (βi + βi+4x 2)yi 2∑ i=0 (αi + αi+4x 2)yi + 2∑ i=0 (βi + βi+4x 2)ŷ(α3x+ α7x 3) + (β3x+ β7x 3) 2∑ i=0 (αi + αi+4x 2)ŷ = 2∑ i=0 (βi + βi+4x 2)yi 2∑ i=0 (αi + αi+4x 2)yi + ŷ(α3x+ α7x 3) + (β3x+ β7x 3)ŷ = 2∑ i=0 (αi + αi+4x 2)yi 2∑ i=0 (βi + βi+4x 2)yi + ((α3 + β3)x+ (α7 + β7)x 3)ŷ Let γ = ∑ 2 i=0 (αi + αi+4x 2)yi ∈ L and δ = ∑ 2 i=0 (βi + βi+4x 2)yi ∈ L. Clearly γ, δ ∈ V (F3kC6) since 〈x2, y〉 ∼= C6 and γδ = δγ. Therefore CL(y) ∼= C3 6k. Lemma 7. Let T be the subgroup of L consisting of elements of the form 1 + (a + bx2)ŷ + (rx + r1x 3)y̌ where y̌ = 2∑ i=0 iyi and r, r1 ∈ F3k . Then T ∼= C3 4k. Proof. Let t1 = 1 + (a1 + b1x 2)ŷ + (rx+ r1x 3)y̌ ∈ T and t2 = 1 + (a2 + 56 Units of some group algebras b2x 2)ŷ + (sx+ s1x 3)y̌ ∈ T where ai, bj , r, r1, s, s1 ∈ F3k . Then t1t2 = 1 + (a2 + b2x 2)ŷ + (sx+ s1x 3)y̌ + (a1 + b1x 2)ŷ + (a1 + b1x 2)ŷ(a2 + b2x 2)ŷ + (a1 + b1x 2)ŷ(sx+ s1x 3)y̌ + (rx+ r1x 3)y̌ + (rx+ r1x 3)y̌(a2 + b2x 2)ŷ + (rx+ r1x 3)y̌(sx+ s1x 3)y̌ = 1 + ((a1 + a2) + (b1 + b2)x 2)ŷ + ((r + s)x+ (r1 + s1)x 3)y̌ + (rx+ r1x 3)y̌(sx+ s1x 3)y̌ = 1 + ((a1 + a2 + δ1) + (b1 + b2 + δ2)x 2)ŷ + ((r + s)x+ (r1 + s1)x 3)y̌ ∈ T where δ1 = 2(rs1 + sr1) and δ2 = 2(rs + r1s2). It can easily be shown that T is abelian. Therefore T ∼= C3 4k. Lemma 8. L ∼= C3 6k ⋊ C3 2k. Proof. Let t = 1 + (a + bx2)ŷ + (rx + r1x 3)y̌ ∈ T and c = 2∑ i=0 (αi + αi+4x 2)yi + (α3x + α7x 3)ŷ ∈ CL(y) where 2∑ i=0 αi = 1, 2∑ i=0 αi+3 = 0 and αi, a, b, r, r1 ∈ F3k . Then ct = (1 + (a+ bx2)ŷ + (rx+ r1x 3)y̌)2 × ( 2∑ i=0 (αi + αi+4x 2)yi + (α3x+ α7x 3)ŷ ) × (1 + (a+ bx2)ŷ + (rx+ r1x 3)y̌) = (1− (a+ bx2)ŷ − (rx+ r1x 3)y̌ − (rx+ r1x 3)2ŷ) × ( 2∑ i=0 (αi + αi+4x 2)yi + (a+ bx2)ŷ + 2∑ i=0 (αi + αi+4x 2)yi(rx+ r1x 3)y̌ + (α3x+ α7x 3)ŷ ) = 2∑ i=0 (αi + αi+4x 2)yi + 2∑ i=0 (αi + αi+4x 2)yi(rx+ r1x 3)y̌ + (α3x+ α7x 3)ŷ − (rx+ r1x 3)y̌ 2∑ i=0 (αi + αi+4x 2)yi J. Gildea, F. Monaghan 57 = 2∑ i=0 (αi + αi+4x 2)yi + ((α3 + δ1)x+ (α7 + δ2)x 3)ŷ ∈ CL(y) where δ1 = r(α2 − α1) + r1(α6 − α5), δ2 = r(α6 − α5) + r1(α2 − α1). Clearly ct ∈ CL(y) and T normalizes CL(y). Let U = CL(y) ∩ T = { 1 + (a+ bx2)ŷ | a, b ∈ F3k } . Clearly |CL(y) ∩ T | = 32k and by the second Isomorphism Theorem |CL(y)T | = 38k. Therefore L = CL(y)T . T is an elementary abelian 3- group (Y ∼= U × V ). Clearly V ∩ CL(y) = {1} and V normalizes CL(y). Therefore L = CL(y)V ∼= C3 6k ⋊ C3 2k. Recall that U(F3k(C3 ⋊ C4)) ∼= L⋊ U(F3kC4). Now F3kC4 ∼= { F3k 4 if 4 | (3k − 1) F3k 2 ⊕ F32k if 4 ∤ (3k − 1). F3kC4 ∼= F3k 2 ⊕ F32k . Thus U(F3kC4) ∼= C3k−1 4 if 4 | (3k − 1) or U(F3kC4) ∼= C3k−1 2 × C32k−1 if 4 ∤ (3k − 1). Therefore U(F3k(C3 ⋊ C4)) ∼= ∼= { [(C3 6k ⋊ C3 2k)⋊ C3 3k−1 ]× U(F3k) if 4 | (3k − 1) [(C3 6k ⋊ C3 2k)⋊ (C3k−1 × C32k−1)]× U(F3k) if 4 ∤ (3k − 1). References [1] Bovdi, Victor, Symmetric units and group identities in group algebras. I, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 22(2) (2006), 149–159. [2] Bovdi, Victor, Kovács, L. G., Sehgal, S. K., Symmetric units in modular group algebras, Comm. Algebra, 24(3) (1996), 803–808. [3] Bovdi, V. A., Siciliano, S., Normality in group rings, Algebra i Analiz, 19(2) (2007), 1–9. [4] L. Creedon, J. Gildea, The structure of the Unit Group of the Group Algebra F 3k D6, Int. J. Pure Appl. Math., 45(2) (2008), 315–320. [5] P.J. Davis, Circulant Matrices, Chelsea Publishing, New York, 1979. [6] J.Gildea, On the Order of U(FpkD2pm), Int. J. Pure Appl. Math., 46(2) (2008), 267–272. [7] Karpilovsky, G., The Jacobson radical of group algebras, North-Holland Mathe- matics Studies, 135, North-Holland Publishing Co., Amsterdam, 1987, 532. [8] M. Khan, R.K. Sharma, J.B. Srivastava, The Unit Group of FS3, Acta. Math. Acad. Paedagog. Nyházi., 23(2) (2007), 129–142. 58 Units of some group algebras [9] C. Polcino Milies, S. K. Sehgal, An introduction to Group Rings, Kluwer Academic Publishers, 2002. [10] R. Sandling, Units in the Modular Group Algebra of a Finite Abelian p-Group, J. Pure Appl. Algebra, 33 (1984), 337–346. [11] Sharma, R. K., Srivastava, J. B., Khan, Manju, The unit group of FA4, Publ. Math. Debrecen, 71 (2007), no. 1-2, 21–26. Contact information J. Gildea, F. Monaghan School of Engineering, Institute of Technology Sligo, Ireland E-Mail: gildea.joe@itsligo.ie, fayemonaghan@hotmail.com URL: http://www.itsligo.ie/staff/jgildea Received by the editors: 16.02.2011 and in final form 07.05.2011.