Алгебраические критерий и достаточные условия асимптотической устойчивости и ограниченности с вероятностью 1 решений системы линейных стохастических разностных уравнений
С помощью метода стохастических функций Ляпунова получены новые эффективно проверяемые алгебраические критерий и достаточные условия асимптотической устойчивости с вероятностью 1 решений системы линейных со случайными (вида r-мерной векторной «белой» последовательности случайных величин) коэффициент...
Gespeichert in:
Datum: | 1986 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | Russian |
Veröffentlicht: |
Інститут математики НАН України
1986
|
Schriftenreihe: | Український математичний журнал |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/154818 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Алгебраические критерий и достаточные условия асимптотической устойчивости и ограниченности с вероятностью 1 решений системы линейных стохастических разностных уравнений / Д.Г. Кореневский // Український математичний журнал. — 1986. — Т. 38, № 4. — С. 447–452. — Бібліогр.: 9 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | С помощью метода стохастических функций Ляпунова получены новые эффективно проверяемые алгебраические критерий и достаточные условия асимптотической устойчивости с вероятностью 1 решений системы линейных со случайными (вида r-мерной векторной «белой» последовательности случайных величин) коэффициентами стохастических разностных уравнений, представляющие собой дискретные аналоги условий, установленных ранее автором для стохастических уравнений Ито с непрерывным временем. Предполагается, что при отсутствии параметрических случайных возмущений невозмущенная детерминированная система разностных уравнений асимптотически устойчива п о Ляпунову (матрица А системы сходящаяся). Установлен также алгебраический критерий ограниченности (пребывания на эллипсоидах и сферах и внутри их) решений с вероятностью 1. Критерии выражены в терминах матричных уравнений Сильвестра и Ляпунова. |
---|