Preradicals and submodules

Some collections of submodules of a module defined by certain conditions are studied.

Збережено в:
Бібліографічні деталі
Дата:2010
Автор: Maturin, Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2010
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/154874
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Preradicals and submodules / Y. Maturin // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 88–96. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-154874
record_format dspace
spelling irk-123456789-1548742019-06-17T01:31:51Z Preradicals and submodules Maturin, Y. Some collections of submodules of a module defined by certain conditions are studied. 2010 Article Preradicals and submodules / Y. Maturin // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 88–96. — Бібліогр.: 4 назв. — англ. 1726-3255 000 Mathematics Subject Classification:16D90, 16D10. http://dspace.nbuv.gov.ua/handle/123456789/154874 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Some collections of submodules of a module defined by certain conditions are studied.
format Article
author Maturin, Y.
spellingShingle Maturin, Y.
Preradicals and submodules
Algebra and Discrete Mathematics
author_facet Maturin, Y.
author_sort Maturin, Y.
title Preradicals and submodules
title_short Preradicals and submodules
title_full Preradicals and submodules
title_fullStr Preradicals and submodules
title_full_unstemmed Preradicals and submodules
title_sort preradicals and submodules
publisher Інститут прикладної математики і механіки НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/154874
citation_txt Preradicals and submodules / Y. Maturin // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 88–96. — Бібліогр.: 4 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT maturiny preradicalsandsubmodules
first_indexed 2025-07-14T06:56:28Z
last_indexed 2025-07-14T06:56:28Z
_version_ 1837604472767905792
fulltext Algebra and Discrete Mathematics RESEARCH ARTICLE Volume 10 (2010). Number 1. pp. 88 – 96 c© Journal “Algebra and Discrete Mathematics” Preradicals and submodules Yuriy Maturin Communicated by M. Ya. Komarnytskyj Abstract. Some collections of submodules of a module defined by certain conditions are studied. Throughout the whole text, all rings are considered to be associative with unit 1 6=0 and all modules are left unitary. Let R be a ring. The category of left R-modules will be denoted by R−Mod. We shall write N ≤ M if N is a submodule of M . Let a ∈ R, I ⊆ R. Put (I : a) = {x ∈ R|xa ∈ I} . Let M be an R-module. Let End(M) be the set of all endomorphisms of the R-module M . A submodule N of M is said to be fully invariant in case ∀f ∈ End(M) : f(N) ≤ N. Let N ≤ M and f ∈ End(M). Put (N : f)M = {x ∈ M |f(x) ∈ N} . It is clear that (N : f)M ≤ M . Put End(M)N = {f ∈ End(M)|f(M) ⊆ N} . Let F (M) be some non-empty collection of submodules of a left R- module M . We shall consider the following conditions: 2000 Mathematics Subject Classification: 16D90, 16D10. Key words and phrases: ring, module, preradical. Yu. Maturin 89 C1. L ∈ F (M), L ≤ N ≤ M ⇒ N ∈ F (M); C2. L ∈ F (M), f ∈ End(M) ⇒ (L : f)M ∈ F (M); C3. N,L ∈ F (M) ⇒ N ∩ L ∈ F (M); C4. N ∈ F (M), N ∈ Gen(M), L ≤ N ≤ M ∧ ∀g ∈ End(M)N : (L : g)M ∈ F (M) ⇒ L ∈ F (M); C5. N,K ∈ F (M), N ∈ Gen(M) ⇒ t(K⊆M)(N) ∈ F (M). Remark 1. Let F be a non-empty set of left ideals of R. (1) Then F is a preradical filter if and only if F satisfies C1, C2, C3. (2) Then F is a radical filter if and only if F satisfies C1, C2, C4. Proof. (1) (⇒)Let F be a preradical filter. (C1) This is clear. (C2) Let f ∈ End(R). Then there exists a ∈ R such that ∀r ∈ R : f(r) = ra. Therefore for L ∈ F we obtain (L : f)R = {x ∈ R|f(x) ∈ L} = {x ∈ R|xa ∈ L} = (L : a). Since F is a preradical filter, (L : f)R = (L : a) ∈ F . (C3) This is clear. (⇐) Let F satisfy (C1), (C2), (C3). Then it satisfies (a2) and (a3) [1, p.36]. (a1) (See [1, p.34]. Let a ∈ R and L ∈ F . Define f : R → R, where ∀x ∈ R : f(x) = xa. It is easy to see that f ∈ End(R). Obtain (L : f)R = (L : a). But (L : f)R ∈ F . Hence (L : a) ∈ F . (2) (⇒)Let F be a radical filter. (C1),(C2) This is clear (see (1) (⇒)). (C4) Let N be a left ideal of R and g ∈ End(R)N . Then there exists a ∈ R such that ∀r ∈ R : g(r) = ra. It follows from this that a = 1a = g(1) ∈ N . Taking into account (a5) (see [1, p.36]), it is obvious that F satisfies C4. (⇐) Let F satisfy C1, C2, C4. Then it is easy to see that it satisfies (a1) and (a2). (a5) Let N ∈ F,L ≤ N ≤ R∧∀a ∈ N : (L : a) ∈ F . Then N ∈ Gen(R) because R is a generator. Let g ∈ End(R)N . It means that there exists a ∈ N such that ∀r ∈ R : g(r) = ra. But (L : g)R = (L : a). Therefore (L : g)R ∈ F . By (C4), L ∈ F . Hence F satisfies (a5). Remark 2. Let M and H be left R-modules and q : M → H be an isomorphism, U be a non-empty set of submodules of M and q(U) = = {q(L)|L ∈ U } . Then q(U) satisfies (Ci) if and only if U satisfies (Ci) for every i ∈ {1, 2, 3, 4, 5}. 90 Preradicals and submodules Proof. It is suffice to verify that q(U) satisfies (Ci) if U satisfies (Ci) for every i ∈ {1, 2, 3, 4, 5}. (1) Let U satisfy (C1). Consider L ∈ q(U), L ≤ N ≤ H. Hence q−1(L) ∈ U, q−1(L) ≤ q−1(N) ≤ M . By (C1), q−1(N) ∈ U . Whence N = q(q−1(N)) ∈ q(U). (2) Let U satisfy (C2). Consider L ∈ q(U), f ∈ End(H). Hence q−1fq ∈ End(M), q−1(L) ∈ U . By (C2), q−1(L : f)H = (q−1(L) : q−1fq)M ∈ U . Hence (L : f)H ∈ q(U). (3) Let U satisfy (C3). Consider N,L ∈ q(U). Hence q−1(N), q−1(L) ∈ U . By (C3), q−1(N ∩L) = q−1(N)∩ q−1(L) ∈ U . Therefore N ∩L ∈ q(U). (4) Let U satisfy (C4) and let N ∈ q(U), N ∈ Gen(H), L ≤ N ≤ H ∧ ∀g ∈ End(H)N : (L : g)H ∈ q(U). Then q−1(N) ∈ U, q−1(N) ∈ Gen(M), q−1(L) ≤ q−1(N) ≤ M . Let f ∈ End(M)q−1(N). Hence qfq−1 ∈ End(H)N . Since ∀g ∈ End(H)N : (L : g)H ∈ q(U), q(q−1(L) : f)M = (L : qfq−1)H ∈ q(U). Hence (q−1(L) : f)M ∈ U . By (C4), q−1(L) ∈ U . Hence L ∈ q(U). (5) Let U satisfy (C5) and N,K ∈ q(U), N ∈ Gen(H). Hence q−1(N), q−1(K) ∈ U, q−1(N) ∈ Gen(M). By (C5), t(q−1(K)⊆M)(q −1(N)) ∈ U . Hence q(t(q−1(K)⊆M)(q −1(N))) ∈ q(U). But q(t(q−1(K)⊆M)(q −1(N))) = q   ∑ g∈End(M) q−1(N) g(q−1(K))   = = ∑ g∈End(M) q−1(N) q(g(q−1(K))) = ∑ g∈End(M) q−1(N) (qgq−1)(K) = = ∑ f∈End(H)N f(K) = t(K⊆H)(N). Therefore t(K⊆H)(N) ∈ q(U). Remark 3. Let M be a left R-module. Then the sets {M} and {L|L ≤M} satisfy (C1), (C2), (C3), (C4), (C5). Proposition 1. If F(M) satisfies (C1), (C2), (C4), then it satisfies (C5). Proof. Let N,K ∈ F (M), N ∈ Gen(M). Then t(K⊆M)(N) = ∑ g∈End(M)N g(K) Yu. Maturin 91 (see [3, p.40]). It is easy to see that ∀h ∈ End(M)N : K ≤ (t(K⊆M)(N) : h)M . By (C1), it follows from this that ∀h ∈ End(M)N : (t(K⊆M)(N) : h) ∈ F (M). It is obvious that t(K⊆M)(N) ≤ N . Therefore N ∈ F (M), N ∈ Gen(M), t(K⊆M)(N) ≤ N ≤ M∧ ∧∀h ∈ End(M)N : (t(K⊆M)(N) : h)M ∈ F (M). Taking into consideration (C4), it follows from this that t(K⊆M)(N) ∈ F (M). Put kerF (M) := ⋂ L∈F (M) L. Proposition 2. If F (M) satisfies (C2), then kerF (M) is a fully invariant submodule of M . Proof. Let f ∈ End(M),m ∈ kerF (M). By (C2), ⋂ L∈F (M) L ⊆ ⋂ L∈F (M) (L : f)M . Then m ∈ ⋂ L∈F (M) (L : f)M . Hence f(m) ∈ ⋂ L∈F (M) L. Thus f(kerF (M)) ⊆ kerF (M). Let M be a left R-module. Let r be a preradical in R-Mod. Put Fr(M) = {L ≤ M |M/L ∈ T (r)} , where T (r) = {M ∈ R−Mod|r(M) = M} (see [1, 3]). Lemma 1. Let N ≤ M and f ∈ End(M). Then f(M) ∩ N = f((N : f)M )and f(M)/(f(M) ∩N) ∼= M/(N : f)M . 92 Preradicals and submodules Proof. It is obvious that f(M) ∩N = f((N : f)M ). Let g : { M/(N : f)M → f(M)/(f(M) ∩N); m+ (N : f)M 7→ f(m) + f(M) ∩N. Since m1 + (N : f)M = m2 + (N : f)M ⇒ m1 −m2 ∈ (N : f)M ⇒ ⇒ f(m1−m2) ∈ f(M)∩N ⇒ f(m1)+ f(M)∩N = f(m2)+ f(M)∩N, the correspondence g is a mapping. It is easy to see that g is an epimorphism. Let f(m1)+f(M)∩N = f(m2)+f(M)∩N . Then m1−m2 ∈ (N : f)M . Hence m1 + (N : f)M = m2 + (N : f)M . Thus g is a monomorphism. Therefore g is an isomorphism. Theorem 1. Let r be a hereditary preradical in R − Mod and M be a left R-module. Then the system Fr(M)satisfies (C1), (C2), (C3). Proof. (C1). Let L ∈ Fr(M), L ≤ N ≤ M . Since M/N ∼= (M/L)/(N/L) [2],N ∈ Fr(M) because the class T (r) is closed under epimorphic images [3] ( see also [1, p.36]). (C2). Let L ∈ Fr(M), f ∈ End(M). Then M/L ∈ T (r). Since the class T (r) is closed under submodules, (f(M)+L)/L ∈ T (r). But (f(M)+ L)/L ∼= f(M)/(f(M) ∩ L) [2]. Hence f(M)/(f(M) ∩ L) ∈ T (r). Since f(M)/(f(M) ∩ L) ∼= M/(L : f)M ( See Lemma 1), (L : f)M ∈ Fr(M). (C3). Let N,L ∈ Fr(M). Then M/N,M/L ∈ T (r). Hence M/N ⊕ M/L ∈ T (r) because the class T (r) is closed under direct sums [1, 3]. Consider the homomorphism w : { M → M/N ⊕M/L, m 7→ (m+N,m+ L). Then im(w) ∈ T (r) because T (r) is closed under submodules [1, 3]. It is clear that ker(w) = N ∩L. But im(w) ∼= M/ ker(w) [2]. Therefore N ∩ L ∈ Fr(M) (see also [1, p.36]). Theorem 2. Let r be a hereditary radical in R −Mod and M be a left R-module. Then the system Fr(M) satisfies (C1), (C2), (C3), (C4). Proof. Taking into account Theorem 1, we shall prove only (C4). Let N ∈ Fr(M), N ∈ Gen(M), L ≤ N ≤ M∧ ∧∀g ∈ End(M)N : (L : g)M ∈ Fr(M). By Lemma 1, ∀g ∈ End(M)N : (g(M) + L)/L ∼= M/(L : g)M . Yu. Maturin 93 It follows from ∀g ∈ End(M)N : (L : g)M ∈ Fr(M) that ∀g ∈ End(M)N : M/(L : g)M ∈ T (r). Therefore ∀g ∈ End(M)N : (g(M) + L)/L ∈ T (r). Since the class T (r) is closed under direct sums and factor modules [1, 3], ∑ g∈End(M)N (g(M) + L)/L ∈ T (r). Since N ∈ Gen(M), ∑ g∈End(M)N g(M) = N (see [2]). Thus N/L = (N + L)/L = ∑ g∈End(M)N (g(M) + L)/L ∈ T (r). Since the class T (r) is closed under extensions [1, 3], taking into account that N/L ∈ T (r), (R/L)/(N/L) ∼= R/N ∈ T (r), we have that R/L ∈ T (r). Thus L ∈ Fr(M). Corollary 1. Let r be a hereditary radical in R−Mod and M be a left R-module. Then the system Fr(M)satisfies (C5). Proof. By Theorem 2, Proposition 1. Corollary 2. Let r be a hereditary preradical in R −Mod and M be a left R-module. Then kerFr(M) is a fully invariant submodule of M . Proof. By Theorem 1, Proposition 2. Proposition 3. Let M be a left R-module and K be a fully invariant submodule of M . Then U = {L|K ≤ L ≤ M} satisfies (C1), (C2), (C3). Proof. (C1) This is clear. (C2) Let L ∈ U, f ∈ End(M). Since K is a fully invariant submodule of M , f(K) ≤ K ≤ L. Therefore K ≤ (L : f)M . By (C1), (L : f)M ∈ U . (C3) This is clear. Theorem 3. Let M be a left R-module and K be a fully invariant sub- module of M such that t(K⊆M)(K) = K. Then U = {L|K ≤ L ≤ M} satisfies (C1), (C2), (C3), (C4). 94 Preradicals and submodules Proof. By Proposition 3, U satisfies (C1), (C2), (C3). (C4) Let N ∈ U ∧ L ≤ N ≤ M ∧ (∀g ∈ End(M)N : (L : g)M ∈ U) and k be an arbitrary element of K. Since t(K⊆M)(K) = K, k = p1(k1) + p2(k2) + ...+ ps(ks), where s ∈ {1, 2, ...}, p1, p2, ..., ps ∈ End(M)K , k1, k2, ..., ks ∈ K. Since K ≤ N , End(M)K ≤ End(M)N . Thus p1, p2, ..., ps ∈ End(M)N . Now we obtain that ∀j ∈ {1, 2, ..., s} : (L : pj)M ∈ U . Hence ∀j ∈ {1, 2, ..., s} : pj(K) ≤ L. It means that ∀j ∈ {1, 2, ..., s} : pj(kj) ∈ L. Taking this into consideration, we have k = p1(k1) + p2(k2) + ...+ ps(ks) ∈ L. Therefore K ≤ L. It follows from this that L ∈ U . Theorem 4. Let F be a field and V be a vector space over F with dimF V < ∞. If U 6= {V } is a non-empty set of subspaces of V satisfying (C1), (C2), (C3), then U = {L|L ≤ V } . Proof. By Proposition 2, kerU is a fully invariant subspace of V . It is easy to see that every fully invariant subspace of V is either {0} or V . Since U 6= {V }, kerU = {0}. Let P = {dimF ( ⋂ L∈D L ) |D ⊆ U&|D| < ∞}. Hence ∅ 6= P ⊆ {0, 1, 2, ...}. Therefore there exists t = minP ∈ {0, 1, 2, ...}. It follows from this that there exists D0 ⊆ U such that |D0| < ∞ and dimF ( ⋂ L∈D0 L ) = t. Hence ∀B ∈ U : t ≤ dimF     ⋂ L∈D0 L   ∩B   ≤ dimF   ⋂ L∈D0 L   = t. Hence ∀B ∈ U : dimF (( ⋂ L∈D0 L ) ∩B ) = dimF ( ⋂ L∈D0 L ) & & ( ⋂ L∈D0 L ) ∩B ≤ ⋂ L∈D0 L. It follows from this that ∀B ∈ U : ( ⋂ L∈D0 L ) ∩ ∩ B = ( ⋂ L∈D0 L ) . Then we obtain ∀B ∈ U : ⋂ L∈D0 L ⊆ B. It means Yu. Maturin 95 that ⋂ L∈D0 L ⊆ kerU . But kerU ⊆ ⋂ L∈D0 L. Therefore kerU = ⋂ L∈D0 L. Now we have that {0} = ⋂ L∈D0 L. Taking into account |D0| < ∞, by (C3), {0} = ⋂ L∈D0 L ∈ U . Now apply (C1). Example 1. Let F be a field and V be a vector space over F with dimF V = k0 and k be a non-finite cardinal number such that k ≤ k0. Then Uk = {L|L ≤ V, dimF (V/L) < k} satisfies (C1), (C2), (C3), (C4), (C5). Proof. (C1) Let L ∈ Uk, L ≤ N ≤ V . It is obvious that there exists an epimorphism π : V/L → V/N . Hence V/L = H ⊕ T for some subspaces H ∼= V/N, T of V/L. It follows from this that dimF (V/N) = dimF (H) ≤ dimF (H ⊕ T ) = dimF (V/L) < k. Whence dimF (V/N) < k. Now we obtain N ∈ Uk. (C2) Let L ∈ Uk, f ∈ End(V ). By Lemma 1, V/(L : f)V ∼= ∼= f(V )/(f(V ∩ L). By Corollary 3.7 (3) [2, p.46], f(V )/(f(V ) ∩ L) ∼= ∼= (f(V ) + L)/L. It follows from this that V/(L : f)V ∼= (f(V ) + L)/L. Since (f(V ) + L)/L ≤ V/L&dimF (V/L) < k, dimF (V/(L : f)V ) < k. Thus (L : f)V ∈ Uk. (C3) Let L,M ∈ Uk. Hence dimF (V/L) < k&dimF (V/M) < k. It is easy to see that dimF (V/(L ∩M)) ≤ dimF (V/L) + dimF (V/M). Therefore dimF (V/(L∩M)) < k+k = k [4, p.417]. Thus L∩M ∈ Uk. (C4) Let N ∈ Uk ∧ L ≤ N ≤ V ∧ (∀g ∈ End(V )N : (L : g)V ∈ Uk). Thus V = N ⊕ W for some subspace W . Consider the following homomorphism: g : V → V, g(n+ w) = n, (n ∈ N,w ∈ W ). Then, by Lemma 1, V/(L : g)V ∼= g(V )/(g(V ) ∩ L) = N/L. Hence dimF (N/L) = dimF (V/(L : g)V ) < k. It is obvious that V/L = N/L⊕K for some subspace K. But K ∼= ∼= (V/L)/(N/L) ∼= V/N . Since N ∈ Uk, dimF K = dimF (V/N) < k. Hence dimF (V/L) = dimF (N/L) + dimF K < k + k = k. Thus L ∈ Uk. (C5) Now apply Proposition 1. 96 Preradicals and submodules Definition 1. A non-empty collection F (M)of submodules of a left R- module M satisfying (C1), (C2), (C3) is said to be a (preradical) filter of M . Example 2. Let M be a left R-module and f ∈ End(M) such that fn(M) is a fully invariant submodule of M for any n ∈ {1, 2, ...}. Then {L ≤ M |∃n ∈ {1, 2, ...} : fn (M) ⊆ L} is a collection satisfying (C1), (C2), (C3), (C4), (C5). Proof. (C1) This is clear. (C2) Let fn(M) ⊆ L and g ∈ End(M). Then g(fn(M)) ⊆ fn(M). Hence g(fn(M)) ⊆ L. Therefore fn(M) ⊆ (L : g)M . (C3) Let fn(M) ⊆ L,fm(M) ⊆ N , and n ≤ m. fm(M) ⊆ fn(M). Hence fm(M) ⊆ L ∩N . (C4) Let fm(M) ⊆ N ,N ∈ Gen(M), L ≤ N ≤ M , and ∀g ∈ End(M)N∃n(g) : fn(g)(M) ⊆ (L : g)M . Then it is easily seen that fm ∈ End(M)N . Put n0 := n(fm). Hence fn0(M) ⊆ (L : fm)M . Therefore fn0+m(M) ⊆ L. (C5) Apply Proposi- tion 1. References [1] A.I. Kashu, Radicals and torsions in modules, Chisinau: Stiintsa, 1983. 154 p. [2] F.W. Anderson, K.R. Fuller, Rings and categories of modules, Berlin-Heidelberg-New York: Springer, 1973. 340 p. [3] L. Bican, T. Kepka, P. Nemec, Rings, modules, and preradicals, Lect. Notes Appl. Math. 75, New York, Marcell Dekker, 1982. 241 p. [4] W. Sierpinski, Cardinal and ordinal numbers, Warsaw: PWN, 2nd edition, 1965. 492 p. Contact information Yuriy Maturin Institute of Physics, Mathematics and Com- puter Science,Drohobych Ivan Franko State Pedagogical University, Stryjska, 3, Dro- hobych 82100, Lviv Region, Ukraine E-Mail: yuriy_maturin@hotmail.com URL: www.drohobych.net/ddpu/ Received by the editors: 03.11.2010 and in final form 03.11.2010.