H -supplemented modules with respect to a preradical

Let M be a right R-module and τ a preradical. We call M τ-H-supplemented if for every submodule A of M there exists a direct summand D of M such that (A+D)/D⊆τ(M/D) and (A+D)/A⊆τ(M/A). Let τ be a cohereditary preradical. Firstly, for a duo module M=M₁⊕M₂ we prove that M is τ-H-supplemented if and on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2011
Hauptverfasser: Yahya Talebi, A. R. Moniri Hamzekolaei, Derya Keskin Tutuncu
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2011
Schriftenreihe:Algebra and Discrete Mathematics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/154821
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:H -supplemented modules with respect to a preradical/ Yahya Talebi, A. R. Moniri Hamzekolaei, Derya Keskin Tutuncu // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 116–131. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Let M be a right R-module and τ a preradical. We call M τ-H-supplemented if for every submodule A of M there exists a direct summand D of M such that (A+D)/D⊆τ(M/D) and (A+D)/A⊆τ(M/A). Let τ be a cohereditary preradical. Firstly, for a duo module M=M₁⊕M₂ we prove that M is τ-H-supplemented if and only if M₁ and M₂ are τ-H-supplemented. Secondly, let M=⊕ⁿi=1Mi be a τ-supplemented module. Assume that Mi is τ-Mj-projective for all j>i. If each Mi is τ-H-supplemented, then M is τ-H-supplemented. We also investigate the relations between τ-H-supplemented modules and τ-(⊕-)supplemented modules.