Diagonalizability theorem for matrices over certain domains
It is proved that R is a commutative adequate domain, then R is the domain of stable range 1 in localization in multiplicative closed set which corresponds s-torsion in the sense of Komarnitskii.
Gespeichert in:
Datum: | 2011 |
---|---|
Hauptverfasser: | Zabavsky, B., Domsha, O. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2011
|
Schriftenreihe: | Algebra and Discrete Mathematics |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/154856 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Diagonalizability theorem for matrices over certain domains / B. Zabavsky, O. Domsha // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 1. — С. 132–139. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Diagonalizability theorem for matrices over certain domains
von: Zabavsky, Bogdan, et al.
Veröffentlicht: (2018) -
Diagonalizability theorems for matrices over rings with finite stable range
von: Zabavsky, B.
Veröffentlicht: (2005) -
Diagonalizability theorems for matrices over rings with finite stable range
von: Zabavsky, Bogdan
Veröffentlicht: (2018) -
Reduction of matrices over Bezout domains of stable range 1 with Dubrovin’s condition in which maximal nonprincipal ideals are two-sides
von: Kysil, T., et al.
Veröffentlicht: (2012) -
Reduction of matrices over Bezout domains of stable range 1 with Dubrovin's condition in which maximal nonprincipal ideals are two-sides
von: T. Kysil, et al.
Veröffentlicht: (2012)