On a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point
In this paper we study the semigroup IC(I,[a]) (IO(I,[a])) of closed (open) connected partial homeomorphisms of the unit interval I with a fixed point a∈I. We describe left and right ideals of IC(I,[0]) and the Green's relations on IC(I,[0]). We show that the semigroup IC(I,[0]) is bisimple and...
Збережено в:
Дата: | 2011 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2011
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/154866 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On a semigroup of closed connected partial homeomorphisms of the unit interval with a fixed point / I. Chuchman // Algebra and Discrete Mathematics. — 2011. — Vol. 12, № 2. — С. 38–52. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In this paper we study the semigroup IC(I,[a]) (IO(I,[a])) of closed (open) connected partial homeomorphisms of the unit interval I with a fixed point a∈I. We describe left and right ideals of IC(I,[0]) and the Green's relations on IC(I,[0]). We show that the semigroup IC(I,[0]) is bisimple and every non-trivial congruence on IC(I,[0]) is a group congruence. Also we prove that the semigroup IC(I,[0]) is isomorphic to the semigroup IO(I,[0]) and describe the structure of a semigroup II(I,[0])=IC(I,[0])⊔IO(I,[0]). As a corollary we get structures of semigroups IC(I,[a]) and IO(I,[a]) for an interior point a∈I. |
---|